- 无标题文档
查看论文信息

论文中文题名:

 高温环境对煤矿工人工作记忆的影响研究    

姓名:

 刘宇宸    

学号:

 17635396023    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 125603    

学科名称:

 管理学 - 工程管理    

学生类型:

 硕士    

学位级别:

 工程管理硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工业工程与管理    

研究方向:

 人因工程    

第一导师姓名:

 李红霞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-07    

论文外文题名:

 A Study of the Effect of High-temperature Environment on Coal Miners' Working Memory    

论文中文关键词:

 高温环境 ; 工作记忆 ; 延时匹配任务 ; fNIRS实验    

论文外文关键词:

 High-temperature environment ; Working memory ; Delayed matching task ; fNIRS experiments    

论文中文摘要:

随着浅层矿产资源的逐渐枯竭,深部资源开发成为未来的重要方向。深部开采技术的发展促进了矿产资源的深层次利用,但同时也带来了新的挑战,尤其是深井开采环境下的高温问题。高温不仅影响煤矿工人的生理健康,还会影响其认知能力。降低其工作效率,甚至引发安全事故,从而影响煤矿行业的经济效益和社会稳定。鉴于此,本文聚焦于深井高温环境对煤矿工人工作记忆能力的影响,系统的进行实验设计和数据分析,揭示高温环境对煤矿工人工作记忆能力的具体影响及其脑机制,为改善煤矿工人的工作环境和提高安全生产水平提供科学依据。

本文通过文献回顾,深入探究了高温环境如何对矿工的生理状态、心理健康及其作业效率造成影响,对工作记忆的概念、理论及现有研究成果进行了系统总结,对功能性近红外光谱技术(fNIRS)在认知神经科学领域的应用进行了探讨,随后基于文献综述、实地调查及对深井温度分析提出了六个假设。同时本文对实验设备Cortivision Photon Cap便携式近红外光学脑成像系统及espec环境试验箱的进行学习,并设计了针对矿工在不同温度环境下工作记忆能力的测量实验来验证假设,随后在实验中收集行为学数据与近红外数据并对近红外数据的进行预处理。在实验的预实验阶段通过详细的流程优化,确定了实验中需收集的关键指标。最后,在正式实验环节搭建实验环境并招募40名实验被试。实验设置了2个环境温度:高温32℃与常温25℃,实验中,采用E-Prime3.0软件编写的延时匹配任务(DMS)范式,确立了需要收集的近红外数据及行为学数据的类型。在数据收集完毕后,应用SPSS软件和NIRS_KIT工具包对所得数据进行了分析。从行为学数据与血氧浓度数据两个维度进行综合分析,本文得出了以下几个结论:(1)从行为学数据结果看,被试在高温环境32℃时完成任务的正确率较低、所需的反应时更长。(2)从近红外数据结果看,基于血氧浓度激活结果可以得出结论:①被试在同一环境下执行任务时血氧浓度相比静息态有显著上升。②不论执行任务态或静息态,被试在高温32℃时的血氧浓度相比常温25℃均上升显著。(3)从近红外数据结果看,基于大脑各兴趣区的功能连接结果可以得出结论:①被试在同一环境下执行任务时大脑各兴趣区的功能连接强度相比静息态更强。②被试在高温环境32℃的大脑前额叶各兴趣区的功能连接强度相比常温25℃状态更强。(4)从脑神经的层面考虑,个体在执行任务调用工作记忆能力时,大脑背外侧前额叶区域、额极区域及两个区域彼此之间有更广泛和强大的脑区激活,以及更复杂的功能连接模式,腹外侧前额叶区域和眶额叶区域也有一定的功能连接。

综上,高温对于工作记忆能力和脑机制都产生了显著影响。本文的发现不仅丰富了工作记忆领域的理论知识,还对深部矿井中的温度管理和作业安全提供了实践指导,有助于优化煤矿工人的工作环境,提高工作效率和安全性。通过探索高温对煤矿工人工作记忆能力的影响及其机制,本文为制定有效的防护措施和管理策略提供了科学依据,对保障矿工健康、维护矿区安全以及促进煤炭行业的可持续发展具有重要的理论和实践意义。

论文外文摘要:

