论文中文题名: |
基于铁酸铋基铁电体的高效光催化CO2还原体系研究
|
姓名: |
王榆银
|
学号: |
22211225066
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085600
|
学科名称: |
工学 - 材料与化工
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2025
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料工程
|
研究方向: |
铁电催化
|
第一导师姓名: |
刘霄
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2025-06-18
|
论文答辩日期: |
2025-05-29
|
论文外文题名: |
Research on Efficient Photocatalytic CO2 Reduction System Based on Bismuth Iron Oxide Ferroelectric Materials
|
论文中文关键词: |
铁电光催化 ; BiFeO3 ; 异质结构 ; CO2还原 ; 金属负载
|
论文外文关键词: |
ferroelectric photocatalysis ; BiFeO3 ; heterojunction structure ; CO2 reduction ; metal loading
|
论文中文摘要: |
︿
光催化二氧化碳还原反应(carbon dioxide reduction reaction,CO2RR)被视为解决能源与环境困境的关键技术,开发高效高选择性的光催化剂是其核心挑战。然而,体相载流子快速复合与界面反应动力学迟缓进一步限制了其实际应用。铁酸铋(BiFeO3,BFO)铁电体大的自发极化,可以优化载流子动力学,及其窄带隙特征,具有宽的光吸收范围,而被认为是最有前途的铁电半导体催化剂之一。因此本论文以BFO为基体,通过异质结构筑、调节表面电荷传输和活性位点优化策略,系统提升其催化性能并阐明作用机制。
传统异质结因其两相固有和不灵活的电子结构以及弱内建电场,限制了光催化CO2还原效率和产物选择性。本研究通过水热法与热沉积法构建基于极化铁酸铋纳米片(BFO(P))和硫化镉(CdS)的铁电S型异质结催化剂,以增强界面相互作用和催化性能。本征极化场的定向有效提升了静电电位差和能带弯曲,克服了传统催化机制氧化还原电位的局限性。异质结构的协同效应使载流子寿命延长至20 ns以上,表面光电压提升至BFO的1002倍。得益于优化的载流子动力学,该催化剂在不使用牺牲剂、光敏剂、贵金属或机械能的条件下,CO产率101.25 μmol g−1 h−1(选择性100%),分别为原始CdS和BFO的85.46和23.47倍,显著高于已报到铁电及无机半导体光催化剂,同时有效抑制了CdS的光腐蚀并表现出高量子效率。该工作不仅阐明了强极性与铁电态调控对异质结光催化性能的促进作用,还为高效CO2光还原催化剂的设计提供了新策略。
针对BiFeO3的导带位置不足导致的热力学限制和动力学迟缓问题,本研究系统地探讨了过渡金属M(M=Fe、Co、Ni、Cu)修饰及极化效应对BiFeO3催化活性的影响。采用共沉淀法批量合成BFO纳米颗粒(npBFO),并通过两步退火和电晕极化构建npBFO-M铁电催化剂。研究发现,过渡金属d轨道的特殊性不仅能调节npBFO表面电荷转移,还可以优化其能带结构。其中,电子受体型的Co和Fe,不仅可以捕获电子,还促进氧空位(OV)形成,提供更多活性位点;电子桥接型的Ni和Cu,构建界面电荷转移通道,提高体相-表面电荷传输效率,且Cu可抑制OV生成但增强羟基吸附能力。金属M均引起了平带电位负移,尤其npBFO-10Co平带电位负移0.5 V,显著突破npBFO的热力学限制,使CO产率达58.9 μmol g-1 h-1(较npBFO提升8.3倍)。然而,极化处理可能因极化场与晶面取向失配而降低催化活性。这项工作不仅揭示了过渡金属对npBFO能带结构及界面电荷转移机制的调控规律,还明确了晶面取向与极化场匹配对催化性能的关键作用。
为进一步实现高活性光催化CO2还原,本研究通过水热法制备了BiFeO3纳米片(nsBFO)以增加活性位点暴露,并采用二步退火策略构筑了Co-Ag双金属位点修饰的nsBFO10C3A催化剂。实验结果表明,Co-Ag双金属的负载,形成梯度电子传输通道,这不仅优化了催化剂表面的电荷转移,同时显著抑制了载流子复合。在无光敏剂、牺牲剂及机械能条件下,nsBFO10C3A表现出显著的CO活性(80.13 μmol g-1 h-1),约为nsBFO的7倍,选择性近100%。同时,双金属界面引起nsBFO平带电位负移至-0.77 eV,同时满足了CO2RR的热力学要求并提供充足电子供给。这项工作揭示了双金属位点的协同机制,为多金属-铁电复合催化体系的设计提供了新参考。
﹀
|
论文外文摘要: |
︿
The photocatalytic carbon dioxide reduction reaction (carbon dioxide reduction reaction, CO2RR) is regarded as a pivotal technology for addressing energy and environmental challenges. The development of highly efficient and selective photocatalysts is a central challenge in this field. However, the rapid complexation of bulk-phase carriers with sluggish interfacial reaction kinetics further limits its practical application. Bismuth ferrite (BiFeO3, BFO) ferroelectrics are regarded as the most promising ferroelectric semiconductor catalysts due to their substantial spontaneous polarization, which can enhance carrier dynamics, and their narrow bandgap feature with a broad light absorption range. Consequently, this thesis utilizes BFO as a substrate to methodically enhance its catalytic performance and elucidate the mechanism of action through heterostructure construction, modulated surface charge transport, and active site optimization strategies.
