- 无标题文档
查看论文信息

论文中文题名:

 煤矿用输送带热解过程HCl生成规律    

姓名:

 刘茂霞    

学号:

 21220226138    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 灾害应急救援    

第一导师姓名:

 张铎    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-06-03    

论文外文题名:

 HCl generation law in pyrolysis process of coal mine conveyor belt    

论文中文关键词:

 煤矿用输送带 ; 热解特性 ; 动力学 ; 热解产物 ; HCl气体    

论文外文关键词:

 Conveyor belt for coal mine ; Pyrolysis reaction ; HCl gas ; Molecular dynamics    

论文中文摘要:

输送带作为重要的运输设备已广泛应用到煤矿行业。由于井下环境恶劣,经常出现滚筒打滑、托辊卡死或电气故障等情况,引燃煤矿用输送带发生火灾。一旦发生输送带火灾,其火焰沿运输巷道快速传播,引燃井下煤、瓦斯、电器等可燃物,进而可能发生爆炸,扩大火灾规模,同时释放大量有毒害性的HCl气体。因此,开展输送带热解过程特征气体HCl生成机理的研究具有重要的理论价值和实际意义。本文针对输送带的热解特性,运用实验与模拟相结合的方法,对煤矿用PVG、PVC两种阻燃输送带热动力学特性、热裂解产物及HCl的生成机理进行研究,HCl的生成规律可为输送带火灾防控提供参考依据,研究成果对进一步掌握输送带火灾过程有着重要的指导意义。

采用TG-DSC-FTIR-MS联用实验,根据不同升温速率条件下输送带质量损失变化规律,分析输送带在热解过程中的特征温度及反应阶段;基于等转化率法和Malek法,求解得到输送带热解反应过程中的动力学参数和反应动力学机理。研究表明,输送带的热解反应过程中出现7个特征温度T1-T7,呈现出一期三阶段,分别为摩擦生热期、第一阶段-受热/分解阶段、第二阶段-热解/燃烧阶段、第三阶段-燃尽阶段。活化能呈现出随着转化率上升不断增大的趋势,第三阶段远大于第一阶段。不同升温速率导致活化能和指前因子存在着动力学补偿效应,两者呈现正相关关系。

运用Py-GC/MS联合技术,分析输送带在不同阶段下的官能团分布特征、热裂解产物、含氯化合物及生成HCl的阶段性演变规律。结果表明,输送带热解中生成HCl的过程由多个官能团共同参与反应;PVG型输送带的裂解产物的产量大小主要为苯甲酸类>芳香烃类>酰胺类>脂肪烃类>芳香酯类>酮类,PVC型输送带裂解产物的产量大小为酰胺类>苯甲酸类>芳香烃类>脂肪烃类>酮类;基于热裂解产物分布,探究含氯化合物主要分布在芳香酯类、磷酸酯类、脂肪类;伴随着含氯化合物的生成,热解生成HCl气体的变化呈现阶段性演变规律。

通过Materials Studio软件对输送带热解过程进行分子动力学模拟,结合实验结果进行分析,发现热解反应中HCl的生成机理主要分为三部分:第一阶段为PVC组分发生脱氯化氢反应,脱除H·、Cl·、HCl和共轭多烯等脂肪烃,Cl·与脂肪烃、苯甲酸类组成氯代化合物;第二阶段输送带受热脱离出来的磷酸三(2-氯乙基)酯与PVC继续解聚断键脱氯,生成少量的HCl和烯烃。同时,共轭多烯芳构化与交联、分子内环化组成芳香烃,苯等芳烃发生傅克烷基化反应合成苯甲酸,发生取代反应,生成大量的氯代化合物;第三阶段少量的PVC继续分解,芳香族化合物结构重排、脱苯环和同分异构化等反应分解为一些小分子化合物。其中,PVC型输送带相对于PVG型输送带的含氯量更大,HCl气体产率更大,火灾危害性更高。

论文外文摘要:

As an essential transportation medium, conveyor belt has been widely employed in the coal mine sector. Due to the hostile subterranean environment, it is common for the drum to slip, the rollers to jam, or the electrical system to fail, causing the coal mine conveyor belt to ignite and a fire to ensue. Once a conveyor belt fire occurs, its flame spreads rapidly along the transportation tunnel, igniting underground coal, gas, electrical appliances and other combustibles, which in turn may explode and expand the scale of the fire, while releasing a large amount of toxic HCl gas. Therefore, it is of great theoretical value and practical significance to carry out research on the mechanism of HCl generation in conveyor belt combustion. This research investigates the thermodynamic properties, thermal cracking products, and HCl production mechanism of PVG and PVC flame retardant conveyor belts for coal mines using experiments and simulations. Conveyor belt fires may be predicted using the HCl formation rule. The research findings have crucial implications for further understanding the fire process of conveyor belts.

