论文中文题名: | 基于CCU理念的石灰窖窖气生产高纯CO2 联产NaHCO3工艺研究 |
姓名: | |
学号: | 20213225039 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 二氧化碳捕集利用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-26 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Research on the Production of High Purity CO2 and Combined Production of NaHCO3 from Lime Cellar Gas Based on CCU Concept |
论文中文关键词: | |
论文外文关键词: | Lime pit flue gas ; High purity carbon dioxide ; Sodium bicarbonate ; Thermal integration ; Economic analysis |
论文中文摘要: |
随着温室效应的加剧,CO2利用逐渐成为研究的热点。CO2资源化转化为碳基化学品对于温室气体的减排、减少碳资源的浪费将至关重要。由于碳酸钙工业在石灰窖煅烧石灰矿阶段产生大量CO2,造成温室效应和碳资源的浪费。因此,针对窖气CO2捕集和高附加值利用具有重要的环境和社会效益。本课题选取典型的石灰窖窖气为原料,基于化工流程模拟软件Aspen Plus对石灰窖窖气生产高纯CO2联产NaHCO3工艺进行了研究,分步构建了CO2捕集、高纯CO2生产、NaHCO3生产和副产品(NH4)2SO4回收的模型。并对各工序进行分析验证,最终采用耦合的思想进行整合,形成完整的工艺流程模型并对其进行了技术经济分析。 本课题针对以下四个方面展开研究:(1)CO2捕集采用甲基二乙醇胺(MDEA)吸收-解吸工艺,根据年度总费用(TAC),对吸收塔和解吸塔进行了参数优化,将原料气CO2提纯到0.9254(摩尔分率,下同),CO2回收率达到99.45%。但CO2气体中仍有0.07383的H2O、1.342×10-5的CH4、1.205×10-6的C2H4、1.053×10-5的CO、5.415×10-4的N2和1.566×10-4的O2。(2)高纯CO2生产采用催化燃烧法除去CO2气体中的可燃物,加压后首先通过汽提塔塔底脱除大量H2O,然后在精馏塔塔顶脱除轻组分,塔底得到纯度0.99999的CO2产品,汽提塔塔底和精馏塔塔顶大量未利用的CO2输送到NaHCO3生产工序作为原料。为了降低生产能耗,利用夹点技术进行能量分析,通过双效精馏和换热网络实现热集成,回收热量280167.6 kJ/h。(3)NaHCO3的生产采用硫酸钠碳酸化法,利用廉价易得的钠芒硝、NH3和CO2于奥斯陆结晶器内反应得到NaHCO3晶体。分析了NH3、Na2SO4、温度和压力对结晶器的影响,结果表明,随着NH3进料流量的增加,有利于CO2的捕集,但过量的NH3会产生副产物NH4HCO3;CO2捕集率随芒硝用量增加而增加;过高的结晶温度不利于CO2的捕集和碳酸氢钠的结晶;压力对反应影响较小。最终确定反应条件,结晶温度为35.5 ℃,常压操作,以氨作为限制反应物,饱和芒硝进料,进料摩尔比Na2SO4:CO2:NH3= 1.2:2:1。(4)针对副产物Na2SO4和(NH4)2SO4混合物,首先探讨了强碱蒸氨法回收氨气,结果表明该方法并不适合。基于溶解度曲线,开发热法重结晶的方式对副产物进行分离,由于缺少相关文献参数,设计蒸发-冷却-冷却方式分离副产物实验,通过实验数据确定模拟过程参数,最终回收尾液中80.32%的硫酸钠,22.31%的硫酸铵。 最后,通过Aspen Process Economic Analyzer V11.0对全流程经济分析可知,本项目于6.45年开始盈利,并且净收益率为14.73%,表明该项目具有一定的经济效益。 |
论文外文摘要: |
With the intensification of the greenhouse effect, CO2 utilization has gradually become a research hotspot. The conversion of CO2 resources into carbon-based chemicals will be crucial for reducing greenhouse gas emissions and reducing carbon waste. Due to the large amount of CO2 generated by the calcium carbonate industry during the lime pit calcination stage, leads to the greenhouse effect and waste of carbon resources. Therefore, the capture and high value-added utilization of CO2 in cellar gas have important environmental and social benefits. In this paper, the typical lime cellar gas was selected as raw material. Based on the chemical process simulation software Aspen Plus, the process of producing high-purity CO2 and NaHCO3 from lime cellar gas was studied. The models of CO2 capture, high purity CO2 production, NaHCO3 production, and by-product (NH4)2SO4 recovery were constructed step by step. Each process is analyzed and verified, and finally, the coupling idea is used to integrate to form a complete process flow model and carry out a technical and economic analysis. This study focuses on the following four aspects: (1) CO2 capture using methyl diethanolamine (MDEA) absorption desorption process. Based on the annual total cost (TAC), the parameters of the absorption and desorption towers were optimized. The raw gas CO2 was purified to 0.9254 (molar fraction, the same as below), and the CO2 recovery rate reached 99.45%. However, there is still 0.07383 of H2O, 1.342×10-5 of CH4, 1.205×10-6 of C2H4, 1.053×10-5 of CO, 5.415×10-4 of N2, and 11.566×10-4 of O2 in the CO2 gas. (2) The production of high-purity CO2 uses