论文中文题名: |
太阳能及热泵型闭式转轮除湿空调系统性能研究
|
姓名: |
石全成
|
学号: |
20203053003
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
081404
|
学科名称: |
工学 - 土木工程 - 供热、供燃气、通风及空调工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
能源学院
|
专业: |
土木工程
|
研究方向: |
制冷与空调节能技术
|
第一导师姓名: |
陈柳
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-25
|
论文答辩日期: |
2023-06-05
|
论文外文题名: |
Study on the performance of solar energy and heat pump type closed wheel desiccant air conditioning system
|
论文中文关键词: |
空气调节 ; 闭式系统 ; 转轮除湿 ; 太阳能 ; 热泵系统
|
论文外文关键词: |
Air conditioning ; Closed system ; Desiccant wheel ; Solar energy ; Heat pump system
|
论文中文摘要: |
︿
转轮除湿空调系统已经被证实是新型节能环保型空调系统,在可再生能源利用和碳排放方面的优势被广泛认可。传统转轮除湿空调系统是开式系统,高温高湿的再生排风被直接排放在大气中,不仅会造成能源浪费,而且会影响城市热环境,加剧城市热岛效应和温室效应。因此,为了解决传统开式转轮除湿空调系统再生排风能量浪费的问题,提出了太阳能及热泵型闭式转轮除湿空调系统,旨在高效回收和利用再生排风空气的显热和潜热,同时提高开式转轮除湿空调系统的性能。
将能量平衡方程和㶲平衡方程应用于系统的热力学研究,对提出的闭式转轮除湿空调系统和开式转轮除湿空调系统进行了热力学分析,结果表明:闭式转轮除湿空调系统的㶲效率为61.42%,㶲损失为1.025 kW,相比开式转轮除湿空调系统的㶲效率提高了4.08%,㶲损失降低了7.16%。表明提出的闭式转轮除湿空调系统可以显著提高系统的㶲效率,系统热力完善度更高。
设计并搭建了闭式转轮除湿空调系统实验台,研究了主要运行参数对系统性能的影响,结果表明:系统存在最佳的前表冷器、后表冷器和取水换热器的冷水流量比为1:5:4,此时系统的热力性能系数COPth和㶲效率η最大,分别为1.1和0.501。再生温度对系统性影响较大,当再生温度升高时,COPth和η显著降低。实际应用中,在满足湿度要求下应尽量降低再生温度并考虑使用可再生热源。在相同运行条件下,改变再生温度从70 ℃增加到120 ℃,提出的闭式转轮除湿空调系统相比开式转轮除湿空调系统的平均COPth和η分别提高了19.2%和7.7%。
利用TRNSYS模拟软件对太阳能闭式转轮除湿空调系统进行建模,搭建了实验装置验证了模拟的准确性。通过模拟研究了系统的动态性能,结果表明:系统在广州地区整个制冷季的平均电力性能系数COPe为2.4,平均热力性能系数COPth为2.1,累计取水量为25657.5 kg,累计热回收量为9696.4 kW。相比太阳能开式转轮除湿空调系统,太阳能闭式转轮除湿空调系统的平均COPe和COPth分别提高了42.1%和69.2%,二氧化碳排放量减少了29.3%。
构建了热泵型闭式转轮除湿空调系统。通过对中高温热泵工质的筛选和理论计算,选择了环保工质R1234ze(E)作为系统的循环工质。利用AME sim仿真软件建立了热泵子系统的仿真模型。研究了典型工况下关键耦合参数对热泵子系统性能的影响,结果表明:除湿转轮再生侧空气流量对热泵子系统性能影响较大,除湿转轮再生侧空气流量从0.03 kg/s增加到0.18 kg/s时,冷凝器出口空气温度由98.2 ℃下降到67.1 ℃,COP由3.1升高到3.9;环境空气温度为28 ℃~38 ℃时,热泵子系统表现出良好的热力性能,COP为3.5~4.0,冷凝器出口空气温度可以达到76.6 ℃~85.1 ℃;除湿转轮的处理侧空气流量从0.21 kg/s升高到0.33 kg/s,冷凝器出口空气温度从82.7 ℃升高到86.4 ℃,后蒸发器出口空气温度从17.4 ℃升高到20.6 ℃;除湿转轮处理侧出口空气温度从26 ℃升高到34 ℃,后蒸发器出口空气温度从17.1 ℃升高到20.9 ℃。热泵型闭式转轮除湿空调系统的再生温度和送风温度均满足要求,并且热泵子系统表现出良好的热力性能。
﹀
|
论文外文摘要: |
︿
The wheel desiccant air conditioning system has been proved to be a new type of energy saving and environmentally friendly air conditioning system, and its advantages in renewable energy utilization and carbon emissions are widely recognized. The traditional wheel desiccant air conditioning system is an open system. The high temperature and high humidity regenerative exhaust air is directly discharged into the atmosphere, which will not only cause energy waste, but also affect the urban thermal environment and aggravate the heat island effect and greenhouse effect. Therefore, in order to solve the problem of waste of regenerative exhaust energy in the traditional open wheel desiccant air conditioning system, a solar and heat pump closed wheel desiccant air conditioning system is proposed to efficiently recover and utilize the sensible heat and latent heat of the regenerative exhaust air, and improve the performance of the open wheel desiccant air conditioning system.