Conventional heterojunctions suffer from intrinsic limitations including phase incompatibility, inflexible electronic structures, and weak built-in electric fields, which severely restrict the efficiency and product selectivity in photocatalytic CO2 reduction. Herein, we constructed a ferroelectric S-scheme heterojunction catalyst by integrating polarized bismuth ferrite nanosheets (BFO(P)) with cadmium sulfide (CdS) via hydrothermal synthesis and thermal deposition. The oriented polarization field effectively enhanced the electrostatic potential difference and band bending, overcoming the redox potential limitations of conventional catalytic mechanisms. The synergistic effects of the heterostructure prolonged charge carrier lifetimes to over 20 ns and amplified the surface photovoltage to 1002 times that of pristine BFO. Benefiting from optimized carrier dynamics, the catalyst achieved a CO evolution rate of 101.25 μmol g-1 h-1 (100% selectivity) without sacrificial agents, photosensitizers, noble metals, or mechanical energy, representing 85.46- and 23.47-fold enhancements over pristine CdS and BFO, respectively. This performance surpasses most reported ferroelectric and inorganic semiconductor photocatalysts, while effectively suppressing CdS photo corrosion and maintaining high quantum efficiency. This work not only elucidates the critical role of strong polarization and ferroelectric state modulation in enhancing heterojunction photocatalytic performance but also provides a novel strategy for designing efficient CO2 photoreduction catalysts.
The inherent thermodynamic limitations of bismuth ferrite (npBFO), stemming from its insufficient conduction band position and sluggish charge kinetics, pose critical challenges for photocatalytic applications. This study systematically investigates dual modulation strategies involving transition metals (M = Fe, Co, Ni, Cu) and polarization engineering to overcome these constraints. npBFO nanoparticles were synthesized via co-precipitation, followed by two-step annealing and corona poling to fabricate npBFO-M ferroelectric catalysts. Systematic characterization revealed that the d-orbital characteristics of transition metals distinctly govern charge transfer and band structure remodeling, Electron-accepting Co/Fe dopants facilitated electron trapping and oxygen vacancy (OV) generation, while charge-bridging Ni/Cu enhanced interfacial charge transfer efficiency and modulated hydroxyl adsorption capacities despite suppressing OV formation. All M-dopants induced negative shifts in flat-band potentials, with npBFO-10Co exhibiting a remarkable 0.5 V shift those significantly alleviated thermodynamic limitations, achieving a CO evolution rate of 58.9 μmol g-1 h-1 (8.3-fold enhancement vs. npBFO). Crucially, polarization-induced charge redistribution partially counteracted catalytic activity when polarization fields mismatched with crystal facet orientation. This work establishes design guidelines for breaking activity bottlenecks in ferroelectric photocatalysts through rational facet-polarization alignment and meticulous electronic-structure engineering.