With the gradual depletion of shallow mineral resources, deep resource development has become an important direction for the future. The development of deep mining technology promotes the deep utilization of mineral resources, but at the same time, it also brings new challenges, especially the problem of high temperature in the deep shaft mining environment. High temperature not only affects the physiological health of coal miners, but also affects their cognitive ability. It reduces their work efficiency and even causes safety accidents, thus affecting the economic efficiency and social stability of the coal mining industry. In view of this, this thesis focuses on the effects of high-temperature environment in deep wells on the working memory ability of coal miners, and systematically carries out experimental design and data analysis to reveal the specific effects of high-temperature environment on the working memory ability of coal miners and its brain mechanism, so as to provide scientific basis for the improvement of the working environment and the improvement of the level of safety production of coal miners.

In this thesis, through a literature review, we have deeply explored how the high temperature environment affects miners' physiological state, mental health and their operational efficiency, systematically summarized the concepts, theories, and existing research results of working memory, explored the application of functional near-infrared spectroscopy (fNIRS) in the field of cognitive neuroscience, and then put forward six hypotheses based on the literature review, the field investigation, and the analysis of the temperature of the deep wells. six hypotheses. At the same time, this thesis studies the experimental equipment Cortivision Photon Cap portable near-infrared optical brain imaging system and espec environmental test chamber, and designs an experiment to measure the working memory capacity of miners in different temperature environments to verify the hypotheses, and then collects behavioral data and near-infrared data and preprocesses the near-infrared data in the experiment. The key indicators to be collected in the experiment were determined through detailed process optimization in the pre-laboratory stage of the experiment. Finally, the experimental environment was set up and 40 subjects were recruited in the formal experimental session. The experiment was set up with two ambient temperatures: high temperature 32°C and room temperature 25°C. In the experiment, the type of fNIRS data and behavioral data to be collected was established by using the Delayed Matching Task (DMS) paradigm written in E-Prime 3.0 software. After the data were collected, the resulting data were analyzed by applying SPSS software and the NIRS_KIT toolkit. From the comprehensive analysis of the two dimensions of behavioral data and blood oxygen concentration data, this thesis draws the following conclusions: (1) From the results of the behavioral data, the subjects had a lower rate of correctness and a longer reaction time required to complete the task in the high temperature environment of 32℃. (2) From the results of NIR data, based on the activation results of blood oxygen concentration, it can be concluded that: ①There is a significant increase in blood oxygen concentration when subjects perform the task in the same environment compared to the resting state. ②Regardless of the task state or resting state, the blood oxygen concentration of the subjects in the high-temperature environment at 32℃ increased significantly compared to 25℃. (3) From the results of the near-infrared data, it can be concluded based on the results of the functional connectivity of the brain's regions of interest that: ①The functional connectivity of the brain's regions of interest is stronger than that of the resting state when the subjects are performing a task in the same environment. ②The strength of functional connectivity in each area of interest of the brain is stronger when subjects are in a high temperature environment at 32℃ compared to 25℃. (4) Considering the neurological level of the brain, individuals have more extensive and strong brain area activation and more complex functional connectivity patterns between the dorsolateral prefrontal region, the frontal pole region, and the two regions of the brain, as well as some functional connectivity between the ventral prefrontal region and the orbital frontal region, when they perform the task of recalling the ability to recall working memories.

In summary, high temperature has a significant effect on both working memory capacity and brain mechanisms. The findings of this thesis not only enrich the theoretical knowledge in the field of working memory, but also provide practical guidance on temperature management and operational safety in deep mines, which can help optimize the working environment of coal miners and improve work efficiency and safety. By exploring the effects of high temperature on the working memory capacity of coal miners and its mechanisms, this thesis provides a scientific basis for the development of effective protective measures and management strategies, which is of great theoretical and practical significance for safeguarding the health of miners, maintaining the safety of mines, and promoting the sustainable development of the coal industry.

参考文献:

[1] 王金华, 谢和平, 刘见中, 等. 煤炭近零生态环境影响开发利用理论和技术构想[J]. 煤炭学报, 2018, 43(5): 1198-1209.

[2] 徐保财. 我国煤矿深部开采现状及灾害防治分析[J]. 中国石油和化工标准与质量, 2020, 40(16): 192-193.