In this paper, TG-DSC-FTIR-MS coupling experiments are used to analyze the characteristic temperatures and reaction stages of the conveyor belt in the combustion process according to the changing law of conveyor belt mass loss under the conditions of different heating rates. Based on multiple isoconversion rate methods and Malek's method, the kinetic parameters and reaction kinetic mechanism during the conveyor belt combustion reaction were solved and obtained. It was shown that seven characteristic temperatures T1-T7 and four stages occur during the combustion reaction of the conveyor belt. These are the friction heat generation phase, the first stage-heat/decomposition phase, the second stage-pyrolysis/combustion phase, and the third stage-burnout phase. The activation energy shows a tendency to increase with the increase of conversion rate, and the third stage is much larger than the first stage. Different warming rates resulted in a kinetic compensation effect between the activation energy and the pre-finger factor, which showed a positive correlation.

The distribution features of functional groups, thermal cracking products, compounds containing chlorine, and the conveyor belt's stage-by-stage evolution patterns were all analyzed using the combined Py-GC/MS approach at various phases. The results show that the conveyor belt combustion process consists of several functional groups participating in the reaction together. The pyrolysis products of PVG conveyor belt are mainly benzoic acids > aromatic hydrocarbons > amides > aliphatic hydrocarbons > aromatic esters > ketones. Amides > benzoic acids > aromatic hydrocarbons > aliphatic hydrocarbons > ketones are the breakdown products of PVC conveyor belts. Based on the distribution of pyrolysis products, it was found that chlorine-containing compounds were mainly distributed in aromatic esters, phosphate esters and fats. Accompanied by the production of chlorine-containing compounds, the HCl gas changes show a staged evolutionary pattern.

Molecular dynamics simulation of conveyor belt pyrolysis process by Materials Studio software. Analyzing the results of the experiments, it is found that the mechanism of HCl generation in the combustion reaction is divided into three main parts. The first stage is the PVC component of the dehydrogen chloride reaction to remove H·, Cl·, HCl and conjugated polyenes and other aliphatic hydrocarbons, Cl· and aliphatic hydrocarbons, benzoic acid composition of chlorinated compounds. At the same time, conjugated polyene aromatization and cross-linking, intramolecular cyclization of aromatic hydrocarbons, benzene and other aromatic hydrocarbons Friedel-Crafts alkylation reaction to synthesize benzoic acid, substitution reaction, to generate a large number of chlorinated compounds. In the third stage, structural rearrangement, debenzolization, and isomerization break down aromatic molecules into a few small molecular compounds while a tiny amount of PVC still breaks down. Compared to PVG type conveyor belt, PVC type conveyor belt has a higher fire hazard, higher HCl gas output, and a higher chlorine content.

参考文献:

[1] 任喜洋,邓锋,高兵,等.推动能源资源结构向绿色低碳转型[J].中国国土资源经济,2021,34(12):48-54+76.

[2] 国家统计局.中华人民共和国2023年国民经济和社会发展统计公报[N].人民日报,2024-03-01(010).

[3] Xu J, Zhou M, Li H. The drag effect of coal consumption on economic growth in China during 1953-2013 [J]. Resources, Conservation and Recycling, 2018, 129: 326-332.

[4] Hao Y, Liu Y, Weng JH, et al. Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis [J]. Energy, 2016, 114: 1214-1223.

[5] Hao Y, Zhang ZY, Liao H, et al. China’s farewell to coal: a forecast of coal consumption through 2020 [J]. Energy Policy, 2015, 86: 444-455.

[6] 张睿.矿井火灾灾变时期风流控制技术研究[D].山东科技大学,2011.

[7] 郑宝莲.煤矿外因火灾的原因及其防控[J].科技创新导报,2017,14(02):55+57.

[8] 葛世荣,胡而已,裴文良,等.煤矿机器人体系及关键技术[J].煤炭学报,2020,45(01):455-463.

[9] 王德明.煤矿热动力灾害及特性[J].煤炭学报,2018,43(1):137-142.