Despite advances in ferroelectric photocatalysis, achieving high-efficiency CO2 reduction remains hindered by insufficient active site accessibility and uncontrollable charge recombination. To address these challenges, we developed a ferroelectric catalyst featuring cobalt-silver bimetallic sites on ultrathin bismuth ferrite nanosheets (nsBFO10C3A) through hydrothermal synthesis coupled with a two-step annealing protocol. The synergistic interplay between Co-Ag bimetallic sites establishes a gradient electronic transfer pathway that simultaneously enhances surface charge mobility and suppresses bulk recombination. The engineered catalyst achieved exceptional CO2-to-CO conversion with a production rate of 80.13 μmol g-1 h-1 (near 100% selectivity) in the absence of photosensitizers, sacrificial agents, or mechanical energy input, representing a 7-fold enhancement versus pristine nsBFO. Spectro electrochemical analyses revealed that the bimetallic interface induced a substantial negative shift of the flat-band potential to -0.77 eV (vs. RHE), which simultaneously fulfills thermodynamic requirements for CO2 reduction and enables sustained electron supply kinetics. This work demonstrates how strategic integration of multifetal active centers with nanoengineered ferroelectrics can overcome fundamental limitations in solar fuel production, providing atomic-level insights for designing high-performance photocatalytic architectures.
﹀
|
参考文献: |
︿
[1] Xu S, Carter E A. Theoretical Insights into Heterogeneous (Photo)electrochemical CO2 Reduction [J]. Chem. Rev., 2019, 119(11): 6631-6669. [2] Dattila F, Seemakurthi R R, Zhou Y, et al. Modeling Operando Electrochemical CO2 Reduction [J]. Chem. Rev., 2022, 122(12): 11085-11130. [3] Ma Z, Wang Q, Liu L, et al. Low-coordination environment design of single Co atoms for efficient CO2 photoreduction [J]. Nano Res., 2023, 17(5): 3745-3751. [4] Dinh C T, Burdyny T, Kibria M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J]. Science, 2018, 360: 783-787. [5] 刘春晓. 面向电催化二氧化碳资源化的催化剂调控 [D]. 中国科学技术大学, 2022. [6] Cao Y, Guo L, Dan M, et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction [J]. Nat. Commun., 2021, 12(1): 1675. [7] Huang Q, Niu Q, Li X F, et al. Demystifying the roles of single metal site and cluster in CO2 reduction via light and electric dual-responsive polyoxometalate-based metal-organic frameworks [J]. Sci. Adv., 2022, 8: eadd5598. [8] 于洪鉴. 层状铋系铌酸盐纳米光催化材料制备及CO2还原性能研究 [D]. 中国地质大学(北京), 2021. [9] Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning [J]. Nature, 2020, 581: 178-183. [10] Ma J, Xiong X, Wu D, et al. Band Position-Independent Piezo-Electrocatalysis for Ultrahigh CO2 Conversion [J]. Adv. Mater., 2023, 35(21): e2300027. [11] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design [J]. Science, 2017, 355(6321): 146. [12] Albero J, Peng Y, M G E. Photocatalytic CO2 Reduction to C2+ Products [J]. ACS Catal., 2020, 10(10): 5734-5749. [13] Boonta W, Sangkhun W, Suppaso C, et al. Rhenium(I) Complex-Containing Amphiphilic Metallopolymer Stabilizing CdS Quantum Dots for Synergistically Boosting Photoreduction of CO2 [J]. ACS Catal., 2023, 13(18): 12391-12402. [14] Gao Y B, Zhang M M, Jin Y, et al. Construction of Dual Active Sites in Perovskite Oxide for Targeted Photocatalytic CO2 Reduction to CH4 [J]. ACS Catal., 2024, 14(14): 10746-10759. [15] Fang S Y, Rahaman M, Bharti J, et al. Photocatalytic CO2 reduction [J]. Nat. Rev. Methods Primers, 2023, 3(1). [16] Bonchio M, Bonin J, Ishitani O, et al. Best practices for experiments and reporting in photocatalytic CO2 reduction [J]. Nat. Catal., 2023, 6(8): 657-665. [17] 代孟. ZnIn2S4基催化剂的设计、构筑及其光催化活性研究 [D]. 