论文中文题名: | 基于空间效应的深基坑侧壁变形模型试验研究 |
姓名: | |
学号: | 20204053044 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081401 |
学科名称: | 工学 - 土木工程 - 岩土工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土工程与力学应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-11 |
论文答辩日期: | 2023-06-05 |
论文外文题名: | Experimental study on deformation model of side wall of deep foundation pit based on spatial effect |
论文中文关键词: | |
论文外文关键词: | Foundation pit works ; Space effect ; Model test ; Numerical simulation ; influence coefficient |
论文中文摘要: |
随着城市建设的发展,基坑工程的设计和施工过程中,空间效应显得尤为重要。大量的工程实践表明,阳角基坑危险性更高,且随着基坑阳角角度的变化,其变形规律有所不同。因此,开展考虑空间效应下不同开挖角度对阳角基坑的受力特性及变形规律研究尤为重要。本文通过室内模型试验、数值模拟及理论计算相结合的方法,研究了阳角基坑不同开挖角度、不同长宽比对基坑侧壁变形的影响。主要研究成果如下: 根据空间效应产生机制和相似原理,确定模型试验相关参数,进行模型土的配比试验,确定出最佳配比,并安装监测设备对参数进行测定。 通过室内模型试验,研究三种工况(未支护阴角、排桩支护阴角、排桩支护阳角)下基坑的空间效应。在三种工况下,基坑侧壁水平位移均随着距离基坑角部越远逐渐增大,长边位移均大于短边,且阴、阳角基坑的变形均有显著的空间影响。随着基坑开挖的进行,桩侧土压力减小,长短边变化规律基本一致,且沿深度方向变化幅度较小。超载的影响仅在一定深度范围,深度越深、距离超载越远,影响越小。 采用数值方法建立与模型试验相对应的三维数值模型,确定数值模型的合理性。建立不同开挖角度及不同长宽比的阳角基坑计算模型,分析其对阳角基坑侧壁变形的影响,发现随着阳角基坑开挖角度的增大,基坑侧壁长边中部桩侧土压力整体的变化呈“阶梯状”;在90°、120°、150°三种开挖角度下,90°为最不利开挖角度;对以上各种工况进行总结分析,发现当长宽比为2:1时,开挖角度从90°增大到150°,空间效应影响区长度从2.85H减小到1.66H;开挖角度不变,基坑侧壁空间效应影响区长度随着长宽比的增大而增大。 在传统的土压力理论基础上,结合阳角型基坑的开挖角度,提出了可用于定量分析空间效应的阳角型基坑空间效应影响系数,从而更直接地分析出坑角效应的作用区域,从而为相似情况下基坑的支护设计提供一些理论依据。 |
论文外文摘要: |
With the development of urban construction, spatial effects are particularly important in the design and construction process of foundation pit engineering. A large number of engineering practices have shown that the danger of external corner excavation is higher, and the deformation law varies with the change of external corner angle of the excavation. Therefore, it is particularly important to conduct research on the stress characteristics and deformation laws of external corner foundation pits under different excavation angles considering spatial effects. This article combines indoor model tests, numerical simulations, and theoretical calculations to study the influence of different excavation angles and length to width ratios on the deformation of the side walls of the external corner foundation pit. The main research results are as follows: (1)Based on the mechanism of spatial effects and the principle of similarity, determine the relevant parameters of the model test, conduct the ratio test of the model soil, determine the optimal ratio, and install monitoring equipment to measure the parameters. (2)Through indoor model tests, the spatial effects of foundation pits under three working conditions (unsupported internal corners, row pile supported internal corners, and row pile supported external corners) were studied. Under three working conditions, the horizontal displacement of the side wall of the foundation pit gradually increases with the distance from the corner of the foundation pit, and the displacement of the long side is greater than that of the short side. Moreover, the deformation of the yin and yang corner foundation pits has significant spatial effects. As the excavation of the foundation pit progresses, the soil pressure on the pile side decreases, and the variation pattern of the long and short sides is basically consistent, and the variation amplitude along the depth direction is relatively small. The impact of overload is only within a certain depth range, and the deeper the depth and the farther away from overload, the smaller the impact. (3)Establish a three-dimensional numerical model corresponding to the model experiment using numerical methods to determine the rationality of the numerical model. Establish a calculation model for external corner excavation with different excavation angles and length to width ratios, and analyze its impact on