[3] Toftum J, Jørgensen A S, Fanger P O. Upper limits for indoor air humidity to avoid uncomfortably humid skin[J]. Energy and Buildings, 1998, 28(1): 1-13.

[4] Kalkowsky B, Kampmann B. Physiological Strain of Miners at Hot Working Places in German Coal Mines[J]. Industrial Health, 2006, 44(3): 465-473.

[5] Dey N C, Samanta A, Biswas R. A Comparative Study of Physiological Strain of Underground Coal Miners in India[J]. Journal of Human Ergology, 2007, 36(1): 1-12.

[6] Stewart I B, Hunt A P. Negligible heat strain in armored vehicle officers wearing personal body armor[J]. Journal of Occupational Medicine and Toxicology, 2011, 6(1): 22.

[7] Carter R, Cheuvront S N, Wray D W, et al. The influence of hydration status on heart rate variability after exercise heat stress[J]. Journal of Thermal Biology, 2005, 30(7): 495-502.

[8] Kamijo Y I, Lee K, Mack G W. Active cutaneous vasodilation in resting humans during mild heat stress[J]. Journal of Applied Physiology, 2005, 98(3): 829-837.

[9] 刘鹏, 郑洁. 夏季人体皮肤湿润度水平对热应激响应的研究[J]. 安全与环境学报, 2014, 14(6): 302-306.

[10] 余群, 王丽平, 翁锡全. 高温高湿环境下耐力运动对红细胞溶血影响的研究现状及展望[J]. 现代预防医学, 2015, 42(13): 2334-2337.

[11] 操凯, 李亚运, 兰明强, 等. 高温热辐射环境下降温服对消防人员生理及感知响应的影响[J]. 清华大学学报(自然科学版), 2024.

[12] 谢英毫, 卢业虎, 沈海明. 高温环境下人体年龄对热生理与行为能力的影响[J]. 纺织高校基础科学学报, 2021, 34(1): 32-39.

[13] Nag P K, Ashtekar S P, Nag A, et al. Human heat tolerance in simulated environment[J]. The Indian journal of medical research, 1997, 105: 226-234.

[14] 朱能, 赵靖. 高热害煤矿极端环境条件下人体耐受力研究[J]. 建筑热能通风空调, 2006(5): 34-37+43.

[15] 李付海, 刘含东, 张超, 等. 深井掘进巷道热环境下人员疲劳水平实验研究[J]. 华北科技学院学报, 2018, 15(1): 103-108.

[16] 张超, 唐仕川, 李东明, 等. 高温高湿环境下人员劳动负荷与疲劳水平试验研究[J]. 安全与环境学报, 2015, 15(4): 176-180.

[17] 游波, 吴超, 王敏. 深井受限空间高温环境影响模拟试验研究[J]. 中国安全生产科学技术, 2013, 9(11): 30-36.

[18] Nag P K, Nag A, Ashtekar S P. Thermal Limits of Men in Moderate to Heavy Work in Tropical Farming[J]. Industrial Health, 2007, 45(1): 107-117.

[19] 纪文杰, 曹彬, 朱颖心. 建立一种新的热适应预测评价模型——预测热感觉PTS模型[J]. 暖通空调, 2019, 49(6): 39-45, 73.

[20] 吴建松, 付明, 童兴, 等. 高温高湿矿井作业人员热应激评价[J]. 煤炭科学技术, 2015, 43(9): 30-36.

[21] Hancock P A, Vasmatzidis I. Effects of heat stress on cognitive performance: the current state of knowledge[J]. International Journal of Hyperthermia, 2003, 19(3): 355-372.

[22] Færevik H, Eidsmo Reinertsen R. Effects of wearing aircrew protective clothing on physiological and cognitive responses under various ambient conditions[J]. Ergonomics, 2003, 46(8): 780-799.

[23] Liu W, Zhong W, Wargocki P. Performance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentration[J]. Building and Environment, 2017, 114: 96-105.

[24] Lan L, Wargocki P, Lian Z. Quantitative measurement of productivity loss due to thermal discomfort[J]. Energy and Buildings, 2011, 43(5): 1057-1062.

