论文中文题名: | 西北地区主要农作物虚拟水与可用水资源的时空关系 |
姓名: | |
学号: | 19209215071 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085229 |
学科名称: | 工学 - 工程 - 环境工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 区域生态经济 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Temporal and spatial relationship between virtual water and available water resources of main crops in Northwest China |
论文中文关键词: | |
论文外文关键词: | water footprint ; virtual water ; blue and green water footprints ; water resource pressure ; Northwest China |
论文中文摘要: |
水资源短缺严重制约着干旱半干旱地区的农业健康发展。随着我国人口的不断增长与城市的快速扩张,东南部耕地资源的开发潜力愈发有限,粮食、瓜果等作物的主产区重心不断北移,西北地区在保障粮食安全方面的作用越来越突出。然而该地区水土资源并不匹配,在当前这种农作物大规模生产且水资源量不足的失衡状态下,高耗水的农业生产会给西北地区水资源安全带来巨大挑战。因此,明确西北地区大规模的农作物生产和贸易对水资源的影响,寻求缓解农业用水压力的基本途径,是西北地区农业可持续发展的关键。 本文基于水足迹和虚拟水理论,结合Penman-Monteith模型和CROPWAT 8.0、ArcGIS软件核算了我国西北地区63个地市(州、盟)11类农作物的生产水足迹,系统分析了各地农作物生产水足迹的时空演变特征,探究了农作物虚拟水流动规律,评价了农作物生产贸易过程对水资源压力的影响。得到如下结果: (1)西北地区大部分农作物的生长发育依赖灌溉用水,只有苹果耗水类型以降雨为主。西北地区春季3-5月降雨量较少,农作物耗水以灌溉水为主;夏季6-8月正值雨季,农作物绿水足迹占比明显增大;秋冬季节因部分农作物生长消耗减少,蓝绿水足迹逐渐减小。农作物单产绿水足迹的空间分布与地区降雨量一致,由西北向东南递增,蓝水足迹与之相反,呈西北高东南低的空间分布格局,与大型灌区分布一致。 (2)2000-2019 年西北地区农作物单产水足迹减少了38.8%,但农作物单产水足迹减少的速率不及产量增长的速率,农作物水需求增长了40.7%。截止2019年农作物生产耗水量达到了1353.26亿m3,持续增长的农作物耗水需求并不利于地区农业与水资源的可持续发展。从空间分布来看,由于地区农作物生产结构不同,西北地区各市(州、盟)的农作物生产总水足迹分布各异,因农作物生产规模较大,耗水量高值区主要分布在呼伦贝尔市、通辽市、喀什地区和阿克苏地区。 (3)20年来西北地区农作物虚拟水输出区由26个增加至37个,且输出区逐渐向北聚集。基本形成了以呼伦贝尔市、喀什地区以及和田地区为代表的虚拟水输出中心和以东南部各省会城市为首的虚拟水输入中心。输出中心以输出玉米和棉花为主,输入中心以输入稻谷为主。省会城市通过输入农作物缓解当地水资源压力,以求将水资源用于更具省会城市功能的其他行业。 (4)西北地区水资源短缺,农业可利用水量进一步缩减,部分地区的水资源因农作物大规模生产而处于严重压力状态。以西安市为代表的高水资源匮乏度集中区,自身水资源有限,通过扩大农作物输入贸易量来缓解当地水资源紧缺程度。以昌吉回族自治州为代表的高水资源自给率集中区,对外部依赖较小,但由于农作物输出量持续增长,农业用水压力不断增大。西北地区可利用水资源量分布不均,农业生产结构不够合理,要实现农业健康发展和水资源可持续利用需合理调整当地水资源配置,适当减少高耗水产品的生产,有效控制农作物生产水足迹,减小用水压力。 本研究以水足迹和虚拟水的视角,在量化西北地区农作物生产水足迹和虚拟水的基础上,评估了农业水资源安全风险。以期为我国西北地区农作物生产结构优化、农业水资源协调利用以及缓解农业用水面临的压力 提供理论支撑。 |
论文外文摘要: |
The shortage of water resources seriously restricts the healthy development of agriculture in arid and semi-arid areas. With the continuous growth of China's population and the rapid expansion of cities, the development potential of cultivated land resources in the southeast is becoming more and more limited. The center of gravity of the main production areas of crops such as grain, melons and fruits is moving northward. The role of the northwest in ensuring food security is becoming more and more prominent. However, the water and soil resources in this area do not match. Under the current imbalance of large-scale production of crops and insufficient water resources, high water consumption agricultural production will bring great challenges to the water resources security in Northwest China. Therefore, the key to the sustainable development of agriculture in Northwest China is to clarify the impact of large-scale crop production and trade on water resources in Northwest China, and to seek the basic ways to