- 无标题文档
查看论文信息

论文中文题名:

 低渗煤层超声激励孔裂隙改造规律及损伤增透机理    

姓名:

 杨二豪    

学号:

 19120089014    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 瓦斯灾害防治    

第一导师姓名:

 李树刚    

第一导师单位:

 袁亮    

论文提交日期:

 2023-06-12    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Pore-fracture modification laws and damage-enhanced permeability mechanism of low permeability coal seams by ultrasonic treatment    

论文中文关键词:

 煤层增透 ; 超声激励 ; 孔裂隙改造 ; 力学损伤 ; 渗透特性    

论文外文关键词:

 Permeability enhancement of coal seam ; Ultrasonic treatment ; Pore and fracture modification ; Mechanical damage ; Permeability characteristics    

论文中文摘要:

我国大部分深部煤层渗透性较差,低渗煤层普遍微孔隙结构发育、瓦斯吸附能力强、预抽效果差,需要实施煤层增透措施。超声波增透作为一种新型煤层增透技术,具有安全环保、操作性强等特点和优势。超声激励煤体孔裂隙结构会发生改变,进而使渗透性改善,但目前对于超声激励煤层孔裂隙改造过程和增透机理尚处于探索阶段。因此,本文采用实验室测试、理论建模分析与数值模拟计算相结合的研究方法,探讨超声激励作用对煤体微-介-宏观物性参数的影响规律,揭示超声空化煤体多尺度孔裂隙结构改造过程和增透机理,并结合矿井瓦斯抽采工程现状,提出超声激励煤层增透技术框架、设备研制思路和施工工艺流程,旨在为超声激励煤层增透技术的适用性提供理论支撑。本文主要的研究内容和成果如下:

自主研发了声-液耦合超声波激励煤体实验系统,解决了现有超声激励实验系统无法有效模拟超声煤层增透现场工况和无法有效分离空化效应与热效应的问题。结合核磁共振(NMR)、扫描电镜(SEM)、光学显微镜(OM)、超声波检测(UT)、万能试验机、声发射监测(AE)以及渗透率测定仪等实验手段,开展了超声激励煤体孔裂隙结构演化、单轴压缩力学响应及声发射特征、煤体渗透率测定实验。

以孔径分布、T2图谱面积、孔隙分形维数作为微观孔隙结构表征参数;以裂隙几何参数、裂隙密度、裂隙概率熵、分形维数,表征介观孔隙和微裂隙发育情况;以纵波波速变化表征宏观裂隙网络的发育、贯通情况,建立了考虑不同尺度影响的孔隙率回归模型。超声激励煤体,T2图谱面积增大,各峰宽度增加和间距减小,并不同程度的向右偏移,孔隙分形维数减小,有效孔隙率增加,残余孔隙减小;微小孔隙数量增加、连通程度增强。煤体裂隙密度、概率熵、分形维数较原煤明显增加,纵波波速降低,煤体裂隙不断发育,扩展延伸形成贯通裂隙,孔隙率不断提高。实验条件范围内,组合为150 min-500 W-20 kHz时,煤体的孔隙改造效果最好,吸附孔面积增长率、渗流孔面积增长率和全孔面积变化率分别为30.55%、134.10%、33.42%。

利用单轴压缩实验,获得了超声激励煤体压缩破坏过程的力学参数和声发射信号,分析了煤体特征强度、特征应变、弹性模量、泊松比、振铃计数、RA-AF值、b值及特征能量演化规律。采用SPSS回归分析得到了超声激励影响的煤体力学参数多元回归模型,建立了包含超声激励功率、时间、频率等参数的煤体损伤统计本构模型。超声波激励能够对煤体造成损伤,显著地降低煤体的力学强度,激励后煤体塑性增加,脆性减弱,横向变形能力增加,弹性模量降低,泊松比不断增大。煤样抗压强度最高从26.949 MPa降低到6.227 MPa。煤体最大应变从2.76%最大降至1.38%,平均弹性模量从1.375 GPa最大降低至0.426 GPa,泊松比从0.274最大增加至0.355。RA-AF信号显示煤体压缩内部张拉裂隙和剪切裂隙同时发育,但剪切裂隙数量占主导地位,随着激励程度的增加,张拉裂隙的占比不断增大。超声激励后b值变化表明煤体中裂隙扩展发育的阶段相比原煤和低激励程度的煤体提前,煤样吸能与释能能力减弱。

基于稳态法和核磁共振检测法,得到了不同超声波激励参数影响下煤体渗透率演化规律,分析了不同尺度煤体孔裂隙结构与渗透率的之间的关系;以改进火柴棍模型为基础,融合力学参数回归模型,建立了超声激励煤体渗透率模型。超声激励后煤体渗透率显著提高,功率越大、时间越长则煤体渗透率改善越明显,最高提升2倍以上,150 min-20 kHz-500 W激励条件下,煤体渗透率从0.0662 mD提高至0.1086 mD。气测渗透率和NMR渗透率结果一致,与功率和时间正相关,与频率负相关。煤样渗透率随有效应力增加的整体变化规律与激励前相似,呈指数下降趋势。

采用Runge-Kutta对Keller-Miksis气泡动力学方程进行数值解算,得到了超声激励功率和频率影响下空化气泡半径变化规律,掌握了超声激励空化气泡溃灭的时间、压力和能量特性,推导了空化作用煤体尖端裂纹起裂准则;利用COMSOL模拟得到了超声激励功率和频率对声压场和空化效果的影响规律。初始气泡半径越小,超声激励后吸能越多,生长半径越大;水域空化强度与超声功率呈正相关关系,与超声频率呈负相关关系。提出了超声煤层增透技术的整体思路,对大功率超声煤层增透设备和工艺流程进行了应用展望,可为超声激励煤层增透技术的适用性提供理论支撑、数据基础和实践指导。