山东大学, 2023. [18] Liu G, Zhong Y, Liu Z, et al. Solar-driven sugar production directly from CO2 via a customizable electrocatalytic-biocatalytic flow system [J]. Nat. Commun., 2024, 15(1): 2636. [19] Chen F, Huang H, Guo L, et al. The Role of Polarization in Photocatalysis [J]. Angew. Chem. Int. Ed., 2019, 58(30): 10061-10073. [20] Qian X, Yang W, Gao S, et al. Highly Selective, Defect-Induced Photocatalytic CO2 Reduction to Acetaldehyde by the Nb-Doped TiO2 Nanotube Array under Simulated Solar Illumination [J]. ACS Appl. Mater. Interfaces, 2020, 12(50): 55982-55993. [21] Wang Y, Chen E, Tang J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion [J]. ACS Catal., 2022, 12(12): 7300-7316. [22] Vu N N, Kaliaguine S, Do T O. Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlight-Driven Photocatalytic Reduction of CO2 into Fuels [J]. Adv. Funct. Mater., 2019, 29(31): 1901825. [23] Li D, Yang K, Lian J, et al. Powering the World with Solar Fuels from Photoelectrochemical CO2 Reduction: Basic Principles and Recent Advances [J]. Adv. Energy Mater., 2022, 12(31): 2201070. [24] Li X, Sun Y, Xu J, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers [J]. Nat. Energy, 2019, 4(8): 690-699. [25] Schreier M, Florent H, Steier L, et al. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO [J]. Nat. Energy, 2017, 2(7): 17087. [26] Song W, Chong K C, Qi G, et al. Unraveling the Transformation from Type-II to Z-Scheme in Perovskite-Based Heterostructures for Enhanced Photocatalytic CO2 Reduction [J]. J. Am. Chem. Soc., 2024, 146(5): 3303-3314. [27] Ma Y, Zhang Y, Xie G, et al. Isolated Cu Sites in CdS Hollow Nanocubes with Doping-Location-Dependent Performance for Photocatalytic CO2 Reduction [J]. ACS Catal., 2024, 14(3): 1468-1479. [28] Chen P, Dong X a, Huang M, et al. Rapid Self-Decomposition of g-C3N4 During Gas–Solid Photocatalytic CO2 Reduction and Its Effects on Performance Assessment [J]. ACS Catal., 2022, 12(8): 4560-4570. [29] Wang W, Deng C, Xie S, et al. Photocatalytic C-C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II) [J]. J. Am. Chem. Soc., 2021, 143(7): 2984-2993. [30] Chen R, Wang Q, Gao G, et al. Lanthanide–Titanium Oxo Cluster and BiVO4 Z-Scheme Photocatalyst Sheets for Carbon Dioxide Reduction [J]. ACS Catal., 2024, 14(16): 12234-12241. [31] Liu Y, Zhang M, Wang Z, et al. Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts [J]. Nat. Commun., 2022, 13(1): 4245. [32] Xu Q, Zhang L, Cheng B, et al. S-Scheme Heterojunction Photocatalyst [J]. Chem, 2020, 6(7): 1543-1559. [33] Cui Y, Briscoe J, Dunn S. Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3-Influence on the Carrier Separation and Stern Layer Formation [J]. Chem. Mater., 2013, 25(21): 4215-4223. [34] Ju L, Shang J, Tang X, et al. Tunable Photocatalytic Water Splitting by the Ferroelectric Switch in a 2D AgBiP2Se6 Monolayer [J]. J. Am. Chem. Soc., 2020, 142(3): 1492-1500. [35] Tu S, Zhang Y, Reshak A H, et al. Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15 [J]. Nano Energy, 2019, 56: 840-850. [36] Li S, Bai L, Ji N, et al. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6 [J]. J. Mater. Chem. A, 2020, 8(18): 9268-9277. [37] Kakekhani A, Sohrab I B. Polarization-driven catalysis via ferroelectric oxide surfaces [J]. Physical Chemistry Chemical Physics, 2016, 18(29): 19676-19695. [38] You H, Wu Z, Zhang L, et al. Harvesting the Vibration Energy of BiFeO3 Nanosheets for Hydrogen Evolution [J]. Angew. Chem. Int. Ed., 2019, 58(34): 11779-11784. [39] He J, Liu Y, Qu J, et al. Boosting Photocatalytic Water Oxidation on Photocatalysts with Ferroelectric Single Domains [J]. Adv. Mater., 2023, 35(14): e2210374. [40] Li S, Zhang J, Zhang B P., et al. Manipulation of charge transfer in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes [J]. Nano Energy, 2017, 35: 92-100. [41] Deng X, Chen P, Cui R, et al. Local charge rectification and electronic interactions in ZnIn2S4-x-Bi2MoO6-x heterojunction for enhancing synergistic piezo-photocatalytic hydrogen evolution and benzylamine oxidation [J]. Nano Energy, 2024, 126: 109657. [42] Xie Z, Cui Z, Shi J, et al. Enhancing photoelectrochemical performance of the Bi2MoO6 photoanode by ferroelectric polarization regulation [J]. Nanoscale, 2020, 12(35): 18446-18454. [43] Wei Y Z, Wang J Y, Yu R B, et al. Constructing SrTiO3-TiO2 Heterogeneous Hollow Multi-shelled Structures for Enhanced Solar Water Splitting [J]. Angew. Chem. Int. Ed., 2019, 58(5): 1422-1426. [44] Chao C, Ren Z, Zhu Y, et al. Self-Templated Synthesis of Single-Crystal and Single-Domain Ferroelectric Nanoplates [J]. Angew. Chem. Int. Ed., 2012, 51(37): 9283-9287. [45] Zhen C, Yu J C, Liu G, et al. Selective deposition of redox co-catalyst(s) to improve the photocatalytic activity of single-domain ferroelectric PbTiO3 nanoplates [J]. Chemical Communications, 2014, 50(72): 10416-10419. [46] Purnawan C, Wibowo A H, Wahyuningsih S, et al. Photodegradation of sodium dodecyl sulfate and sodium dodecylbenzene sulfonate with hydrothermally synthesized PbTiO3 catalyst [J]. Groundwater for Sustainable Development, 2023, 21: 100909. [47] Damodaran A R, Liang C W, He Q, et al. Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly Strained BiFeO3 Thin Films [J]. Adv. Mater., 2011, 23(28): 3170-3175. [48] Catalan G, Scott J F. Physics and Applications of Bismuth Ferrite [J]. Adv. Mater., 2009, 21(24): 2463-2485. [49] Jang H W, Baek S H, Ortiz D, et al. Strain-Induced Polarization Rotation in Epitaxial (001) BiFeO3 Thin Films [J]. Phys. Rev. Lett., 2008, 101(10): 107602. [50] Wu J, Fan Z, Xiao D, et al. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures [J]. Prog. Mater. Sci., 2016, 84: 335-402. [51] Liu Y, Wang Y, Ma J, et al. Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering [J]. Prog. Mater. Sci., 2022, 127: 100943. [52] Amdouni W, Fricaudet M, Otonicar M, et al. BiFeO3 Nanoparticles: The "Holy-Grail" of Piezo-Photocatalysts? [J]. Adv. Mater., 2023, 35(31): e2301841. [53] Djatoubai E, Khan M S, Haq S U, et al. BiFeO3-Based All Perovskite Oxides Direct Z-Scheme Heterostructure for Efficient Oxygen Evolution [J]. ACS Appl. Energy Mater., 2023, 6(11): 5653-5661. [54] Humayun M, Zada A, Li Z, et al. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism [J]. Appl. Catal. B, 2016, 180: 219-226. [55] Prasad N P, Rohnke M, Verheijen M A, et al. Role of Excess Bi on the Properties and Performance of BiFeO3 Thin-Film Photocathodes [J]. ACS Appl. Energy Mater., 2023, 6(24): 12237-12248. [56] 司云晖. 水热法制备铁酸铋复合材料及其光催化性能研究 [D]. 深圳大学, 2019. [57] Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity [J]. Nature, 2020, 581: 411-414. [58] Zhou Y, Zhang X, Sheng G, et al. A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis [J]. Nat. Commun., 2023, 14(1): 5831. [59] Wu X, Zhang H, Dong J, et al. Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution [J]. Nano Energy, 2018, 45: 109-117. [60] Pan F, Fang L, Li B, et al. N and OH-Immobilized Cu3 Clusters In Situ Reconstructed from Single-Metal Sites for Efficient CO2 Electromethanation in Bicontinuous Mesochannels [J]. J. Am. Chem. Soc., 2024, 146(2): 1423-1434. [61] Wang L, Niu C G, Wang Y, et al. The synthesis of Ag/AgCl/BiFeO3 photocatalyst with enhanced visible photocatalytic activity [J]. Ceram. Int., 2016, 42(16): 18605-18611. [62] Shah J H, Huang B, Idris A M, et al. Regulation of Ferroelectric Polarization to Achieve Efficient Charge Separation and Transfer in Particulate RuO2/BiFeO3 for High Photocatalytic Water Oxidation Activity [J]. Small, 2020, 16(44): e2003361. [63] Zhai L, She X, Zhuang L, et al. Modulating Built-In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution Reaction in Neutral Media [J]. Angew. Chem. Int. Ed., 2022, 61(14): e202116057. [64] Yan T, Li N, Wang L, et al. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation [J]. Nat. Commun., 2020, 11: 6095. [65] Verma P, Singh A, Rahimi F A, et al. Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel [J]. Nat. Commun., 2021, 12: 7313. [66] Liu X L, Zhang Q Z, Ma D L. Advances in 2D/2D Z‐Scheme Heterojunctions for Photocatalytic Applications [J]. Sol.RRL, 2020, 5(2): 2000397. [67] Yu H J, Ji Y Y, Zhang Y, et al. Coupling Enhanced Piezo-Photocatalysis on Robust Intergrowth Ferroelectric SrBi8Ti7O27 Nanosheets [J]. ACS Sustainable Chemistry & Engineering, 2024, 12(26): 9947-9956. [68] Yu H, Chen F, Li X, et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction [J]. Nat. Commun., 2021, 12: 4594. [69] Niu F, Chen D, Qin L S, et al. Synthesis of Pt/BiFeO3 heterostructured photocatalysts for highly efcient visible-light photocatalytic performances [J]. Solar Energy Materials & Solar Cells, 2015, 143: 386-396. [70] Lu H, Du Z, Wang J, et al. Enhanced photocatalytic performance of Ag-decorated BiFeO3 in visible light region [J]. J. Sol-Gel Sci. Technol., 2015, 76(1): 50-57. [71] Zoric M R, Basera P, Palmer L D, et al. Oxidizing Role of Cu Cocatalysts in Unassisted Photocatalytic CO2 Reduction Using p-GaN/Al2O3/Au/Cu Heterostructures [J]. ACS Nano, 2024, 18(30): 19538-19548. [72] Zhao Y, Wang S, Ding Y, et al. Piezotronic Effect-Augmented Cu2-xO-BaTiO3 Sonosensitizers for Multifunctional Cancer Dynamic Therapy [J]. ACS Nano, 2022, 16(6): 9304-9316. [73] Zang W, Lee J, Tieu P, et al. Distribution of Pt single atom coordination environments on anatase TiO2 supports controls reactivity [J]. Nat. Commun., 2024, 15: 998. [74] Ma D, Zhi C, Zhang Y, et al. A Review on the Influence of Crystal Facets on the Product Selectivity of CO2RR over Cu Metal Catalysts [J]. ACS Nano, 2024, 18(33): 21714-21746. [75] Wang Q, Li L, Liu R, et al. An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4 [J]. Adv. Funct. Mater., 2024, 34(48): 2408420. [76] Kumar A, Sharma G, Naushad M, et al. Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO [J]. Chem. Eng. J., 2019, 370: 148-165. [77] Pan D, Lu Y, Idris A M, et al. Enhancing photocatalytic CO2 reduction via a single-domain ferroelectric Z-scheme heterojunction of BiFeO3/CsPbBr3 inducing dual built-in electric fields [J]. J. Mater. Chem. A, 2024, 12(17): 10461-10471. [78] Xu Q, Wang L, Sheng X, et al. Understanding the synergistic mechanism of single atom Co-modified perovskite oxide for piezo-photocatalytic CO2 reduction [J]. Appl. Catal. B, 2023, 338: 123058. [79] Xu Q, Jiang J, Sheng X, et al. Understanding the synergistic effect of piezoelectric polarization and the extra electrons contributed by oxygen vacancies on an efficient piezo-photocatalysis CO2 reduction [J]. Inorg. Chem. Front., 2023, 10(10): 2939-2950. [80] He J, Wang X D, Lan S Y, et al. Breaking the intrinsic activity barriers of perovskite oxides photocatalysts for catalytic CO2 reduction via piezoelectric polarization [J]. Appl. Catal. B, 2022, 317: 121747. [81] Liu Y, Ye S, Xie H, et al. Internal-Field-Enhanced Charge Separation in a Single-Domain Ferroelectric PbTiO3 Photocatalyst [J]. Adv. Mater., 2020, 32(7): e1906513. [82] Yu J, Huang L, Tang Q, et al. Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water [J]. Nat. Catal., 2023, 6(6): 464-475. [83] Zhou P, Zhang Q, Xu Z, et al. Atomically Dispersed Co-P3 on CdS Nanorods with Electron-Rich Feature Boosts Photocatalysis [J]. Adv. Mater., 2020, 32(7): e1904249. [84] Zhang X, Liu T, Zhao F, et al. In-situ-formed Cd and Ag2S decorated CdS photocatalyst with boosted charge carrier spatial separation for enhancing UV-vis-NIR photocatalytic hydrogen evolution [J]. Appl. Catal. B, 2021, 298. [85] Li X, Li L, Chen G, et al. Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light [J]. Nat. Commun., 2023, 14(1): 4034. [86] 朱静娴. 立方/六方相硫化镉纳米材料的制备及其光催化性能的研究 [D]. 北京工业大学, 2020. [87] 操亨. 高选择性二氧化碳还原光催化剂活性位点调控及其同步辐射谱学研究 [D]. 中国科学技术大学, 2023. [88] Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions [J]. Chem. Rev., 2023, 123(9): 5859-5947. [89] Gu J, Hsu C S, Bai L C, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO [J]. Science, 2019, 364: 1091-1094. [90] Parastaev A, Muravev V, Huertas Osta E, et al. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts [J]. Nat. Catal., 2020, 3(6): 526-533. [91] Shi H, Liang Y, Hou J, et al. Boosting Solar-Driven CO2 Conversion to Ethanol via Single-Atom Catalyst with Defected Low-Coordination Cu-N2 Motif [J]. Angew. Chem. Int. Ed., 2024, 63(31): e202404884. [92] Zhang H, Wang Y, Zuo S, et al. Isolated Cobalt Centers on W18O49 Nanowires Perform as a Reaction Switch for Efficient CO2 Photoreduction [J]. J. Am. Chem. Soc., 2021, 143(5): 2173-2177. [93] Mao Y, Zhang M, Si S, et al. Electronic Structure Manipulation via Site-Selective Atomically Dispersed Ni for Efficient Photocatalytic CO2 Reduction [J]. ACS Catal., 2023, 13(13): 8362-8371. [94] Zeng Z, Kuspert S, Balaghi S E, et al. Ultrahigh Mass Activity Pt Entities Consisting of Pt Single atoms, Clusters, and Nanoparticles for Improved Hydrogen Evolution Reaction [J]. Small, 2023, 19(29): 2205885. [95] Gu J, Jian M, Huang L, et al. Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations [J]. Nat. Nanotechnol., 2021, 16(10): 1141-1149. [96] 万格灯. 基于铁电单畴钛酸铅高效光催化分解水的体系构筑 [D]. 中国科学技术大学, 2022. [97] Zhang Y, Johannessen B, Zhang P, et al. Reversed Electron Transfer in Dual Single Atom Catalyst for Boosted Photoreduction of CO2 [J]. Adv. Mater., 2023, 35(44): e2306923. [98] Giannakakis G, Kress P, Duanmu K, et al. Mechanistic and Electronic Insights into a Working NiAu Single-Atom Alloy Ethanol Dehydrogenation Catalyst [J]. J. Am. Chem. Soc., 2021, 143(51): 21567-21579. [99] 李昭. 铁/镍单原子催化剂设计与电催化CO2还原机理研究 [D]. 电子科技大学, 2023. [100] 李威. 介孔铋基氧化物材料的设计合成与光催化性能研究 [D]. 吉林大学, 2023.
﹀
|
中图分类号: |
TB34
|
开放日期: |
2025-06-18
|