[25] Laurent J G C, Williams A, Oulhote Y, et al. Reduced cognitive function during a heat wave among residents of non-air-conditioned buildings: An observational study of young adults in the summer of 2016[J]. PLOS Medicine, 2018, 15(7): e1002605.

[26] 马辉, 袁晓雨, 张超. 高温高湿环境对作业者反应时间的影响研究[J]. 华北科技学院学报, 2014, 11(6): 68-72.

[27] Daanen H A M, van de Vliert E, Huang X. Driving performance in cold, warm, and thermoneutral environments[J]. Applied Ergonomics, 2003, 34(6): 597-602.

[28] Tham K W, Willem H C. Room air temperature affects occupants’ physiology, perceptions and mental alertness[J]. Building and Environment, 2010, 45(1): 40-44.

[29] 规范《GB935-1989-高温作业允许持续接触热时间限值》.pdf[EB]. https://openstd.samr.gov.cn/

[30] 曹晓庆. 影响室内热舒适参数的理论与实验研究[D]. 重庆大学, 2008.

[31] Perlman, Luna, Hein, et al. The impact of thermal environment on occupant IEQ perception and productivity[J]. Building and Environment, 2017, 121: 158-167.

[32] Akimoto T, Tanabe S ichi, Yanai T, et al. Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office[J]. Building and Environment, 2010, 45(1): 45-50.

[33] 刘聪, 李国建, 何宇航. 热不适环境对人体生理反应和工作效率的影响[J]. 建筑热能通风空调, 2020, 39(10): 21-25, 42.

[34] 田冬梅, 马欣悦, 贾畅畅, 等. 室内环境对办公建筑人员工作效率的影响探究[J]. 建筑经济, 2022, 43(S2): 349-353.

[35] Maula H, Hongisto V, Östman L, et al. The effect of slightly warm temperature on work performance and comfort in open-plan offices – a laboratory study[J]. Indoor Air, 2016, 26(2): 286-297.

[36] 赵胜凯, 杨柳, 高斯如, 等. 冬季外墙内表面温度对人体热舒适的影响研究[J]. 建筑节能(中英文), 2021, 49(11): 2-6.

[37] 聂兴信, 王廷宇, 孙锋刚, 等. 高温矿井热湿环境对人体机能的影响[J]. 金属矿山, 2020(4): 186-193.

[38] Srinavin K, Mohamed S. Thermal environment and construction workers’ productivity: some evidence from Thailand[J]. Building and Environment, 2003, 38(2): 339-345.

[39] Yi W, Chan A P C. Optimal Work Pattern for Construction Workers in Hot Weather: A Case Study in Hong Kong[J]. Journal of Computing in Civil Engineering, 2015, 29(5): 05014009.

[40] Yi W, Chan A P C. Which Environmental Indicator Is Better Able to Predict the Effects of Heat Stress on Construction Workers?[J]. Journal of Management in Engineering, 2015, 31(4): 04014063.

[41] 朱慧, 张超, 唐仕川, 等. 高温环境下不同体力劳动强度对心血管负荷指数影响研究[J]. 中国安全生产科学技术, 2015, 11(8): 70-76.

[42] 向立平, 王汉青. 高温高湿矿井人体热舒适数值模拟研究[J]. 矿业工程研究, 2009, 24(3): 66-69.

[43] Ismail A R, Nizam C M, Haniff M H M, et al. The Impact of Workers Productivity Under Simulated Environmental Factor by Taguchi Analysis[J]. APCBEE Procedia, 2014, 10: 263-268.

[44] 游波, 刘剑锋, 施式亮, 等. 深井恶劣环境对安全人因指标影响的试验研究[J]. 中国安全科学学报, 2020, 30(12): 52-61.

[45] 翟颖妮, 牛浩波, 黄艳秋. 局部强热辐射短时暴露下的脑电研究[J]. 安全与环境学报, 2022, 22(6): 3143-3151.

[46] 马维清, 何磊, 臧冀川. 深井高温热害对井下作业人员的影响研究[J]. 建井技术, 2021, 42(4): 19-26.

[47] 倪蓉. 煤矿职工疲劳度相关因素分析与控制研究[J]. 煤矿安全, 2013, 44(10): 230-233.