论文外文摘要:

Most of China's deep coal seams have poor permeability. Low-permeability coal seams have generally developed micro-pore structures, strong gas adsorption capacity, and poor pre-drainage effect. Therefore, coal seam permeability enhancement measures need to be implemented. Ultrasonic permeability enhancement, as a new coal seam permeability enhancement technology, has the characteristics and advantages of safety, environmental protection, and strong operability. Ultrasonic excitation changes the pore and fracture structure of coal, thereby improving permeability. However, the process and mechanism of ultrasonic transformation of coal seam pore and fracture are still in the exploration stage. Therefore, this article adopts a research method combining laboratory testing, theoretical modeling analysis, and numerical simulation calculations to explore the impact of ultrasonic excitation on the micro-meso-macro physical parameters of coal, reveal the transformation process and permeability enhancement mechanism of ultrasonic cavitated coal multiscale pore and fracture structure, and combine with the current status of mine gas extraction engineering. It proposes a framework for ultrasonic permeability enhancement technology, equipment development ideas, and construction process flow, aiming to provide theoretical support for the applicability of ultrasonic permeability enhancement technology. The main research contents and results of this article are as follows:

Developed a self-designed acoustic-liquid-coupling ultrasonic excitation coal experimental system, which solved the problem that the existing ultrasonic excitation experimental system can’t effectively simulate the ultrasonic coal seam permeability enhancement on-site working conditions and can’t effectively separate the cavitation effect from the thermal effect. Combined with experimental techniques such as nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), optical microscope (OM), ultrasonic detection (UT), universal testing machine, acoustic emission monitoring (AE), and permeability tester, experiments were conducted on the evolution of coal seam pore and fracture structure under ultrasonic excitation, the mechanical response and acoustic emission characteristics under uniaxial compression, and the determination of the coal rock mass permeability.

Three types of pore structure characterization parameters, namely pore size distribution, T2 spectrum area, and pore fractal dimension, were used to characterize the micro-scale pore structure; fracture geometry parameters, fracture density, fracture probability entropy, and fractal dimension were used to characterize the meso-scale pore and microcrack development. The longitudinal wave velocity change was used to characterize the development and connectivity of the macroscopic fracture network, and a porosity regression model considering different scale effects was established. The results showed that ultrasonic excitation of coal increased the T2 spectrum area, peak width, and decreased peak spacing while varying to the right to different degrees. The pore fractal dimension decreased, effective porosity increased, and residual porosity decreased. The number of micro-pores increased, and the connectivity increased. The fracture density, probability entropy, and fractal dimension of the coal sample obviously increased, and the longitudinal wave velocity decreased. The coal fracture continued to develop and extend to form connected fractures, and the porosity continued to increase. Within the range of experimental conditions, the best pore transformation effect is achieved at the combination of 150 min-500 W-20 kHz, with adsorption pore area growth rate, permeability pore area growth rate, and total pore area change rate of 30.55%, 134.10%, and 33.42%, respectively.

Using uniaxial compression experiments, the mechanical parameters and acoustic emission signals of the ultrasonic excitation coal failure process were obtained, and the evolution of coal strength-strain characteristics, elasticity modulus, Poisson's ratio, resonant counting, RA-AF value, b-value, and characteristic energy were analyzed. A multifactor regression model of coal mechanical parameters affected by ultrasonic excitation was established using SPSS regression analysis, and a statistical constitutive model including ultrasonic excitation power, time, frequency, and other parameters was established. Ultrasonic excitation could cause damage to the coal and significantly reduce its mechanical strength. The coal plasticity increased, its brittleness decreased, its lateral deformation ability increased, its elasticity modulus decreased, and its Poisson's ratio continued to increase. The compressive strength of coal samples decreased from 26.949 MPa to 6.227 MPa, and the maximum strain decreased from 2.76% to 1.38%. The average elastic modulus decreased from 1.375 GPa to 0.426 GPa, and the Poisson's ratio increased from 0.274 to 0.355.

Based on the steady-state method and nuclear magnetic resonance detection method, the evolution of coal permeability under different ultrasonic excitation parameters was obtained, and the relationship between different scale coal pore and fracture structure and permeability was analyzed. A permeability model of ultrasonic excitation coal based on an improved matchstick model and a regression model of mechanical parameters was established. The results showed that ultrasonic excitation significantly improved the permeability of the coal, and the larger the power and time, the more obvious the improvement. Under the condition of 150 min-20 kHz-500 W excitation, the coal permeability increased from 0.0662 mD to 0.1086 mD. The gas and NMR permeability results were consistent, positively correlated with power and time, and negatively correlated with frequency.

The Keller-Miksis bubble dynamic equation was numerically solved using the Runge-Kutta method, and the radius variation law of cavitation bubbles under the influence of ultrasonic excitation power and frequency was obtained. The time, pressure, and energy characteristics of the cavitation-induced crack initiation criterion were deduced, and the effects of ultrasonic excitation power and frequency on the sound pressure field and cavitation were simulated using COMSOL. The results showed that the smaller the initial bubble radius, the more energy was absorbed after ultrasonic excitation, and the larger the growth radius. The water cavitation strength was positively correlated with ultrasonic power and negatively correlated with frequency.

In conclusion, this article proposes a framework for ultrasonic permeability enhancement technology, equipment development ideas, and construction process flow, providing theoretical support, data basis, and practical guidance for the applicability of ultrasonic permeability enhancement technology.

参考文献:

[1] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. 北京: 国家统计局, 2023.

[2] 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(1): 1–15.

[3] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283–1305.

[4] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(8): 2277–2284.