[10] 赵志强.矿用带式输送机的使用及故障分析[J].当代化工研究,2019(12):17-18.

[11] Zhang SZ, Cheng WM, Li QJ. Simulation and analysis of airflow stability during fire in mine belt roadway[J]. Journal of Coal Science and Engineering, 2010,16(4):375-380.

[12] 黑龙江龙煤集团鸡西杏花煤矿“11·20”井下火灾事故抢险救援纪实[J].中国应急管理,2015(11):56.

[13] 重庆松藻煤矿“9·27”重大火灾事故 37 名公职人员被追责问责[J].消防界(电子版),2021,7(7):44.

[14] 贾永胜. 医疗废物热解脱氯机制及两级焚烧二噁英控制研究[D].华中科技大学,2022.

[15] Ma Y, He Y, Yu X, et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork[J]. Sensors and Actuators: B. Chemical, 2016, 233: 388-393.

[16] Chen X, Hu H, Xia Z, et al. CsPbBr 3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection[J]. Journal of Materials Chemistry C, 2017, 5(2): 309-313.

[17] 束小文,张玉钧,阚瑞峰等.基于TDLAS技术的HCl气体在线探测温度补偿方法研究[J].光谱学与光谱分析,2010,30(05):1352-1356.

[18] 唐岩辉,董可海,张春龙等.基于电化学传感器的复合固体推进剂健康状态监测研究[J].舰船电子工程,2018,38(01):112-114+124.

[19] 李宇.基于石英探测光谱技术的甲烷和氯化氢痕量气体检测研究[D].哈尔滨工业大学,2022.

[20] 朱润江.浅谈钢丝绳芯阻燃输送带下井前的检测工作[J].中小企业管理与科技,2014(01):151-152.

[21] 武斌.基于物联网的胶带输送机状态监测及寿命管理系统开发[D].太原理工大学,2016.

[22] 刘晶晶.我国能源格局:二十年内仍将以煤炭为主[J].资源导刊,2014,(9):14-15.

[23] 苏墨.矿井胶带火灾灾变规律数值模拟及自动灭火系统设计研究[D].太原理工大学,2017.

[24] NFPA264, standard method of test for heat and visible smoke release rates for material and produces using an oxygen consumption calorimeter [S]. American National Fire Protection Association, 1992.

[25] Truwin W. Use of digital computers for the study of non-steady states and automatic control problems in mine ventilation networks[J]. International Journal of Rock Mechanics and Mining Sciences, Geomechanics Abstracts, 1972, 9(02):289-323.

[26] Litton C, Perera I. Evaluation of criteria for the detection of fires in underground conveyor belt haulageways [J]. Fire safety journal, 2012, 51: 110-119.

[27] Weyrich M, Wang Y, Winkel J, et al. High speed vision based automatic inspection and path planning for processing conveyed objects[J]. Procedia CIRP, 2012, 3: 442-447.

[28] Rowland J H, Smith A C. Flammability of wider conveyor belts using large-scale fire tests[J]. Transactions of Society for Mining,Metallurgy, and Exploration, 2011, 330: 345-349.

[29] Yuan L, Smith A C. Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel. Process Safety and Environmental Protection, 2015, 95: 93-101.

[30] Yuan L, Mainiero R J, Rowland J H, et al. Numerical and experimental study on flame spread over conveyor belts in a large-scale tunnel[J]. Journal of Loss Prevention in the Process Industries, 2014, 30: 55-62.

[31] Barros-Daza MJ, Luxbacher KD, Lattimer BY, et al. Mine conveyor belt fire classification[J]. Journal of Fire Sciences, 2022;40(1):44-69.

[32] 煤科总院重庆分院灾变通风课题组.巷道火灾时期的通风状态[J].煤炭工程师, 1992(4):1-8.

[33] 蒋时才.矿用运输胶带摩擦升温及其火灾气体发生规律的研究[J].煤矿安全,1990(06):12-18.

[34] 王志刚.胶带输送机火灾发展规律[J].煤矿安全,1998(04):45-47.

[35] 蒋军成,王省身.矿井竖巷内火灾燃烧模拟实验研究[J].火灾科学,1997,6(2):55-59.

[36] 沈云鸽,王德明.基于FDS的矿井巷道火灾烟气致灾的数值模拟[J].煤矿安全,2020,51(02):183-187.

[37] 苏墨,王飞.矿井胶带火灾模拟与逃生影响因素分析研究[J].中国矿业,2017,26(07):168-172.