The energy and exergy balance equations are applied to the thermodynamic study of the system, and the thermodynamic analysis of the proposed closed wheel desiccant air conditioning system is carried out. The results show that the exergy efficiency of the system is 61.42%, and the exergy loss is 1.025 kW. Compared with the traditional open wheel desiccant air conditioning system, the exergy efficiency is increased by 4.08%, and the exergy loss is reduced by 7.16%. It shows that the proposed closed wheel desiccant air conditioning system can significantly improve the exergy efficiency of the system, and the thermal perfection of the system is higher.
The experimental platform of the closed wheel desiccant air conditioning system was designed and built. The influence of the main operating parameters on the performance of the system was studied, and the main conclusions are as follows: the system has the best cold water flow ratio of front surface cooler, rear surface cooler and water intake heat exchanger is 1:5:4, and the COPth and η of the system are the largest, 1.1 and 0.501, respectively. The regeneration temperature has a significant effect on the system performance, when the regeneration temperature increases, COPth and η decrease significantly. In practical application, the regeneration temperature should be reduced as much as possible while meeting the humidity requirements, and the renewable heat sources should be fully considered. Under the same operating conditions, changing the regeneration temperature from 70 ℃ to 120 ℃, the average COPth and η of the proposed closed wheel desiccant air conditioning system increased by 19.2 % and 7.7 %, respectively, compared with the open wheel desiccant air conditioning system.
The TRNSYS simulation software was used to model the solar closed wheel desiccant air conditioning system, and an experimental device was built to verify the accuracy of the simulation. The dynamic performance of the system was studied through simulation, and the results show that during the entire cooling season in Guangzhou, China, the average power COPe is 2.4, the average thermal COPth is 2.1, the cumulative water intake is 25657.5 kg, and the cumulative heat recovery is 9696.4 kW. Compared with the solar open wheel desiccant air conditioning system, the average COPe and COPth of the solar closed wheel desiccant air conditioning system increased by 42.1% and 69.2%, respectively, and the carbon dioxide emissions decreased by 29.3%.
A heat pump type closed wheel desiccant air conditioning system is constructed. Through the screening and calculation of the working fluid of the medium and high temperature heat pump, the environmentally friendly working fluid R1234ze(E) was selected as the circulating working fluid of the system. The influence of key coupling parameters on the performance of the heat pump subsystem under typical working conditions is studied. The results show that the air flow rate on the regeneration side of the wheel desiccanthas a great influence on the performance of the heat pump subsystem, when the air flow rate increases from 0.03 kg/s to 0.18 kg/s, the air temperature at the outlet of the condenser decreases from 98.2 ℃ to 67.1 ℃, and the COP increases from 3.1 to 3.9. When the ambient air temperature is 28 ℃~38 ℃, the heat pump subsystem shows good thermal performance, the COP is 3.5~4.0, and the outlet air temperature of the condenser can reach 76.6 ℃~85.1 ℃. The air flow rate on the treatment side of the wheel desiccant increases from 0.21 kg/s to 0.33 kg/s, the air temperature at the outlet of the condenser increases from 82.7 ℃ to 86.4 ℃, and the air temperature at the outlet of the rear evaporator increases from 17.4 ℃ to 20.6 ℃. The outlet air temperature of the treatment side of the wheel desiccant increased from 26 ℃ to 34 ℃, and the outlet air temperature of the rear evaporator increased from 17.1 ℃ to 20.9 ℃. The regeneration temperature and air supply temperature of the heat pump type closed wheel desiccant air conditioning system meet the requirements, and the heat pump subsystem shows good thermal performance.