[5] 李树刚, 杨二豪, 林海飞, 等. 深部开采卸压瓦斯精准抽采体系构建及实践[J]. 煤炭科学技术, 2021, 49(5): 1–10.

[6] Zhang J F, Lin H F, Li S G, et al. Accurate gas extraction (AGE) under the dual-carbon background: Green low-carbon development pathway and prospect[J]. Journal of Cleaner Production, 2022, 377: 134372.

[7] 何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报, 2005, 24(16): 2854–2858.

[8] 谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报, 2014, 39(8): 1391–1397.

[9] 张群, 降文萍. 我国低煤阶煤层气地面开发产气潜力研究[J]. 煤炭科学技术, 2016, 44(6): 211-215+187.

[10] 林柏泉, 李子文, 翟成, 等. 高压脉动水力压裂卸压增透技术及应用[J]. 采矿与安全工程学报, 2011, 28(3): 452–455.

[11] 李波, 张路路, 孙东辉, 等. 水力冲孔措施研究进展及存在问题分析[J]. 河南理工大学学报(自然科学版), 2016, 35(1): 16–22.

[12] 宋维源, 王忠峰, 唐巨鹏. 水力割缝增透抽采煤层瓦斯原理及应用[J]. 中国安全科学学报, 2011, 21(4): 78–82.

[13] 刘健, 刘泽功, 高魁, 等. 深孔定向聚能爆破增透机制模拟试验研究及现场应用[J]. 岩石力学与工程学报, 2014, 33(12): 2490–2496.

[14] 张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9): 79–85.

[15] 李守国, 吕进国, 贾宝山, 等. 高压空气爆破低透气性煤层增透技术应用研究[J]. 中国安全科学学报, 2016, 26(4): 119–125.

[16] 樊世星, 文虎, 程小蛟, 等. 井下高压液态CO2压裂增透煤岩成套装备研制与应用[J]. 煤炭学报, 2020, 45(S2): 801–812.

[17] Hou L, Zhang S, Elsworth D, et al. Review of fundamental studies of CO2 fracturing: Fracture propagation, propping and permeating[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108823.

[18] Qin L, Ma C, Li S G, et al. Mechanical damage mechanism of frozen coal subjected to liquid nitrogen freezing[J]. Fuel, 2022, 309: 122124.

[19] 余本胜, 和世超. 电磁场对煤体瓦斯流动的影响模拟分析[J]. 煤炭科学技术, 2009, 37(9): 31-33+37.

[20] 姜永东, 李业, 崔悦震, 等. 声场作用下煤储层渗透性试验研究[J]. 煤炭学报, 2017, 42(S1): 154–159.

[21] 胡国忠, 黄兴, 许家林, 等. 可控微波场对煤体的孔隙结构及瓦斯吸附特性的影响[J]. 煤炭学报, 2015, 40(S2): 374–379.

[22] Zhao H B, Wang X M, Chen S M, et al. Acoustic response characteristics of unsaturated porous media[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(8): 1388–1396.

[23] Tang Z Q, Zhai C, Zou Q L, et al. Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance[J]. Fuel, 2016, 186(2): 571–578.

[24] Zhai C, Yu G Q, Qin L, et al. Effects of moisture content on fracturing and heating processes during ultrasonication[J]. Journal of Loss Prevention in the Process Industries, 2018, 55(9): 243–252.

[25] Tang Z Q, Zhai C, Li Y. The attenuation of ultrasonic waves in coal: the significance in increasing their propagation distance[J]. Natural Hazards, 2017, 89(1): 57–77.

[26] 于国卿, 翟成, 秦雷, 等. 超声波功率对煤体孔隙影响规律研究[J]. 中国矿业大学学报, 2018, 47(2): 264-270+322.

[27] 马会腾, 翟成, 徐吉钊, 等. 基于NMR技术的超声波频率对煤体激励致裂效果的影响[J]. 煤田地质与勘探, 2019, 47(4): 38–44.

[28] Shi Q M, Qin Y, Zhou B Y, et al. Porosity changes in bituminous and anthracite coal with ultrasonic treatment[J]. Fuel, 2019, 255: 115739.

[29] 田洪波, 蒋曙光, 李玥, 等. 功率声波激励下无烟煤孔隙变化及裂隙发育研究[J]. 煤矿安全, 2017, 48(8): 9–12.

[30] 肖晓春, 潘一山, 吕祥锋, 等. 超声激励低渗煤层甲烷增透机理[J]. 地球物理学报, 2013, 56(5): 1726–1733.

[31] 王海军, 郁舒阳, 李汉章, 等. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究[J]. 岩石力学与工程学报, 2020, 39(5): 938–948.

[32] 王云刚, 李满贵, 陈兵兵, 等. 干燥及饱和含水煤样超声波特征的实验研究[J]. 煤炭学报, 2015, 40(10): 2445–2450.

[33] 范翔宇, 段美恒, 张千贵, 等. 页岩层理与含水率对声波传播影响的实验研究[J]. 西南石油大学学报(自然科学版), 2017, 39(2): 53–61.

[34] Liu G H, Liu Z T, Feng J J, et al. Experimental research on the ultrasonic attenuation mechanism of coal[J]. Journal of Geophysics and Engineering, 2017, 14(3): 502–512.

[35] Rossat M, Chaix J F, Garnier V. Ultrasonic wave propagation in heterogeneous solid media[J]. The Journal of the Acoustical Society of America, 2008, 123(5): 3844–3844.

[36] Shchukin D G, Skorb E, Belova V, et al. Ultrasonic cavitation at solid surfaces[J]. Advanced Materials, 2011, 23(17): 1922–1934.

[37] Qin L, Zhai C, Liu S M, et al. Fractal dimensions of low rank coal subjected to liquid nitrogen freeze-thaw based on nuclear magnetic resonance applied for coalbed methane recovery[J]. Powder Technology, 2018, 325: 11–20.