[38] 郝海清,王凯,张春玉,等.矿井皮带巷火灾风烟流场-区-网演化与调控规律[J].中国矿业大学学报,2021,50(04):716-724.

[39] 邓军,李士戎,炎正馨,等.基于移动火源的隧道拱顶温度分布规律实验研究[J].煤炭学报,2013,38(11):1967-1971.

[40] 涂冲.可燃及有毒气体报警器的选型及应用[J].中国仪器仪表,2022(03):37-40.

[41] 王烨.矿井胶带火灾烟流蔓延特性与监测方法研究[D].西安科技大学,2021.

[42] 白光星,陈炜乐,孙勇,等.煤矿带式输送机运输火灾风险智能监测与早期预警技术研究进展[J].煤矿安全,2022,53(09):47-54.

[43] 肖国强,张鹏宇,马砺,等.矿用胶带火灾燃烧特性预测模型[J].湖南科技大学学报(自然科学版),2021,36(03):9-15.

[44] Quan Y, Zhang Z, Tanchak RN, et al. A review on cone calorimeter for assessment of flame-retarded polymer composites[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147: 10209-10234.

[45] 范韫,胡连桃,邓建.矿井运输胶带热解动力特性的实验研究[J].中国矿业大学学报,1998(03):73-75.

[46] Song ZC. Experimental study of kinetic properties of pyrolysis for conveyor belt in coal mine [J]. Journal of China University of Mining and Technology, 2005, 15(4): 314-316.

[47] 毕松梅,刘焕章,谢艳霞,等.叠层阻燃输送带用高效弹性体阻燃配方及机理研究[J].塑料工业,2014,42(05):77-82.

[48] Wang WF, Liu HF, Yang B, et al. Pyrolysis characteristics and dynamics analysis of a coal mine roadway conveyor belt[J]. Journal of Thermal Analysis and Calorimetry, 2022,148:4823-4832.

[49] 张铎,刘茂霞,呼少平,等.煤矿运输胶带热解动力学参数研究[J].矿业安全与环保,2023,50(02):52-58.

[50] Zhang D, Liu M, Wen H, et al. Use of coupled TG-FTIR and Py-GC/MS to study combustion characteristics of conveyor belts in coal mines[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(11): 4779-4789.

[51] Zhang D, Liu M, Wen H, et al. Study on the characteristics of gas phase products in coal mine conveyor belt fire[J]. Thermochimica Acta, 2024(733):179677.

[52] 王伟.煤矿输送带热解及燃烧特性研究[D].煤炭科学研究总院,2023.

[53] Marcilla A, Beltran M. Thermogravimetric kinetic study of poly (vinly chloride) pyrolysis[J]. Polymer Degradation and Stability,1995,48:219-229.

[54] Miranda R, Pakdel H, Roy C, et al. Vacuum pyrolysis of PVC: product analysis[J]. Polymer Degradation and Stability, 1999, 66(1):107-125.

[55] Budrugeac P, Segal E, Perez-Maqueda LA, et al. The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data[J]. Polymer Degradation and Stability, 2004, 84:311-320.

[56] Miranda R, Yang J, Roy C, et al. Vacuum pyrolysis of PVC I. Kinetic study[J]. Polymer Degradation and Stability, 1999, 64:127-144.

[57] 孙庆雷,时新刚,林云良,等.聚氯乙烯的热解特性和热解动力学研究,燃料化学学报,2007, 35: 497-500.

[58] 郑学刚,唐黎华,俞丰,等.PVC的热失重和热解动力学,华东理工大学学报,2003,29:346-350.

[59] 沈吉敏,解强,张宪生,等.聚氯乙稀在热处理过程中氯释放特性的研究[J].中国矿业大学学报,2003(06):121-125.

[60] Cao Q, Yuan G, Yin L, et al. Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: Influence of PVC content and heating rate[J]. Waste Management, 2016, 58:241-249.

[61] 田中训,刘伟军.聚氯乙烯废弃物的热解特性与处理[J].塑料,2022,51(01):121-126+130.

[62] 潘贵英,黄金保,程小彩,等.聚氯乙烯热降解机理的理论研究[J].分子科学学报,2019,35(01):29-40.

[63] Jing P, Hong J, Tai PQ, et al. Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes-ScienceDirect [J]. Chemosphere, 2021, 284(12): 131348.