the deformation of the side wall of the external corner excavation. It is found that as the excavation angle of the external corner excavation increases, the overall change in soil pressure on the middle pile side of the long side of the excavation wall shows a "stepped" shape; At three excavation angles of 90°, 120°, and 150°, 90° is the most unfavorable excavation angle; After summarizing and analyzing the above various working conditions, it was found that when the aspect ratio is 2:1, the excavation angle increases from 90° to 150°, and the length of the spatial effect influence zone decreases from 2.85H to 1.66H; The excavation angle remains unchanged, and the length of the spatial effect zone on the side walls of the foundation pit increases with the increase of the aspect ratio. (4) On the basis of traditional soil pressure theory and combined with the excavation angle of external angle type foundation pits, a spatial effect influence coefficient for external angle type foundation pits is proposed, which can be used for quantitative analysis of spatial effects. This allows for a more direct analysis of the action area of the pit angle effect and provides some theoretical basis for the support design of foundation pits in similar situations. |
参考文献: |
[1]中国建筑科学研究院.建筑基坑支护技术规程:JGJ120-2012[S].北京:中国建筑工业出版社,2012. onmental Engineering, ASCE,1998,124(4):339-349. [3]俞建霖,龚晓南,徐日庆. 基坑周围地表沉降量的空间性状分析[C]//第七届全国结构工程学术会议论文集(第Ⅲ卷),1998:571-577. [4]陆培毅,李绍忠,顾晓鲁.基坑支护结构的空间分析[J].岩土力学,2004(01):1 [5]刘建航,刘国彬,范益群.软土基坑工程中时空效应理论与实践[J].地下工程与隧道,1999(3):7-12. [6]章敏,刘军军.阳角型基坑双排桩支护结构的空间特性[J].华中科技大学学报(自然科学版),2015,43(07):12-18. [7]张磊.基于FLAC3D对深基坑空间效应的分析[D].太原:太原理工大学, 20 [8]丁勇春,王建华,徐斌.基于FLAC3D的基坑开挖与支护三维数值分析[J].上海交通大学学报,2009,43(06):976-980. [9]柳家海.基坑空间效应影响区长度的探讨[J].中国煤炭地质. 2011, 23(6):4 [10]李大鹏,唐德高,闫凤国,等.深基坑空间效应机理及考虑其影响的土应力研究[J].浙江大学学报(工学版),2014,48(9):1633-1639. [11]胡勇,李云安,李波,李从安,肖捷夫.承压水位变动下深大基坑空间效应离心试验与数值模拟[J].岩土力学,2018,39(06):1999-2007. [12]林大涌,雷明峰.深基坑支护结构空间效应影响因素数值模拟研究[J].铁道科学与工程,2015(12):58-62. [13]沈启炜.基于FLAC3D数值模拟的地铁深基坑开挖阳角效应研究[J].铁道建筑技术,2017,07(01):1-6. [15]阮波,田晓涛,杨关文.L形基坑变形的空间效应研究[J].铁道科学与工程,2015,12(01):86-90. [16]赵晓旭.软土地区深基坑变形监测与时空效应分析[D].长沙:湖南工业大学,2015. [17]张冬霖.考虑空间与时间效应的基坑工程数值分析研究[D].杭州:浙江大学, 2000. [18]蒋希雁,张雷刚.基于MIDAS/GTS对悬臂式支护基坑空间效应的研究[J].建筑技术,2017,48(09):1002-1005. [19]Terzaghi K.General Wedge Theory of Earth Pressure [M].Transctions,ASCE, [20]Peck R.Earth Pressure Measurements in Open Engineering[M].ASCE,1943. [21]窦波洋,张建平,杨永超,牛学超.深基坑大尺寸物理模拟试验与基坑土体变形参数研究[J].应用基础与工程科学学报,2019,27(01):216-225. [22]黄永春.基坑分层开挖扰动位移时效特性相似模型试验研究[J].施工技术,2018,47(增刊):16-21. [23]冉启仁,王旭,王博林,蒋代军,张延杰,李建东.基坑开挖对邻近建筑桩基弯矩和变形影响的模型试验[J].岩土工程学报,2021,43(01):132-137. [24]慕焕东,邓亚虹,张文栋,宋登艳.洛阳地铁车站基坑支护变形特性模型试验研究[J].岩土工程学报,2021,43(01):198-203. [25]房师军,付拥军,姚爱军.某地铁工程深基坑排桩围护结构变形规律分析[J].岩土工程学报,2011,33(01):216-219. [26]张腾遥.基坑偏压下土与围护结构相互作用的模型试验研究[D].浙江工业大学,2020. [27]王祥秋,廖镇源,郑土永,朱道立.基于桩周土加固效应的双排桩承载性状模型试验研究[J].土木与环境工程学报(中英文),2021,43(02):19-25. [28]王鹏,高洁,段旭,门玉明,韩冬冬.深基坑微型桩支护的模型试验研究[J].工业建筑,2018, 48(07):101-105+210. ents, Computers and Geotechnics, 2017,86:141-149. [33]罗战友,刘薇,夏建中.基坑内土体加固对围护结构变形的影响分析[J].岩土工程学报,2006(S1):1538-1540. [34]王随新.土体加固对基坑围护结构的影响分析[J].兰州交通大学学报,2008(01):28-31. [35]王子剑.合肥市轨道交通车站深基坑变形规律及FLAC3D模拟分析[D].合肥工业大学,2017. [36]吕凤梧,徐伟,刘建航.深基坑开挖支护的弹塑性有限元数值模拟与分诉[J].建筑技术.2002. mental engineering, 2007, 133(1):30-36. [41]周明飞.基于时空效应的深基坑开挖变形机理分析[D].吉林建筑大学,2019. [44]杨靖,陆培毅,韩丽君.双排桩尺寸效应的有限元分析[J].天津大学学报,2006,08:963-967. [45]商卫东,聂庆科等.深基坑开挖过程及空间效应影响的数值模拟[J].探矿工程(岩土钻掘工程),2009. [46]刘念武,龚晓南,俞峰,汤恒思.软土地区基坑开挖引起的浅基础建筑沉降分析[J].岩土工程学报,2014,12. [47]郑刚,邓楚涵,程雪松,黄天明,雷亚伟.空间效应对悬臂桩支护基坑连续破坏的影响研究[J].天津大学学报(自然科学与工程技术版),2016,10. [48]张兴其.桩土相互作用的接触分析研究与应用[D].南京:河海大学, 2007. [49]费康,张建伟. ABAQUS 在岩土工程中的应用[M].北京:中国水利水电出版社, 2010. |
中图分类号: | TU444 |
开放日期: | 2023-06-12 |