alleviate the pressure of agricultural water use. Based on water footprint and virtual water theory, combined with penman Monteith model, CROPWAT 8.0 and ArcGIS software, this paper calculates the production water footprint of 11 types of crops in 63 cities (prefectures and leagues) in Northwest China, systematically analyzes the temporal and spatial evolution characteristics of crop production water footprint, explores the law of crop virtual water flow, and evaluates the impact of crop production and trade process on water resource pressure. The following results were obtained: (1) The growth and development of most crops in Northwest China depend on irrigation water, and only the type of apple water consumption is mainly rainfall. There is less rainfall in Northwest China from March to may in spring, and the water consumption of crops is mainly irrigation water; From June to August in summer, it is rainy season, and the proportion of green water footprint of crops increases significantly; In autumn and winter, due to the reduction of the growth consumption of some crops, the blue-green water footprint gradually decreases. The spatial distribution of the green water footprint of crop yield per unit area is consistent with the regional rainfall, increasing from northwest to Southeast. On the contrary, the blue water footprint shows a spatial distribution pattern of high in Northwest and low in southeast, which is consistent with the distribution of large-scale irrigation areas. (2) From 2000 to 2019, the water footprint per unit yield of crops in Northwest China decreased by 38.8%, but the reduction rate of water footprint per unit yield of crops was less than the rate of output growth, and the water demand of crops increased by 40.7%. By 2019, the water consumption for crop production has reached 135.326 billion m3, and the growing demand for crop water consumption is not conducive to the sustainable development of regional agriculture and water resources. From the perspective of spatial distribution, due to different regional crop production structures, the total water footprint of crop production in cities (prefectures and leagues) in Northwest China varies. Due to the large scale of crop production, high water consumption areas are mainly distributed in Hulunbuir, Tongliao, Kashgar and Aksu. (3) In the past 20 years, the number of crop virtual water export areas in Northwest China has increased from 26 to 37, and the export areas have gradually gathered to the north. It has basically formed a virtual water output center represented by Hulunbuir City, Kashgar region and Hotan region and a virtual water input center led by provincial capitals in the southeast. The output center mainly exports corn and cotton, and the input center mainly imports rice. The provincial capital city alleviates the pressure of local water resources