﹀
|
参考文献: |
︿
[1]Building Energy Conservation Research Center of Tsinghua University. Research report on annual development of building energy efficiency in China[R]. China Architecture & Building Press, 2022. [2]The International Energy Agency. Perspectives for the clean energy transition, the critical role of buildings[R]. The International Energy Agency, 2021. [3]周晋, 杨伟, 张国强. 建筑节能技术(4). 暖通空调系统节能[J]. 大众用电, 2007(4):40-42. [4]Yan H, Liu Q, Zhao W, et al. The coupled effect of temperature, humidity, and air movement on human thermal response in hot humid and hot arid climates in summer in China[J]. Building and Environment, 2020, 177:106898. [5]Tong L, Sun J, Hu S, et al. Analysis of the relationship between thermal comfort and salivary IgE in healthy adults under abrupt temperature[J]. Building and Environment, 2022, 207:108454. [6]张海强, 刘晓华, 江亿. 温湿度独立控制空调系统和常规空调系统的性能比较[J]. 暖通空调, 2011, 41(1):48-52. [7]徐震原, 王如竹. 空调制冷技术解读:现状及展望[J]. 科学通报, 2020, 65:2555-2570. [8]Guo J, Lin S, Bilbao J I, et al. A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification[J]. Renewable and Sustainable Energy Reviews, 2017, 67:1-14. [9]王惠惠, 葛天舒, 章学来, 等. 太阳能驱动的除湿空调系统冬季工况下的实验研究[J]. 制冷学报, 2016, 37(5):63-69. [10]Liu Y, Chen Y, Wang D, et al. Performance evaluation of a hybrid solar powered rotary desiccant wheel air conditioning system for low latitude isolated islands[J]. Energy and Buildings, 2020, 224:110208. [11]Jani D B, Manish M, Sahoo P K, Solid desiccant air conditioning A state of the art review[J]. Renewable and Sustainable Energy Reviews, 2016, 60:1451-1469. [12]Chen L, Chen S H, Liu L, et al. Experimental investigation of precooling desiccant wheel air conditioning system in a high temperature and high humidity environment[J]. International Journal of Refrigeration, 2018, 95:83-92. [13]Gao D C, Sun Y J, Ma Z, et al. A review on integration and design of desiccant air-conditioning systems for overall performance improvements[J]. Renewable and Sustainable Energy Reviews, 2021, 141:110809. [14]王咏薇, 王恪非, 陈磊, 等. 空调系统对城市大气温度影响的模拟研究[J]. 气象学报, 2018, 76(4):649-662. [15]范红, 石全成, 褚于颉. 转轮除湿空调系统再生排风热湿回收性能试验研究[J]. 流体机械, 2022, 50(3):11-18. [16]Speerforck A , Schmitz G . Experimental investigation of a ground coupled desiccant assisted air conditioning system[J]. Applied Energy, 2016, 181(1):575-585. [17]侯小兵, 邹同华, 代咪咪. 两级转轮除湿空调系统性能的试验研究[J]. 流体机械, 2018, 46(3):84-88, 77. [18]胡晓微. 新型干式工业空调系统的研究[D]. 天津大学, 2011. [19]陈思豪, 陈柳. 基于太阳能驱动转轮除湿的蒸发冷却冷水系统[J]. 低温与超导, 2019, 047(2):57-62. [20]Zeng D Q, Li H, Dai Y J, et al. Numerical analysis and optimization of a solar hybrid one rotor two stage desiccant cooling and heating system[J]. Applied Thermal Engineering, 2014, 73(1):474-483. [21]Ge T S, Dai Y J, Wang R Z, et al. Experimental investigation on a one-rotor two-stage rotary desiccant cooling system[J]. Energy, 2008, 33(12):1807-1815. [22]Angrisani G, Roselli C, Sasso M, et al. Dynamic performance assessment of a solar-assisted desiccant based air handling unit in two Italian cities[J]. Energy Conversion & Management, 2016, 113:331-345. [23]范红, 陈柳. 太阳能驱动转轮吸附空调系统冬季供热性能研究[J]. 