[38] 宋超, 姜永东, 王苏健, 等. 超声波作用下煤体微观结构的试验研究[J]. 煤炭科学技术, 2019, 47(5): 139–144.

[39] 李树刚, 王瑞哲, 林海飞, 等. 超声波功率对煤体孔隙结构损伤及渗流特性影响实验研究[J]. 采矿与安全工程学报, 2022, 39(2): 396–404.

[40] 林海飞, 韩双泽, 杨二豪, 等. 脉冲超声对煤的孔隙结构及瓦斯解吸特性影响的实验研究[J]. 采矿与安全工程学报, 2022, 39(6): 1235–1245.

[41] 李树刚, 赵勇, 许满贵. 低频机械振动煤体瓦斯含量变化规律研究[J]. 岩土工程学报, 2015, 37(5): 918–923.

[42] 李树刚, 赵勇, 许满贵. 低频机械振动含瓦斯煤孔隙率方程及其试验[J]. 煤炭学报, 2016, 41(10): 2612–2619.

[43] 李树刚, 赵勇, 许满贵. 低频机械振动含瓦斯煤体积应变变化规律研究[J]. 岩土工程学报, 2016, 38(12): 2212–2217.

[44] Wiercigroch M, Wojewoda J, Krivtsov A M. Dynamics of ultrasonic percussive drilling of hard rocks[J]. Journal of Sound and Vibration, 2005, 280(3–5): 739–757.

[45] Zhao D J, Yuan P. Research on the influence rule of ultrasonic vibration time on granite damage[J]. Journal of Mining Science, 2018, 54(5): 751–762.

[46] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 756–762.

[47] 尹崧宇. 超声波振动下花岗岩裂纹变化特性的研究[D]. 长春: 吉林大学, 2017.

[48] Zhang L, Wang X F, Wang J Y, et al. Mechanical characteristics and pore evolution of red sandstone under ultrasonic high-frequency vibration excitation[J]. AIP Advances, 2021, 11(5): 055202.

[49] 黄家根, 汪海阁, 纪国栋, 等. 超声波高频旋冲钻井技术破岩机理研究[J]. 石油钻探技术, 2018, 46(4): 23–29.

[50] 路宗羽, 郑珺升, 蒋振新, 等. 超声波高频旋冲钻井技术破岩效果试验研究[J]. 石油钻探技术, 2021, 49(2): 20–25.

[51] 肖晓春, 丁鑫, 潘一山, 等. 围压作用下煤岩材料超声致裂规律研究[J]. 材料导报, 2015, 29(16): 132-136+150.

[52] Zhang J W, Li Y L. Ultrasonic vibrations and coal permeability: Laboratory experimental investigations and numerical simulations[J]. International Journal of Mining Science and Technology, 2017, 27(2): 221–228.

[53] 任伟杰, 袁旭东, 潘一山. 功率超声对煤岩力学性质影响的试验研究[J]. 辽宁工程技术大学学报(自然科学版), 2001, 20(6): 773–776.

[54] Jordens J, Appermont T, Gielen B, et al. Sonofragmentation: Effect of ultrasound frequency and power on particle breakage[J]. Crystal Growth & Design, 2016, 16(11): 6167–6177.

[55] Raman V, Abbas A, Zhu W T. Particle grinding by high-intensity ultrasound: Kinetic modeling and identification of breakage mechanisms[J]. AIChE Journal, 2011, 57(8): 2025–2035.

[56] Sahinoglu E, Uslu T. Effects of various parameters on ultrasonic comminution of coal in water media[J]. Fuel Processing Technology, 2015, 137: 48–54.

[57] 李树刚, 王瑞哲, 林海飞, 等. 超声波功率对煤体力学损伤特性及能量演化的实验研究[J]. 煤炭科学技术, 2023, 51(1): 283–294.

[58] Yang E H, Lin H F, Li S G, et al. Characteristic strength and energy evolution law of coal treated by ultrasonic wave with different power under uniaxial compression[J]. Natural Resources Research, 2022, 31(2): 913–928.

[59] Mohammadian E, Junin R, Rahmani O, et al. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding[J]. Ultrasonics, 2013, 53(2): 607–614.

[60] Abramov V O, Abramova A V, Bayazitov V M, et al. Sonochemical approaches to enhanced oil recovery[J]. Ultrasonics sonochemistry, 2015, 25(7): 76–81.

[61] Mullakaev M S, Abramov V O, Abramova A V. Development of ultrasonic equipment and technology for well stimulation and enhanced oil recovery[J]. Journal of petroleum science and engineering, 2015, 125(1): 201–208.

[62] Abramov V O, Mullakaev M S, Abramova A V, et al. Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention[J]. Ultrasonics sonochemistry, 2013, 20(5): 1289–1295.

[63] Avvaru B, Venkateswaran N, Uppara P, et al. Current knowledge and potential applications of cavitation technologies for the petroleum industry[J]. Ultrasonics sonochemistry, 2018, 42(4): 493–507.

[64] Duhon R D, Campbell J M. The effect of ultrasonic energy on the flow of fluids in porous media[C]//SPE Eastern Regional Meeting. Charleston: OnePetro, 1965: SPE-1316-MS.

[65] Fairbanks H, Chen W I. Influence of ultrasonics upon liquid flow through porous media[J]. Ultrasonics, 1969, 7(3): 195–196.

[66] Venkitaraman A, Roberts P M, Sharma M M. Ultrasonic removal of near-wellbore damage caused by fines and mud solids[J]. SPE Drilling and Completion, 1995, 10(3): 193–197.