by importing crops, so as to use water resources for other industries with more functions of the provincial capital city. (4) Northwest China is short of water resources, and the available water for agriculture is further reduced. The water resources in some areas are under serious pressure due to the large-scale production of crops. Xi'an City, as a representative of the high water resource shortage concentration area, has limited water resources. The local water resource shortage can be alleviated by expanding the import and trade volume of crops. The high water self-sufficiency concentration area represented by Changji Hui Autonomous Prefecture is less dependent on the outside, but the agricultural water pressure is increasing due to the continuous growth of crop output. The available water resources in Northwest China are unevenly distributed, and the agricultural production structure is not reasonable. In order to realize the healthy development of agriculture and the sustainable utilization of water resources, it is necessary to reasonably adjust the local water resources allocation, appropriately reduce the production of high water consumption products, effectively control the water footprint of crop production, and reduce the water pressure. From the perspective of water footprint and virtual water, this study evaluated the risk of agricultural water resources security on the basis of quantifying the water footprint and virtual water of crop production in Northwest China. In order to optimize crop production structure, coordinate the utilization of agricultural water resources and alleviate the pressure of agricultural water use in Northwest China Provide theoretical support. |
参考文献: |
[1] 新华社.中共中央、国务院关于加快水利改革发展的决定[N]. 中国政府网, 2010-12-31. [4] 田海琦. 水资源开发保护与利用分析[J]. 智能城市, 2017, 3(6): 202-202. [9] 吴普特. 实体水-虚拟水统筹管理保障国家粮食安全[J]. 灌溉排水学报, 2020, 39(7): 1-6. [11] 张家欣, 邓铭江, 李鹏等. 虚拟水流视角下西北地区农业水资源安全格局与调控[J]. 中国工程科学, 2022, 24(1):131-140. [13] 中国水资源公报. 2020. 北京, 中国水利水电出版社. [14] 吴普特. “北水南调工程”的警示与应对策略[J]. 水利水电科技进展, 2015, 35(5): 121-123+180. [16] 李新生. 京津冀农业水足迹协调度与调控研究[D]. 华北水利水电大学, 2020. [20] 王玉宝, 吴普特, 孙世坤, 等. 我国粮食虚拟水流动对水资源和区域经济的影响[J]. 农业机械学报, 2015, 46(10): 208-215. [22] 杨志峰, 支援, 尹心安. 虚拟水研究进展[J]. 水利水电科技进展. 2015, 35(5): 181-190. [23] 吴普特, 赵西宁, 操信春, 等. 中国“农业北水南调虚拟工程”现状及思考[J]. 农业工程学报, 2010, 26(6): 1-6. [25] 王伟. 不同灌溉方式下我国小麦生产水足迹和基准[D]. 西北农林科技大学, 2021. [26] 姜秋香, 李鑫莹, 王子龙, 等. 水足迹及其驱动力研究进展及展望[J]. 生态科学, 2021, 40(1): 192-199. [27] 钱海洋. 中国区域间粮食贸易量化方法及虚拟水流动格局评价[D]. 西北农林科技大学, 2020. [28] 陈敏. 长江经济带涉农产业虚拟水资源配置质量研究[D]. 南京林业大学, 2021. [31] 刘航. 水足迹视角下河北省县域土地整治生态绩效评价研究[D]. 河北地质大学, 2022. [32] 杨钰泉. 定西市农业水足迹评价及种植结构优化研究[D]. 兰州大学, 2021. [36] 卓拉, 栗萌, 吴普特, 等. 黄河流域作物生产与消费实体水-虚拟水耦合流动时空演变与驱动力分析[J]. 水利学报, 2020, 51(9): 1059-1069. [37] 孙世坤, 王玉宝, 吴普特, 等. 小麦生产水足迹区域差异及归因分析[J]. 农业工程学报, 2015, 31(13): 142-148. [38] 曹连海, 吴普特, 赵西宁, 等. 内蒙古河套灌区粮食生产灰水足迹评价[J]. 