[48] 周鹏, 周林颖, 安兴伟, 等. 体温对大脑认知功能状态影响与调控策略研究进展[J]. 中国生物医学工程学报, 2019, 38(5): 621-627.

[49] 库逸轩. 工作记忆的认知神经机制[J]. 生理学报, 2019, 71(1): 173-185.

[50] Burgess N, Hitch G. The Baddeley and Hitch (1974) model of working memory[J]. Trends in Cognitive Sciences, 2005, 11(9): 535-541.

[51] Fuster J M, Alexander G E. Neuron Activity Related to Short-Term Memory[J]. Science, 1971, 173(3997): 652-654.

[52] Yang T xiao, Allen R J, Gathercole S E. Examining the role of working memory resources in following spoken instructions[J]. Journal of Cognitive Psychology, 2016, 28(2): 186-198.

[53] Baddeley A. The episodic buffer: a new component of working memory?[J]. Trends in Cognitive Sciences, 2000, 4(11): 417-423.

[54] 卢又燃, 耿道颖. 工作记忆的功能磁共振研究进展[J]. 国外医学(临床放射学分册), 2005(4): 222-225.

[55] Moreau D, Chou E. The Acute Effect of High-Intensity Exercise on Executive Function: A Meta-Analysis[J]. Perspectives on Psychological Science, 2019, 14(5): 734-764.

[56] Schut M J, Van Der Stoep N, Postma A, et al. The cost of making an eye movement: A direct link between visual working memory and saccade execution[J]. Journal of Vision, 2017, 17(6): 15.

[57] 刘宝根, 周兢, 李菲菲. 脑功能成像的新方法——功能性近红外光谱技术(fNIRS)[J]. 心理科学, 2011, 34(4): 943-949.

[58] Jöbsis F F. Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters[J]. Science, 1977, 198(4323): 1264-1267.

[59] Bendall R, Thompson C. Functional near-infrared spectroscopy: An emerging neuroimaging technique successful in studying the interaction between emotion and cognition[J]. PsyPAG Quarterly, 2015, 96: 14-17.

[60] 邹雨晨, 李燕芳, 丁颖. 早期高级认知发展与前额叶功能发育的fNIRS研究[J]. 心理发展与教育, 2015, 31(6): 761-768.

[61] Rahman Md A, Siddik A B, Ghosh T K, et al. A Narrative Review on Clinical Applications of fNIRS[J]. Journal of Digital Imaging, 2020, 33(5): 1167-1184.

[62] Peng C, Hou X. Applications of functional near-infrared spectroscopy (fNIRS) in neonates[J]. Neuroscience Research, 2021, 170: 18-23.

[63] Perlman S B, Luna B, Hein T C, et al. fNIRS evidence of prefrontal regulation of frustration in early childhood[J]. NeuroImage, 2014, 85: 326-334.

[64] Chen M, Pillemer S, England S, et al. Neural correlates of obstacle negotiation in older adults: An fNIRS study[J]. Gait & Posture, 2017, 58: 130-135.

[65] Oliver D, Tachtsidis I, Hamilton A F de C. The role of parietal cortex in overimitation: a study with fNIRS[J]. Social Neuroscience, 2018, 13(2): 214-225.

[66] 李观茹, 项明强, 孙健, 等. 身体活动融合认知训练对青少年射击运动员执行功能的影响:一项fNIRS研究[C]//第二届中国青少年体能高峰论坛专题报告论文集. 中国广东广州, 2022: 23-25.

[67] 文世林, 夏树花, 李怜军, 等. 急性有氧运动对大学生执行功能的影响:来自fNIRS和行为实验的证据[J]. 天津体育学院学报, 2015, 30(6): 526-531, 537.

[68] 袁鑫. 基于情境感知系统的脑卒中康复评定平台设计研究[D]. 山东大学, 2023.

[69] Zhu Y, Jayagopal J K, Mehta R K, et al. Classifying Major Depressive Disorder Using fNIRS During Motor Rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(4): 961-969.

[70] Tian F, Li H, Tian S, et al. Is There a Difference in Brain Functional Connectivity between Chinese Coal Mine Workers Who Have Engaged in Unsafe Behavior and Those Who Have Not?[J]. International Journal of Environmental Research and Public Health, 2022, 19(1): 509.