[67] Aarts A, Ooms G, Bil K, et al. Enhancement of liquid flow through a porous medium by ultrasonic radiation[J]. SPE Journal, 1999, 4(4): 321–327.

[68] 鲜学福. 我国煤层气开采利用现状及其产业化展望[J]. 重庆大学学报(自然科学版), 2000, 23(S1): 1–5.

[69] 刘保县, 鲜学福, 徐龙君, 等. 地球物理场对煤吸附瓦斯特性的影响[J]. 重庆大学学报(自然科学版), 2000, 23(5): 78–81.

[70] 易俊, 鲜学福, 姜永东, 等. 煤储层瓦斯激励开采技术及其适应性[J]. 中国矿业, 2005, 14(12): 26–29.

[71] 刘保县, 熊德国, 鲜学福. 电场对煤瓦斯吸附渗流特性的影响[J]. 重庆大学学报(自然科学版), 2006, 29(2): 83–85.

[72] 王宏图, 李晓红, 鲜学福, 等. 地电场作用下煤中甲烷气体渗流性质的实验研究[J]. 岩石力学与工程学报, 2004, 23(2): 303–306.

[73] 李志强, 鲜学福, 姜永东, 等. 地球物理场中煤层气渗流控制方程及其数值解[J]. 岩石力学与工程学报, 2009, 28(S1): 3226–3233.

[74] 何学秋. 交变电磁场对煤吸附瓦斯特性的影响[J]. 煤炭学报, 1996, 19(1): 63–67.

[75] 王恩元, 张力, 何学秋, 等. 煤体瓦斯渗透性的电场响应研究[J]. 中国矿业大学学报, 2004, 33(1): 65–68.

[76] 湛堂啟. 电场组合作用下煤体瓦斯吸附与渗透规律研究[D]. 徐州: 中国矿业大学, 2017.

[77] 秦勇, 邱爱慈, 张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术, 2014, 42(6): 1-7+70.

[78] 姜永东, 宋晓, 崔悦震, 等. 声场作用下煤中甲烷解吸扩散的特性[J]. 煤炭学报, 2015, 40(3): 623–628.

[79] Jiang Y D, Song X, Liu H, et al. Laboratory measurements of methane desorption on coal during acoustic stimulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78(9): 10–18.

[80] 姜永东, 鲜学福, 易俊, 等. 声震法促进煤中甲烷气解吸规律的实验及机理[J]. 煤炭学报, 2008, 33(6): 675–680.

[81] 于永江, 张春会, 王来贵. 超声波干扰提高煤层气抽放率的机理[J]. 辽宁工程技术大学学报(自然科学版), 2008, 27(6): 805–808.

[82] 孙仁远, 纪云开, 林李, 等. 超声处理对煤层气解吸效果的影响[J]. 实验力学, 2015, 30(1): 94–100.

[83] Liu P, Liu A, Zhong F X, et al. Pore/fracture structure and gas permeability alterations induced by ultrasound treatment in coal and its application to enhanced coalbed methane recovery[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108862.

[84] 阳兴洋. 声震法促进煤层气解吸扩散流动的机理研究[D]. 重庆: 重庆大学, 2011.

[85] 赵丽娟. 超声波作用下的煤层气吸附一解吸规律实验[J]. 天然气工业, 2016, 36(2): 21–25.

[86] 赵丽娟. 煤岩波动致裂增渗物理模拟[D]. 徐州: 中国矿业大学, 2014.

[87] 宋晓. 声波作用下煤层气吸附解吸特性研究[D]. 重庆: 重庆大学, 2014.

[88] 郭平生, 韩光泽, 张妮, 等. 超声波场强化解吸速率的机理及场协同分析[J]. 高校化学工程学报, 2006, 20(2): 300–305.

[89] 卢义玉, 王景环, 黄飞, 等. 空化水射流声震效应促进瓦斯解吸渗流测试装置的改进[J]. 煤炭学报, 2013, 38(9): 1604–1610.

[90] 李晓红, 冯明涛, 周东平, 等. 空化水射流声震效应强化煤层瓦斯解吸渗流的实验[J]. 重庆大学学报, 2011, 34(4): 1–5.

[91] 周东平. 空化水射流声震效应促进煤层瓦斯解吸渗流机理研究[D]. 重庆: 重庆大学, 2010.

[92] 易俊. 声震法提高煤层气抽采率的机理及技术原理研究[D]. 重庆: 重庆大学, 2007.

[93] 董全. 大功率超声波增透技术对低渗透性煤层增透效果试验研究[J]. 煤炭技术, 2022, 41(2): 153–156.

[94] Fei J, Liu P, Wang L, et al. Investigation of the ultrasonic stimulation performance on permeability enhancement in coal seam: Field tests and in situ permeability evaluation[J]. Geofluids, 2022, 1: 1–9.

[95] 马艳. 空化双气泡之间的相互作用及气泡形状不稳定性研究[D]. 西安: 陕西师范大学, 2018.

[96] 俞启东, 徐志程, 赵静, 等. 超声空化及其声流结构实验研究[J]. 应用声学, 2021, 40(6): 865–870.

[97] 孙毅, 黄韶炜, 毛亚郎, 等. 近壁面超声空化微射流对微细颗粒的破碎作用[J]. 中国机械工程, 2019, 30(24): 2953–2960.

[98] 黄韶炜. 旋转流场近壁面超声空化对微细颗粒的破碎作用研究[D]. 杭州: 浙江工业大学, 2019.

[99] Ding X, Hou J, Xiao X C. Experimental study on ultrasonic irradiation for enhancing coalbed methane recovery[J]. Scientific Reports, 2022, 12(1): 7768.

[100] Zuo S J, Wang C W, Liao Y, et al. Mechanism of a novel ultrasonic promoting fracturing technology in stimulating permeability and gas extraction[J]. Energy Reports, 2022, 8: 12776–12786.