[64] 杨明辉,陈祎,刘金和,等.PVC热解特性及Cl的析出过程研究[J].工业加热,2020,49(05):44-47.

[65] 万留杰,王卫东,李康.PVC热解特性研究[J].河南工学院学报,2022,30(03):25-29.

[66] Zhou J, Liu G, Wang S, et al. TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC[J]. Journal of the Energy Institute, 2020, 93(6): 2362-2370.

[67] Zhou L, Luo T, Huang Q. Co-pyrolysis characteristics and kinetics of coal and plastic blends[J]. Enemy Conversion and Manage, 2009, 50:705-710.

[68] Miandad R, Barakat MA, A buriazaiza AS, et al. Catalytic is pyrolysis of plastic waste: A Review[J]. Process Saf Environ Prot, 2016, 102: 822-838.

[69] 《材料科学技术百科全书》编辑委,材料科学技术百科全书[M].中国大百科全书出版社,1995.

[70] Xu F, Wang B, Yang D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis[J]. Energy Conversion and Management, 2018, 171: 1106-1115.

[71] Al-Sayegh WA, Aljumaiah O, Andrews GE, et al. PVC cable fire toxicity using the cone calorimeter[C]//Fire Science and Technology 2015: The Proceedings of 10th Asia-Oceania Symposium on Fire Science and Technology[J]. Springer Singapore, 2017: 175-182.

[72] Wu J, Chen T, Luo X, et al. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS[J]. Waste management, 2014, 34(3): 676-682.

[73] Wang Q, Zhang J, Wang G, et al. Thermal and kinetic analysis of coal with different waste plastics (PVC) in cocombustion [J]. Energy fuels, 2018, 32(2): 2145-2155.

[74] Yin F, Zhuang Q, Chang T, et al. Study on pyrolysis characteristics and kinetics of mixed plastic waste[J]. Journal of Material Cycles and Waste Management, 2021, 23: 1984-1994.

[75] Zheng X, Cai G, Guo J, et al. Combustion characteristics and thermal decomposition mechanism of the flame-retardant cable in urban utility tunnel[J]. Case Studies in Thermal Engineering, 2023, 44: 102887.

[76] Wang Z, Wang J. Comparative thermal decomposition characteristics and fire behaviors of commercial cables[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144: 1209-1218.

[77] 杨娟,薄海波,王作栋等.热裂解-气相色谱/质谱法分析塑胶跑道面层的热裂解产物[J].塑料科技,2018,46(11):93-97.

[78] Ahmad Z, Al-Sagheer F, Al-Awadi NA. Pyro-GC/MS and thermal degradation studies in polystyrene-poly (vinyl chloride) blends[J]. J Anal Appl Pyrol, 2009, 87(1):99-107

[79] Yuan ZL, Zhang J, Zhao PT. Synergistic effect and chlorine-release behaviors during co-pyrolysis of LLDPE, PP, and PVC[J]. ACS Omega,2020, 5(20):11291-11298

[80] 应急管理部关于修改《煤矿安全规程》的决定[J].中华人民共和国国务院公报,2022,1765(10):52-57.

[81] MT 914-2019, 煤矿用织物整芯阻燃输送带[S].

[82] Das P, Tiwari P. Thermal degradation kinetics of plastics and model selection [J]. Thermochim Acts, 2017, 654: 191-242.

[83] Aboulkas A, Harfi K, Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part 1: Pyrolysis kinetics and mechanisms [J]. Energ Convers Manage, 2010,51(7):1363-1369.

[84] Oluwoye, Altarawnth M, Gore J, et al. Oxidation of crystalline polyethylene [J] Combustion and Flame, 2015,162(10):3681-3690.

[85] Chen RY, Lu SX, Zhang Y, et. Al.Pyrolysis study of waste cable hose with thermogravimetry/Fourier transform infrared/mass spectrometry analysis [J]. Energy Conversion and Management, 2017, 153:83-92.

[86] 胡荣祖,史启祯.热分析动力学[M].科学出版社,2008.

[87] Xu L, Jung Y, Wang L. Thermal decomposition of rape: Pyrolysis modeling and kinetic study via particle swarm optimization[J]. Energ Convers Manage, 2017, 146:124-133.

[88] 王志.线缆绝缘材料热解特性与线缆燃烧及火蔓延行为研究[D].中国科学技术大学,2020.