[71] 何晓清. 自我损耗对亲社会行为的影响:强化和缓解作用的心理与神经机制[D]. 广州大学, 2022.

[72] 尹俊婷. 威胁对个体与团体创造力的影响——基于近红外脑功能成像的研究[D]. 上海师范大学, 2022.

[73] 张如倩, 刘洁琼, 李先春. 社会互动视角下人际公平形成的脑机制[J]. 心理学报, 2019, 51(9): 1007-1017.

[74] Russell J A, Mehrabian A. Distinguishing anger and anxiety in terms of emotional response factors[J]. Journal of Consulting and Clinical Psychology, 1974, 42(1): 79-83.

[75] Tang Z, Warkentin M, Wu L. Understanding employees’ energy saving behavior from the perspective of stimulus-organism-responses[J]. Resources, Conservation and Recycling, 2019, 140: 216-223.

[76] 梁阜, 李树文, 孙锐. SOR视角下组织学习对组织创新绩效的影响[J]. 管理科学, 2017, 30(3): 63-74.

[77] 邓卫华, 易明. 基于SOR模型的在线用户追加评论信息采纳机制研究[J]. 图书馆理论与实践, 2018, 0(8): 33-39.

[78] 苑甜甜, 宗义湘, 王俊芹. 农户有机质改土技术采纳行为:外部激励与内生驱动[J]. 农业技术经济, 2021(8): 92-104.

[79] Humphreys M, Nicol F. Understanding the adaptive approach to thermal comfort[J]. ASHRAE Transactions, 1998, 104: 991-1004.

[80] Brager G S, de Dear R J. Thermal adaptation in the built environment: a literature review[J]. Energy and Buildings, 1998, 27(1): 83-96.

[81] 刘红, 郑文茜, 李百战, 等. 夏热冬冷地区非采暖空调建筑室内热环境行为适应性[J]. 中南大学学报(自然科学版), 2011, 42(6): 1805-1812.

[82] Reppermund S, Ising M, Lucae S, et al. Cognitive impairment in unipolar depression is persistent and non-specific: further evidence for the final common pathway disorder hypothesis[J]. Psychological Medicine, 2009, 39(4): 603-614.

[83] Baddeley A D. Is working memory still working?[J]. European Psychologist, 2002, 7(2): 85-97.

[84] Lazaro P, Momayez M. Heat Stress in Hot Underground Mines: a Brief Literature Review[J]. Mining, Metallurgy & Exploration, 2021, 38(1): 497-508.

[85] Nie X, Wei X, Li X, et al. Heat Treatment and Ventilation Optimization in a Deep Mine[J]. Advances in Civil Engineering, 2018, 2018: e1529490.

[86] 马维清, 何磊, 臧冀川. 深井高温热害对井下作业人员的影响研究[J]. 建井技术, 2021, 42(4): 19-26.

[87] 江丙友, 林柏泉, 朱传杰, 等. 瓦斯爆炸冲击波在采煤工作面巷网中传播特性的数值模拟[J]. 煤炭学报, 2011, 36(6): 968-972.

[88] Ebi K L, Capon A, Berry P, et al. Hot weather and heat extremes: health risks[J]. The Lancet, 2021, 398(10301): 698-708.

[89] Coehoorn C J, Patrick Neary J, Krigolson O E, et al. Firefighter pre-frontal cortex oxygenation and hemodynamics during rapid heat stress[J]. Brain Research, 2023, 1798: 148156.

[90] Low D A, Wingo J E, Keller D M, et al. Dynamic cerebral autoregulation during passive heat stress in humans[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2009, 296(5): R1598-R1605.

[91] Mazalan N S, Landers G J, Wallman K E, et al. Head Cooling Prior to Exercise in the Heat Does Not Improve Cognitive Performance[J]. Journal of Sports Science & Medicine, 2021, 20(1): 69-76.

[92] Chaire A, Becke A, Düzel E. Effects of Physical Exercise on Working Memory and Attention-Related Neural Oscillations[J]. Frontiers in Neuroscience, 2020, 14.

[93] Neural correlates of obstacle negotiation in older adults: An fNIRS study[J]. Gait & Posture, 2017, 58: 130-135.

中图分类号:

 TD79    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式