[101] Liu P, Fan L, Li Q G, et al. Power ultrasound assisted coalbed methane enhancement recovery: Field application and performance evaluation in underground coal mine[J]. Fuel, 2022, 324: 124575.

[102] 袁亮, 郭华, 李平, 等. 大直径地面钻井采空区采动区瓦斯抽采理论与技术[J]. 煤炭学报, 2013, 38(1): 1–8.

[103] 林海飞, 季鹏飞, 孔祥国, 等. 顺层钻孔预抽煤层瓦斯精准布孔模式及工程实践[J]. 煤炭学报, 2022, 47(3): 1220–1234.

[104] Ambedkar B, Nagarajan R, Jayanti S. Investigation of high-frequency, high-intensity ultrasonics for size reduction and washing of coal in aqueous medium[J]. Industrial & Engineering Chemistry Research, 2011, 50(23): 13210–13219.

[105] Liu L, Yang Y, Liu P, et al. The influence of air content in water on ultrasonic cavitation field[J]. Ultrasonics Sonochemistry, 2014, 21(2): 566–571.

[106] 文虎, 刘名阳, 樊世星, 等. 液态CO2溶浸煤体孔裂隙演化特征的实验研究[J]. 西安科技大学学报, 2020, 40(6): 935–944.

[107] 赵毅鑫, 姜耀东, 张雨. 冲击倾向性与煤体细观结构特征的相关规律[J]. 煤炭学报, 2007, 32(1): 64–68.

[108] 琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报, 2005, 79(2): 269–285.

[109] 王凯, 乔鹏, 王壮森, 等. 基于二氧化碳和液氮吸附、高压压汞和低场核磁共振的煤岩多尺度孔径表征[J]. 中国矿业, 2017, 26(4): 146–152.

[110] 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学:地球科学, 2010, 40(11): 1598–1607.

[111] 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报, 2001, 26(5): 552–556.

[112] Radlinski A, Mastalerz M, Hinde A, et al. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal[J]. International journal of coal geology, 2004, 59(3–4): 245–271.

[113] 宋晓夏, 唐跃刚, 李伟, 等. 基于小角X射线散射构造煤孔隙结构的研究[J]. 煤炭学报, 2014, 39(4): 719–724.

[114] 秦雷. 液氮循环致裂煤体孔隙结构演化特征及增透机制研究[D]. 徐州: 中国矿业大学, 2018.

[115] Fu H, Wang X, Zhang L, et al. Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of block X in the Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1422–1432.

[116] Kenyon W. Petrophysical principles of applications of NMR logging[J]. The log analyst, 1997, 38(2): 21–43.

[117] Yao Y, Liu D, Liu J, et al. Assessing the water migration and permeability of large intact bituminous and anthracite coals using NMR relaxation spectrometry[J]. Transport in Porous Media, 2015, 107(2): 527–542.

[118] 楚亚培, 张东明, 王满, 等. 基于核磁共振技术和压汞法的液氮冻融煤体孔隙结构损伤演化规律试验研究[J]. 岩石力学与工程学报, 2022, 41(9): 1820–1831.

[119] 李海波, 朱巨义, 郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2): 273–280.

[120] 张倩, 董艳辉, 童少青, 等. 核磁共振冷冻测孔法及其在页岩纳米孔隙表征的应用[J]. 科学通报, 2016, 61(21): 2387–2394.

[121] 谢松彬, 姚艳斌, 陈基瑜, 等. 煤储层微小孔孔隙结构的低场核磁共振研究[J]. 煤炭学报, 2015, 40(S1): 170–176.

[122] Yao Y, Liu D, Che Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7): 1371–1380.

[123] 陈振标, 张超谟, 张占松, 等. 利用NMR T2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 2(1): 105–110.

[124] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1): 40–44.

[125] 李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(S1): 142–156.

[126] Liu C, Shi B, Zhou J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97–106.

[127] Liu C, Tang C S, Shi B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77–80.

[128] Liu L, Xin J, Huan C, et al. Pore and strength characteristics of cemented paste backfill using sulphide tailings: Effect of sulphur content[J]. Construction and Building Materials, 2020, 237: 117452.

[129] 雷华阳, 张文振, 霍海峰, 等. 水汽补给下砂土冻胀量与微观结构参数关联研究[J]. 岩土力学, 2022, 43(9): 2337-2346+2359.

[130] Chen G Q, Xu P, Mi G Y, et al. Compressive strength and cracking of composite concrete in hot-humid environments based on microscopic quantitative analysis[J]. Construction and Building Materials, 2019, 225: 441–451.

[131] Jiao K, Yao S, Liu C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM–FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China[J]. International Journal of Coal Geology, 2014, 128–129: 1–11.

[132] 刘春, 许强, 施斌, 等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报, 2018, 40(5): 925–931.

[133] 彭瑞东, 谢和平, 鞠杨. 二维数字图像分形维数的计算方法[J]. 中国矿业大学学报, 2004, 33(1): 22–27.

[134] Yao Y, Liu D. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95: 152–158.

[135] Van Kampen N G. Stochastic processes in physics and chemistry[M]. Oxford: Elsevier, 1992.

[136] Farkas D L. Biomedical applications of translational optical imaging: From molecules to humans[J]. Molecules, Multidisciplinary Digital Publishing Institute, 2021, 26(21): 6651.

[137] Fu Z, Su H, Wen Z. Multi-scale numerical analysis for linear elastic behavior of clay concrete[J]. International Journal of Solids and Structures, 2020, 203: 23–45.

[138] Sun Y, Zhai C, Xu J Z, et al. Experimental study on pore structure evolution of coal in macroscopic, mesoscopic, and microscopic scales during liquid nitrogen cyclic cold-shock fracturing[J]. Fuel, 2021, 291: 120150.