建筑科学, 2020, 36(8):7. [24]Chaudhary, QadarAli G, MuzaffarSheikh, AhmedGilani N, HaqKhushnood S I, Shahab. Integration of solar assisted solid desiccant cooling system with efficient evaporative cooling technique for separate load handling[J]. Applied thermal engineering: Design, processes, equipment, economics, 2018, 140. [25]Olmu U, Güzelel Y E, Pnar E, et al. Performance assessment of a desiccant air conditioning system combined with dew-point indirect evaporative cooler and PV/T[J]. Solar Energy, 2022, 231:566-577. [26]Liu Y F, Chen Y Y, Wang D J, et al. Performance evaluation of a hybrid solar powered rotary desiccant wheel air conditioning system for low latitude isolated islands[J]. Energy and Buildings, 2020, 224:110208,. [27]Hatami Z, Saidi M H, Mohammadian M, et al. Optimization of solar collector surface in solar desiccant wheel cycle[J]. Energy and Buildings, 2012, 45:197-201. [28]Azam M W, Chaudhary G Q, Sajjad U, et al. Performance investigation of solar assisted desiccant integrated Maisotsenko cycle cooler in subtropical climate conditions[J]. Case Studies in Thermal Engineering, 2023,44:102864. [29]Enteria N, Yoshino H, Mochida A, et al. Performance of solar-desiccant cooling system with Silica-Gel (SiO2) and Titanium Dioxide (TiO2) desiccant wheel applied in East Asian climates[J]. Solar Energy, 2012,86(5):1261-1279. [30]郝红, 张于峰, 周国兵. 转轮与中高温热泵耦合空调系统可行性研究[J]. 沈阳建筑大学学报(自然科学版), 2008(04):675-678. [31]盛颖. 基于高温热泵再生的转轮除湿空调机组的设计与性能研究[D]. 天津大学, 2014. [32]葛凤华, 王剑, 郭兴龙, 等. 热泵废热再生转轮除湿空调系统的性能研究[J]. 太阳能学报, 2016, 37(9):2326-2331. [33]Tian S C, Su X, Geng Y N, et al. Heat pump combined with single-stage or two-stage desiccant wheel system ? A comparative study on different humidity requirement buildings[J]. Energy Conversion and Management, 2022, 255:115345. [34]Chen C H, Hsu C Y, Chen C C, et al. Silica gel/polymer composite desiccant wheel combined with heat pump for air conditioning systems[J]. Energy, 2016, 94:87-99. [35]Chen Q, Cleland D J, Carson J K, et al. Integration of desiccant wheels and high temperature heat pumps with milk spray dryers[J]. Applied Thermal Engineering, 2022, 216:119083. [36]Tian S C, Su X, Li H, et al. Using a coupled heat pump desiccant wheel system to improve indoor humidity environment of nZEB in Shanghai: Analysis and optimization[J]. Building and Environment, 2021, 206:108391. [37]Sheng Y, Zhang Y, Zhang G. Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system[J]. Energy, 2015, 83:583-596. [38]吴治将, 张学伟. 中高温热泵技术在工业中的应用现状[J]. 制冷, 2017, 36(1):83-89. [39]Ramírez-Hernández H G , Morales-Fuentes A, Sánchez-Cruz F A, et al. Experimental study on the operating characteristics of a display refrigerator phasing out R134a to R1234ze(E) and its binary blends[J]. International Journal of Refrigeration, 2022, 138:1-12. [40]Mohammed S I T, He G, Liang X, et al. Comparative study of flow boiling heat transfer and frictional pressure gradient of a non-azeotropic mixture of R-1270/R-600a, and R-22 in a smooth horizontal tube[J]. Alexandria Engineering Journal, 2020, 59(6):4909-4922. [41]Mauro A W, Napoli G, Pelella F, et al. Flow boiling heat transfer and pressure drop data of non-azeotropic mixture R455A in a horizontal 6.0 mm stainless-steel tube[J]. International Journal of Refrigeration, 2020, 119:195-205. [42]Lee Y, Kang D, Jung D. Performance of virtually non-flammable azeotropic HFO1234yf/HFC134a mixture for HFC134a applications[J]. International Journal of Refrigeration, 2013, 36(4):1203-1207. [43]Zhang S J, Wang H X, Guo T. Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures[J]. Applied Energy, 2010, 87(5):1554-1561. [44]Huang X H, Zhang J, Haglind. Experimental analysis of hydrofluoroolefin zeotropic mixture R1234ze(E)/R1233zd(E) condensation in a plate heat exchanger[J]. International Communications in Heat and Mass Transfer, 2022, 135:106073. [45]潘利生, 王怀信, 陈晨, 等. 两种中高温热泵自然工质实验研究[J]. 太阳能学报, 2012, 33(5):827-831. [46]马利敏, 王怀信, 王继霄. 一种高温热泵工质的理论与试验性能[J]. 机械工程学报, 2010, 46(12):142. [47]Mateu-Royo C, Mota-Babiloni A, Navarro-Esbrí J. Semi-empirical and environmental assessment of the low GWP refrigerant HCFO-1224yd(Z) to replace HFC-245fa in high temperature heat pumps[J]. International Journal of Refrigeration, 2021, 127: 120-127. [48]Grauso S,Mastrullo R, Mauro A W, et al. Flow pattern map,heat transfer and pressure drops during evaporation of R1234ze(E) and R134a in a horizontal,circular smooth tube: Experiments and assessment of predictive methods[J]. International Journal of Refrigeration, 2013, 36(2):478-491. [49]衣可心, 俞国新, 赵远扬. R1234ze(E)在R134a离心式制冷压缩机中的直接替代研究[J]. 制冷与空调(四川), 2022, 36(3):409-415. [50]Zhang X D, Xu H M. Experimental performance of moderately high temperature heat pump with working fluid R1234ze(Z)[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(4):1535-1545. [51]Saleem S, Bradshaw C R, Bach C K. Performance assessment of R1234ze(E) as a low GWP substitute to R410A in fin-and-tube heat exchangers[J]. International Journal of Refrigeration, 2022, 134:253-264. [52]Soni S, Mishra P, Maheshwari G, et al. Comparative energy analysis of R1234yf, R1234ze, R717 and R600a in Vapour Compression Refrigeration system as replacement of R134a[J]. Materials Today: Proceedings, 2022, 56(3):1600-1603. [53]Bouted C, Ratanatamskul C. A novel prototype of integrated anaerobic filter-condenser (ANCO) system for application of waste heat from office building to improve performances of both air conditioner and wastewater treatment system[J]. Journal of Environmental Management, 2019, 231:66-72. [54]Delfani S, Pasdarshahri H, Karami M. Experimental investigation of heat recovery system for building air conditioning in hot and humid areas[J]. Energy and Buildings, 2012, 49:62-68. [55]Wang H, Zhou S B, Wei Z S, et al. A study of secondary heat recovery efficiency of a heat pipe heat exchanger air conditioning system[J]. Energy and Buildings, 2016, 133:206-216. [56]陈华, 周楚, 史德福. 不同冷凝热回收方式下热泵空调动态特性的实验研究[J]. 太阳能学报, 2015, 36(5):1239-1246. [57]Hu B, Liu H, Wang R Z, et al. A high efficient centrifugal heat pump with industrial waste heat recovery for district heating[J]. Applied Thermal Engineering, 2017, 125:359-365. [58]谭益坤, 陈柳, 陈思豪. 热泵再生型转轮除湿空调系统研究[J]. 低温与超导, 2019, 47(9):79-84. [59]袁艳, 欧阳惕, 林创辉, 等. 热回收型转轮复合型除湿系统的实验研究[J]. 制冷, 2013(2):5-9. [60]Lord J, Thomas A, Treat N, et al. Global potential for harvesting drinking water from air using solar energy[J]. Nature, 2021, 598:611–617. [61]Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356:430-434. [62]Zhou X, Lu H, Zhao F, et al. Atmospheric water harvesting: a review of material and structural designs[J]. ACS Mater. Lett. 2020, 2(7):671-684. [63]Yang J, Zhang X, Qu H, et al. A Moisture-Hungry Copper Complex Harvesting Air Moisture for Potable Water and Autonomous Urban Agriculture[J]. Advanced Materials, 2020, 32:2002936. [64]Entezari A, Ejeian M, Wang R Z. Extraordinary air water harvesting performance with three phase sorption[J]. Materials Today Energy, 2019, 13:362-373. [65]Chen B, Jing S S, Chen Q Y, et al. All-natural eco-friendly composite foam for highly efficient atmospheric water harvesting[J]. Nano Energy, 2023, 110:108371. [66]Gentile V, Bozlar M, Meggers F, et al. Liter-scale atmospheric water harvesting for dry climates driven by low temperature solar heat[J]. Energy, 2022, 254:124295. [67]李强, 郝秀渊. 