农业工程学报, 2014, 30(1): 63-72. [39] 付永虎, 刘黎明, 起晓星, 等. 基于灰水足迹的洞庭湖区粮食生产环境效应评价[J]. 农业工程学报, 2015, 31(10): 152-160. [40] 郑德凤, 张雨, 魏秋蕊, 等. 基于可持续能力和协调状态的水资源系统评价方法探讨[J]. 水资源保护, 2016, 32(3): 24-32. [41] 朱启荣. 中国外贸中虚拟水与外贸结构调整研究[J]. 中国工业经济, 2014, (2): 58-70. [43] 刘妍, 郑丕谔. 虚拟水贸易的机会成本[J]. 天津大学学报:社会科学版, 2008, 10(3): 234-237. [44] 韩雪, 孙才志. 中国主要农产品虚拟水流动格局形成机理研究[J]. 资源科学, 2013, 35(8): 1567-1576. [46] 丁雪丽, 张玲玲, 王宗志. 基于省际间粮食贸易的虚拟水综合效益分析[J]. 长江流域资源与环境, 2018, 27(5): 978-987. [51] 曾贤刚, 段存儒, 王睿. 中国农产品贸易虚拟水转移及其影响因素研究[J]. 中国环境科学, 2021, 41(2): 983-992. [52] 钱龙, 饶清玲, 曹宝明, 等. 中国与“一带一路”沿线国家的粮食贸易及其虚拟水土资源估算[J]. 农业现代化研究, 2021, 42(3): 430-440. [55] 杨文娟, 赵荣钦, 张战平, 等. 河南省不同产业碳水足迹效率研究[J]. 自然资源学报, 2019, 34(1): 92-103. [57] 朱振亚, 潘婷婷, 杨梦斐, 等. 水生态文明建设背景下长江经济带水足迹变化研究[J]. 长江科学院院报, 2021, 38(6): 160-166. [58] 侯秀林, 温璐, 张雪峰, 等. 内蒙古地区水足迹量化及水资源评价分析[J]. 中国农业大学学报, 2021, 26(8): 182-195. [61] 孙才志, 杜杭成, 刘淑彬. 基于投入产出分析的辽宁省虚拟水消费与贸易研究[J]. 地域研究与开发, 2020, 39(2): 117-126. [64] 王晓楠. 中原经济区农作物生产水足迹时空演变及影响因素研究[D]. 中国地质大学(北京), 2020. [65] 杨月菊. 基于水足迹的江苏省农业水资源可持续利用评价[D]. 浙江海洋大学, 2021. [66] 刘聪. 中国粮食生产的水资源利用特征评价[J]. 华中农业大学学报(社会科学版), 2017, (4): 22-29+146. [72] 张旭东, 郝迪, 吴迪, 等. 辽宁省不同水文年型玉米水足迹变化规律研究[J]. 沈阳农业大学学报, 2018, 49(5): 584-593. [73] 王勤勤, 刘俊国, 赵丹丹. 京津冀地区主要农作物生产水足迹研究[J]. 水资源保护, 2018, 34(2): 22-27+33. [79] 杨雅雪, 赵旭, 杨井. 新疆虚拟水和水足迹的核算及其影响分析[J]. 中国人口·资源与环境, 2015, 25(S1): 228-232. [83] 史利洁, 吴普特, 王玉宝, 等. 基于作物生产水足迹的陕西省水资源压力评价[J]. 中国生态农业学报, 2015, 23(5): 650-658. [84] 操信春, 束锐, 郭相平, 等. 基于BWSI与GWSI的江苏省农业生产水资源压力评价[J]. 长江流域资源与环境, 2017, 26(6):856-864. [85] 邓晓军, 谢世友, 崔天顺, 等. 岩溶地区水足迹在石漠化防治中的应用[J]. 人民黄河, 2010, 32(3): 49-50+52. [86] 商庆凯, 阴柯欣, 米文宝. 基于水足迹理论的青海省水资源利用评价[J]. 干旱区资源与环境, 2020, 34(5): 70-77. [87] 王丽川, 侯保灯, 周毓彦, 等. 基于水足迹理论的北京市水资源利用评价[J]. 南水北调与水利科技(中英文), 2021, 19(4): 680-688. [89] 辛萍, 韩淑敏, 杨永辉, 等. 中亚棉花生产需水量与虚拟水贸易变化趋势[J]. 中国生态农业学报(中英文), 2021, 29(2): 290-298. [90] 赵晋陵, 刘闯, 石瑞香等. 中国进入WTO 以来与欧盟棉花贸易的虚拟水资源总量研究[J]. 中国人口·资源与环境, 2009, 19(6): 115-118. [92] 钱正英. 西北地区水资源配置、生态环境建设和可持续发展战略研究[J]. 中国水利, 2003, (9): 17-24. [95] 毕玮, 党小虎, 马慧, 等. “藏粮于地”视角下西北地区耕地适宜性及开发潜力评价[J]. 农业工程学报, 2021, 37(7): 235-243. [96] 孙才志, 魏亚琼, 赵良仕. 干旱区水-能源-粮食纽带系统协同演化——以中国西北地区为例[J]. 自然资源学报, 2022, 37(2): 320-333. [98] 柳利利, 韩磊, 韩永贵, 等. 1989-2019年西北地区干燥度指数时空变化及其对气候因子的响应[J].应用生态学报, 2021, 32(11): 4050-4058. [99] 陈文, 郑自宽, 谢军健, 等. 中国西北地区苦咸水资源及其分布特征[J]. 地下水, 2021, 43(4): 9-13. [100] 肖风劲, 张旭光, 廖要明, 等.中国日照时数时空变化特征及其影响分析[J]. 中国农学通报, 2020, 36(20): 92-100. [101] 姚旭阳, 张明军, 张宇, 等. 中国西北地区气候转型的新认识[J]. 干旱区地理, 2022:1-15. [102] 王玉宝, 刘显, 史利洁, 等. 西北地区水资源与食物安全可持续发展研究[J]. 中国工程科学, 2019, 21(5): 38-44. [103] 李新生, 黄会平, 韩宇平, 等. 京津冀农业虚拟水流动及对区域水资源压力影响研究[J]. 南水北调与水利科技, 2019, 17(2): 40-48. [104] 高甜, 杨肖丽. 黄河流域粮食与能源水足迹压力与绿色发展脱钩关系研究[J]. 节水灌溉, 2021, (10): 24-29+35. [105] 吴普特, 卓拉, 刘艺琳, 等. 区域主要作物生产实体水-虚拟水耦合流动过程解析与评价[J]. 科学通报, 2019, 64(18): 1953-1966. [106] 冯朝红. 基于水资源承载力的西北地区农业可持续发展评估研究[D]. 西安理工大学, 2021. [107] 郭相平, 高爽, 吴梦洋, 等. 中国农作物水足迹时空分布与影响因素分析[J]. 农业机械学报, 2018, 49(5): 295-302. |
中图分类号: | F323.213 |
开放日期: | 2022-06-20 |