[139] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1994, 31(6): 643–659.

[140] Nguyen T T N, Vu M N, Tran N H, et al. Stress induced permeability changes in brittle fractured porous rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104224.

[141] Lotidis M A, Nomikos P P, Sofianos A I. Laboratory study of the fracturing process in marble and plaster hollow plates subjected to uniaxial compression by combined acoustic emission and digital image correlation techniques[J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 1953–1971.

[142] Ghasemi S, Khamechian M, Nikudel M R, et al. The effect of mineralogy and grain size on stress damage thresholds of granite and diorite[J]. Scientific Quarterly Journal of Iranian Association of Engineering Geology, 2021, 13(4): 29–41.

[143] Shen H, Li Q, Li X, et al. Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions[J]. Rock and Soil Mechanics, 2018, 39(S2): 261–269.

[144] Gao M Z, Zhang J G, Li S W, et al. Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining[J]. Journal of Central South University, 2020, 27(10): 3013–3024.

[145] Du K, Li X, Tao M, et al. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104411.

[146] 张恒源, 郭佳奇, 孙飞跃, 等. 不同试验条件和含水状态下花岗岩的声发射与破裂演化特征[J]. 高压物理学报, 36(6): 1–15.

[147] Ge Z, Sun Q. Acoustic emission characteristics of gabbro after microwave heating[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104616.

[148] He Y C, Zhao P X, Li S G, et al. Mechanical properties and energy dissipation characteristics of coal-rock-like composite materials subjected to different rock-coal strength ratios[J]. Natural Resources Research, 2021, 30(3): 2179–2193.

[149] 梁昌玉, 李晓, 王声星, 等. 岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(9): 1830–1838.

[150] 赵红鹤, 高富强, 杨小林. 基于不同分布的分段式岩石损伤本构模型[J]. 矿业研究与开发, 2015, 35(4): 64–67.

[151] Yao Q, Li X, Zhou J, et al. Experimental study of strength characteristics of coal specimens after water intrusion[J]. Arabian Journal of Geosciences, 2015, 8(9): 6779–6789.

[152] 鲁祖德. 裂隙岩石水—岩作用力学特性试验研究与理论分析[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2010.

[153] Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(2): 233–245.

[154] 游强, 游猛. 岩石统计损伤本构模型及对比分析[J]. 兰州理工大学学报, 2011, 37(3): 119–123.

[155] 曹文贵, 赵明华, 刘成学. 基于Weibull分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19): 3226–3231.

[156] 徐卫亚, 韦立德. 岩石损伤统计本构模型的研究[J]. 岩石力学与工程学报, 2002, 21(6): 787–791.

[157] 许江, 曹偈, 李波波, 等. 煤岩渗透率对孔隙压力变化响应规律的试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 225–230.

[158] Westphal H, Surholt I, Kiesl C, et al. NMR measurements in carbonate rocks: Problems and an approach to a solution[J]. Pure and Applied Geophysics, 2005, 162(3): 549–570.

[159] Talabi O, AlSayari S, Iglauer S, et al. Pore-scale simulation of NMR response[J]. Journal of Petroleum Science and Engineering, 2009, 67(3): 168–178.

[160] Kenyon W E, Day P I, Straley C, et al. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones[J]. SPE Formation Evaluation, 1988, 3(3): 622–636.

[161] 刘厅. 深部裂隙煤体瓦斯抽采过程中的多场耦合机制及其工程响应[D]. 徐州: 中国矿业大学, 2019.

[162] Reiss L H. The reservoir engineering aspects of fractured formations[M]. Texas: Gulf Publishing Company, 1980.

[163] Gu F, Chalaturnyk R. Permeability and porosity models considering anisotropy and discontinuity of coalbeds and application in coupled simulation[J]. Journal of Petroleum Science and Engineering, 2010, 74(3–4): 113–131.

[164] 蒋一峰. 受载煤体-瓦斯-水耦合渗流特性研究[D]. 北京: 中国矿业大学(北京), 2018.

[165] Liu J, Chen Z, Elsworth D, et al. Evolution of coal permeability from stress-controlled to displacement-controlled swelling conditions[J]. Fuel, 2011, 90(10): 2987–2997.

[166] Shi J Q, Durucan S. Drawdown induced changes in permeability of coalbeds: A new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1–16.

[167] Shi J Q, Durucan S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE Reservoir Evaluation & Engineering, 2005, 8(4): 291–299.

[168] Cui X, Bustin R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181–1202.

[169] Ian P, Mansoori J. How permeability depends on stress and pore pressure in coalbeds: A new model[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(6): 539–544.

[170] Wu P, Wang X, Lin W, et al. Acoustic characterization of cavitation intensity: A review[J]. Ultrasonics Sonochemistry, 2022, 82: 105878.

[171] Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine, 1917, 34: 94–98.

[172] 项京成. 液相下空化冲击对微细颗粒的破碎作用研究[D]. 杭州: 浙江工业大学, 2018.

[173] Plesset M. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3): 277–282.

[174] Keller J B, Miksis M. Bubble oscillations of large amplitude[J]. The Journal of the Acoustical Society of America, Acoustical Society of America, 1980, 68(2): 628–633.

[175] Hao Y, Prosperetti A. The dynamics of vapor bubbles in acoustic pressure fields[J]. Physics of Fluids, 1999, 11(8): 2008–2019.

[176] 吴强, 姚澄, 朱昌平, 等. 超声清洗过程环境压力对声空化效应的影响[J]. 应用声学, 2015, 34(5): 391–397.

[177] Merouani S, Hamdaoui O, Rezgui Y, et al. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles–Theoretical study[J]. Ultrasonics Sonochemistry, 2013, 20(3): 815–819.