空气取水技术研究综述[J]. 山西建筑, 2016, 42:124-126. [68]Hai Z , Guo Z , Liu W. Biomimetic Water-Collecting Materials Inspired by Nature[J]. Chemical Communications, 2016, 52. [69]He X H, Wang W, Liu Y M, et al. Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection[J]. Applied Materials & Interfaces, 2015, 7:17471-17481. [70]Zhang Y, Wang T, Wu M, et al. Durable superhydrophobic surface with hierarchical microstructures for efficient water collection[J]. Surface and Coatings Technology, 2021, 419:127279. [71]Liu J J, Xion g J, Huang Q, et al. Eco-friendly synthesis of robust bioinspired cotton fabric with hybrid wettability for integrated water harvesting and water purification[J]. Journal of Cleaner Production, 2022, 350:131524. [72]姜海凤, 侯立安, 张林. 空气取水非常规技术及材料、装备研究进展[J]. 高校化学工程学报, 2018, 32:01-07. [73]Patel J, Patel K, Mudgal A, et al. Experimental investigations of atmospheric water extraction device under different climatic conditions[J]. Sustainable Energy Technologies and Assessments, 2020, 38:100677. [74]王星天, 姚佳男, 侯诗文, 等. 以地下土壤为冷源的空气取水实验研究[J]. 低温与超导, 2021, 49(1):102-105. [75]历德义, 邓博文, 卢宏宇等. 基于太阳能半导体制冷空气取水装置性能研究[J]. 实验室研究与探索, 2018, 037(7):29-31,96. [76]Bagheri F, Performance investigation of atmospheric water harvesting systems[J]. Water Resources and Industry, 2018, 20:23-28. [77]Ahmad F F, Ghenai C, Bardan M A, et al. Performance analysis of atmospheric water generator under hot and humid climate conditions: Drinkable water production and system energy consumption[J]. Case Studies in Chemical and Environmental Engineering, 2022, 6:100270. [78]Gido B, Friedler E, Broday D M. Assessment of atmospheric moisture harvesting by direct cooling[J]. Atmospheric Research, 2016, 182:156-162. [79]Raveesh G, Goyal R, Tyagi S K. Parametric analysis of atmospheric water generation system and its viability in Indian cities[J]. Thermal Science and Engineering Progress, 2023, 39:101682. [80]Heidari A, Roshandel R, Vakiloroaya V. An innovative solar assisted desiccant based evaporative cooling system for co-production of water and cooling in hot and humid climates[J]. Energy Conversion & Management, 2019, 185:396-409. [81]唐正艳, 李勇, 腊栋, 等. 开式转轮除湿空调冷水系统实验特性研究[J]. 太阳能学报, 2014, 35(4):656-663. [82]Çengel Y A, Boles M A. Thermodynamics: An Engineering Approach. 7th Edition. 7th ed. 2010. [83]Bicer y, Dincer I. Development of a new solar and geothermal based combined DWASHW for hydrogen production[J]. Energy, 2016, 127:269-284. [84]Luqman M, Al-Ansari T. Thermodynamic analysis of an Energy-Water-Food (Ewf) nexus driven polygeneration DWASHW applied to coastal communities[J]. Energy Convers. Manag, 2020, 205:112432. [85]Cui M, Wang B, Wei F, et al. A modified exergy analysis method for vapor compression systems: splitting refrigerant exergy destruction[J]. Applied Thermal Engineering, 2022, 201:117728. [86]Zhang L, Liu X, Jiang Y. Exergy analysis of parameter unmatched characteristic in coupled heat and mass transfer between humid air and water[J]. International Journal of Heat and Mass