[89] Oday HA, Mohammednoor A, Ding ZT,et al. Reactions of products from thermal degradation of PVC with nanoclusters of a-Fe203 (hematite) [J]. Chemical Engineering Journal, 2017, 323:396-405.

[90] Lopez A, De Marco I, Caballero BM, et al. Dechlorination of fuels of PVC containing plastic wastes[J]. Fuel Processing Technology, 2011,92(2):253-260.

[91] 张舒雯,王亚思,刘慧利,等.TG−FTIR−MS和TG−GC/MS联用研究地沟油的热裂解特性[J].中南大学学报(自然科学版),2021,52(4):1297-1306.

[92] Cheng ZY, Ji X, Li SY, et al. Thermodynamics calculation of the pyrolysis of vegetableoils [J]. Energy Sources, 2004, 26(9): 849-856.

[93] 翁诗甫,徐怡庄. 傅里叶变换红外光谱分析(第三版)[M].化学工业出版社,2016.

[94] Maruyama F, Fujimaki S, Sakamoto Y, et al. Screening of Phthalates in Polymer Materials by Pyrolysis GC/MS[J]. Analytical Sciences, 2015, 31: 3-5.

[95] Zhu XF, Deng SF, Fang Y, et al. Dehalococcoides-Containing Enrichment Cultures Transform Two Chlorinated Organophosphate Esters[J]. Environmental Science and Technology, 2022,56 (3): 1951-1962.

[96] 任浩华,王帅,王芳杰,等.PVC热解过程中HCl的生成及其影响因素[J].中国环境科学,2015,35(08):2460-2469.

[97] 陈梅,蒋小良.GC-MS法测定电子电气塑料产品中的磷酸三(2-氯乙基)酯[J].塑料科技,2013,41(11):85-89.

[98] Gui B, Qiao Y, Wan D, et al. Nascent tar formation during poly vinyl chloride (PVC) pyrolysis [J]. Proceedings of the Combustion Institute, 2013,34:2321-2329.

[99] Jarvis MW, Daily JW, Carstensen HH, et al. Direct Detection of Products from the Pyrolysis of 2-Phenethyl Phenyl Ether [J]. Journal of Physical Chemistry, 2011,115(4):428-438.

[100] Yu, S. Chu, R. Li, X. et al. Combined ReaxFF and Ab Initio MD Simulations of Brown Coal Oxidation and Coal–Water Interactions. Entropy 2022, 24(1):71.

[101] Nishino H, Kanamori K, Okada K, et al. Fracture behavior of an alumina/epoxy resin interface and effect of water molecules by using molecular dynamics with reaction force field (ReaxFF)[J]. International Journal of Adhesion and Adhesives, 2022, 119: 103251

[102] Van Duin ACT, Dasgupta S, Lorant F. ReaxFF: A Reactive Force Field for Hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105: 9396-9409.

[103] Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: Development, applications and future directions[J]. NPJ Comput. Mater. 2016,2:1-14.

[104] Zhang L, van Duin ACT, Zybin SV, et al. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field[J]. Journal of Physical Chemistry B, 2009, 113:10770-10778.

[105] Chenoweth K, van Duin ACT, Goddard, W.A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. Journal of Physical Chemistry A, 2008, 112: 1040-1053.

[106] Goverapet Srinivasan S, van Duin ACT, Ganesh, P. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene[J]. Journal of Physical Chemistry A, 2015, 119: 571-580.

[107] 欧阳容百.热力学与统计物理[M].北京:科学出版社,2007.

[108] 杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006.

[109] 钟浩文.丁苯橡胶与天然橡胶共热解气相产物生成机理研究[D].青岛大学,2021.

[110] 吕维扬,刘志阳,官军等.基于再生对苯二甲酸二甲酯制备阻燃聚酯纤维[J/OL].高分子材料科学与工程:1-15[2024-03-22].

[111] Liu Y, Ding J, Han K. Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane[J]. Fuel, 2018, 217:185-192.

[112] Zheng M, Wang Z, Li X, et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics[J]. Fuel, 2016, 177(AUG):130-141.

[113] McNeill IC, Memetea L, Cole WJ. A study of the products of PVC thermal degradation[J]. Polym. Degrad. Stabil,1995,49:181-191.

[114] Jordan K, Suib S, Koberstein J, Determination of the degradation mechanism from the kinetic parameters of dehydrochlorinated poly (vinyl chloride) decomposition[J]. Journal of Physical Chemistry B, 2001, 105: 3174-3181.

中图分类号:

 TD752.3    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式