[178] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响[J]. 物理学报, 2019, 68(23): 167–175.

[179] 许文林, 何玉芳, 王雅琼. 超声空化气泡运动方程的求解及过程模拟[J]. 扬州大学学报(自然科学版), 2005, 8(1): 55-59+68.

[180] Brennen C E. Cavitation and bubble dynamics[M]. Oxford: Cambridge university press, 2014.

[181] 熊永磊, 杨小丽, 宋海亮. 微纳米气泡在水处理中的应用及其发生装置研究[J]. 环境工程, 2016, 34(6): 23–27.

[182] 彭可文, 田守嶒, 李根生, 等. 自振空化射流空泡动力学特征及溃灭强度影响因素[J]. 石油勘探与开发, 2018, 45(2): 326–332.

[183] 沈壮志, 吴胜举. 声场中气泡群的动力学特性[J]. 物理学报, 2012, 61(24): 317–323.

[184] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应[J]. 物理学报, 2016, 65(14): 149–156.

[185] Eskin D G. Fundamental studies of ultrasonic melt processing[J]. Ultrasonics Sonochemistry, 2019, 52: 455–467.

[186] Mitelea I, Bordea I. Ultrasonic cavitation erosion of nodular cast iron with ferrite–pearlite microstructure[J]. Ultrasonics Sonochemistry, 2015, 23: 385–390.

[187] Senrayan J. Ultrasonic acoustic-cavitation as a novel and emerging energy efficient technique for oil extraction from kapok seeds[J]. Innovative Food Science and Emerging Technologies, 2020, 62: 102347.

[188] Tiong T J, Chu J K, Lim L Y, et al. A computational and experimental study on acoustic pressure for ultrasonically formed oil-in-water emulsion[J]. Ultrasonics Sonochemistry, 2019, 56: 46–54.

[189] Cao P, Hao C, Ma C, et al. Physical field simulation of the ultrasonic radiation method: An investigation of the vessel, probe position and power[J]. Ultrasonics Sonochemistry, 2021, 76: 105626.

[190] Beckwith C, Djambazov G, Pericleous K, et al. Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation[J]. Ultrasonics Sonochemistry, 2022, 89: 106138.

[191] Du J, Chen F. Cavitation dynamics and flow aggressiveness in ultrasonic cavitation erosion[J]. International Journal of Mechanical Sciences, 2021, 204: 106545.

[192] 姚金锁. 超声激励下无界域内空化结构及空化泡动力学行为的研究[D]. 北京: 北京交通大学, 2021.

[193] 林海飞, 杨二豪, 夏保庆, 等. 高瓦斯综采工作面定向钻孔代替尾巷抽采瓦斯技术[J]. 煤炭科学技术, 2020, 48(1): 136–143.

[194] 李树刚, 张静非, 尚建选, 等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报, 2022, 47(4): 1416–1429.

[195] 李树刚, 刘李东, 赵鹏翔, 等. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析[J]. 煤炭科学技术, 2022, 50(1): 95–104.

[196] Sih G C, Macdonald B. Fracture mechanics applied to engineering problems-strain energy density fracture criterion[J]. Engineering Fracture Mechanics, 1974, 6(2): 361–386.

[197] 林斌. 岩石水和气体压裂破裂压力差异的理论和试验研究[D]. 徐州: 中国矿业大学, 2015.

[198] Liu M, Gan Y, Hanaor D A H, et al. An improved semi-analytical solution for stress at round-tip notches[J]. Engineering Fracture Mechanics, 2015, 149: 134–143.

[199] Zhang Y, Zhao Y, Yang H, et al. A semianalytical solution for a griffith crack nonuniformly pressurized by internal fluid[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2439–2460.

[200] 陆萍. 有限岩板中裂纹尖端应力强度因子与裂纹扩展研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

[201] 彭可文. 围压下自振空化射流空化发生能力与冲蚀性能研究[D]. 北京: 中国石油大学(北京), 2018.

[202] Hilgenfeldt S, Lohse D, Zomack M. Response of bubbles to diagnostic ultrasound: a unifying theoretical approach[J]. The European Physical Journal B, 1998, 4(2): 247–255.

[203] 尹文波, 王平, 董怀荣, 等. 大功率超声波采油成套装备的研制及应用[J]. 石油机械, 2007, 35(5): 1-4+69.

[204] Wang Z, Xu Y. Review on application of the recent new high-power ultrasonic transducers in enhanced oil recovery field in China[J]. Energy, 2015, 89: 259–267.

[205] Luo X, Gong H, He Z, et al. Recent advances in applications of power ultrasound for petroleum industry[J]. Ultrasonics Sonochemistry, 2021, 70: 105337.

[206] Abramov V O, Abramova A V, Bayazitov V M, et al. Acoustic and sonochemical methods for altering the viscosity of oil during recovery and pipeline transportation[J]. Ultrasonics Sonochemistry, 2017, 35: 389–396.

[207] 袁瑞娟, 沈建国. 75kW超声波发生器控制信号研究[J]. 声学技术, 2012, 31(4): 398–402.

[208] 谢勇, 方宇. 大功率超声波逆变电源的研制[J]. 电力电子技术, 2001, 35(5): 28–31.

[209] 陈鑫宏, 俞宏沛, 严伟. 径向复合型大功率超声换能器的设计[J]. 声学与电子工程, 2009, 24(2): 13–16.

[210] 王晓宇. 径向复合环型超声换能器的径向振动研究[D]. 西安: 陕西师范大学, 2021.

[211] 张翊东. 基于机电耦合法油井增产超声波换能器结构参数优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2014.

中图分类号:

 TD712    

开放日期:

 2025-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式