Transfer, 2015, 84:327-338. [87]Wang L, Li N P. Exergy transfer and parametric study of counter flow wet cooling towers[J]. Applied Thermal Engineering, 2011, 31:954-960. [88]Goff J A, Gratch. Low-pressure properties of water from-160 to 212 F[J]. Trans-actions of the American Society of Heating and Ventilating Engineers, 1946, 52:95-122. [89]Beccali M, Butera F, Guanella R, et al. Simplified models for the performance evaluation of desiccant wheel dehumidification[J]. International journal of energy research, 2003, 27(1):17-29. [90]连之伟. 热质交换原理与设备(第三版)[M]. 北京:中国建筑工业出版社, 2011. [91]陈思豪. 基于低温低湿驱动转轮除湿的蒸发冷却冷水系统研究[D]. 西安科技大学, 2019. [92]Van den Bulck E, Klein S A, Mitchell J W. Second law analysis of solid desiccant rotary dehumidifiers[J]. Solar Energy Engineering, 1988, 110:2-9. [93]Enteria N, Yoshino H, Takaki R, et al. Effect of regeneration temperatures in the exergetic performances of the developed desiccant evaporative air conditioning system[J]. International Journal of Refrigeration, 2013, 36:2323-2342. [94]Mujahid Rafique M, Gandhidasan P, Rehman S, et al. A review on desiccant based evaporative cooling systems[J]. Renewable and Sustainable Energy Reviews, 2015, 45:145-159. [95]Ge T S, Qi D, Dai Y J, et al. Experimental testing on contaminant and moisture removal performance of silica gel desiccant wheel[J]. Energy Build, 2018, 176:71-77. [96]Robert, J, Moffat. Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988. [97]Jurinak J J. Open cycle desiccant cooling-component models and system simulations[D]. Madison: University of Wisconsin, 1982. [98]ASHRAE 90.1-2019 I-P ERTA-2019, Energy Standard for Buildings Except Low-Rise Residential Buildings[S]. [99]代咪咪, 邹同华, 于蓉, 等. 转轮除湿性能影响因素分析[J]. 计算机与应用化学, 2015, 32(4):480-484, 488. [100]范红. 转轮除湿空调系统再生排风回收及利用研究[D].西安科技大学. [101]Li Y T, Lu L, Yang H X. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air conditioning system for application in Hong Kong[J]. Solar Energy, 2010, 84:2085-2095. [102]张于峰, 胡晓微, 苗哲生, 等. 高温热泵在除湿转轮空调系统中的性能[J]. 化工学报, 2009, 60(9):2177-2182. [103]李廷勋, 王如竹, 郭开华, 等. 制冷/供热中应用混合工质制冷剂的研究现状[J]. 流体机械, 2001(06):49-52, 4. [104]董益秀, 王如竹. 高温热泵的循环、工质研究及应用展望[J]. 化工学报, 2023, 74(1):133-144. [105]马丽筠. 除湿转轮与中高温热泵耦合系统的实验研究[D].天津大学,2012. [106]向璨, 常华伟, 段晨, 等. 中高温热泵混合工质R13I1/R290/R600a替代R134a的理论研究[J]. 太阳能学报, 2018, 39(10):2760-2766. [107]田富宽, 周国兵, 朱茂川, 等. 中高温热泵混合工质实验研究[J]. 太阳能学报, 2020, 41(5):229-236. [108]宋建, 蔡家斌, 石晓洁, 等. 中高温热泵混合工质的循环性能分析[J]. 低温与超导, 2021, 49(3):78-83. [109]何玲军. 新型制冷剂R1234ze(E)及其混合工质综述[J]. 当代化工研究, 2020, 14:13-14. [110]付永领, 齐海涛. LMS Imagine. Lab AMESim系统建模和仿真实例教程[D]. 北京航空航天大学出版社, 2011, 7. [111]张春路. 制冷空调系统仿真原理与技术[M]. 化学工业出版社, 2012. [112]丁国良, 张春路. 制冷空调装置智能仿真[M]. 科学出版社, 2002. [113]宋明浩. R1234yf电动汽车热泵空调系统试验与仿真研究[D]. 河北工业大学, 2021. [114]Churchill, S.W. Friction-factor equation spans all fluid flow regimes[J]. Chemical Engineering, 1977, 84:91-92. [115]Adams W H M, Wood W K, Bryan R L. Vaporization inside horizontal tubes. II benzene-oil mixture. Trans Asme, 1942. [116]Shah M M. A general correlation for heat transfer during film condensation inside pipes[J]. International Journal of Heat and Mass Transfer, 1979, 22(4):547-556. [117]Steiner, D, Taborek, J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model[J]. Heat transfer engineering, 1992, 13:322-329. [118]郭涛. 中高温热泵工质理论与实验循环性能研究[D]. 天津大学, 2008.
﹀
|
中图分类号: |
TU831.5
|
开放日期: |
2023-06-26
|