catalytic combustion to remove combustibles from the CO2 gas. After pressurization, a large amount of H2O is first removed through the bottom of the stripping tower, and then the light components are removed at the top of the distillation tower. The bottom of the tower produces CO2 products with a purity of 0.99999. A large amount of unused CO2 at the bottom of the stripping tower and the top of the distillation tower is transported to the NaHCO3 production process as raw materials. To reduce production energy consumption, pinch point technology is used for energy analysis, and thermal integration is achieved through dual effect distillation and heat exchange network, with a heat recovery rate of 280167.6 kJ/h. (3) The production of NaHCO3 adopts the sodium sulfate carbonation method, and the cheap and easily available sodium mirabilite, NH3, and CO2 are used to react in the Oslo crystallizer to obtain NaHCO3 crystals. The effects of NH3, Na2SO4, temperature, and pressure on the crystallizer were analyzed. The results showed that the increase of NH3 feed flow rate, it is beneficial for CO2 capture, but excessive NH3 will produce by-product NH4HCO3; The CO2 capture rate increases with the increase of mirabilite dosage; Excessive crystallization temperature is not conducive to the capture of CO2 and the crystallization of sodium bicarbonate; Pressure has little effect on the reaction. The final reaction conditions were determined, with a crystallization temperature of 35.5 ℃ and atmospheric pressure operation. Ammonia was used as the limiting reactant, and saturated mirabilite was fed. The feed molar ratio was Na2SO4: CO2: NH3 = 1.2:2:1. (4) Regarding the mixture of by-products Na2SO4 and (NH4)2SO4, the strong alkali ammonia evaporation method for recovering ammonia gas was first explored, and the results showed that this method was not suitable. Based on the solubility curve, a thermal recrystallization method was developed to separate by-products. Due to the lack of relevant literature parameters, an evaporation cooling method was designed to separate by-products. The simulation process parameters were determined through experimental data, and 80.32% sodium sulfate and 22.31% ammonium sulfate were ultimately recovered from the tail liquid. Finally, through the analysis of the whole process economy by Aspen Process Economic Analyzer V11.0, it can be seen that the project will begin to be profitable in 6.45 years, and the net rate of return will be 14.73 %, indicating that the project has certain economic benefits. |
参考文献: |
[9] 习近平. 在第七十五届联合国大会一般性辩论上的讲话 [J]. 中华人民共和国国务院公报, 2020, 28: 5-7. [10] 梁佳正, 卢乐民, 梁逸昊. 碳酸钙在造纸行业中的应用及发展趋势 [J]. 纸和造纸, 2022, 41: 23-29. [11] 贾磊. 全球碳酸钙行业市场报告 [J]. 无机盐工业, 2019, 51: 98. [12] 冯文华. 纳米碳酸钙制备新工艺研究[D]. 上海: 华东理工大学, 2015. [16] 陈健, 罗伟亮, 李晗. 有机胺吸收二氧化碳的热力学和动力学研究进展 [J]. 化工学报, 2014, 65: 12-21. [46] 胡晓艳. 年产5万吨CO2回收工艺的设计与计算[D]. 大连: 大连理工大学, 2012. [57] 陈杰. Ccus地质封存中CO2对油井水泥碳化腐蚀研究[D]. 北京: 中国石油大学, 2020. [62] 韩萌. 采用联合制碱法资源化利用高盐废水工艺研究[D]. 北京: 北京化工大学, 2017. [67] 天津联博化工股份有限公司, 杭州新世纪混合气体有限公司, 湖北和远气体股份有限公司. 高纯二氧化碳[Z]. 国家市场监督管理总局; 国家标准化管理委员会, 2021: 16. [68] 周大荣, 俞建. 一种高纯二氧化碳的生产方法及其生产装置: CN110217794A[P]. 2019-09-10. [69] 杜大艳, 曹小林, 杜鹏举. 一种合成气提纯制备电子级高纯度二氧化碳生产工艺: CN113277511A[P]. 2021-08-20. [70] 于长青,窦富利. 一种超高纯度二氧化碳生产设备: ZL CN206751408U[P]. 2017-12-15. [89] 耿豪杰. 低浓度甲烷在铜基催化剂上的燃烧反应及动力学特性[D]. 重庆: 重庆大学, 2015. [90] 李鹤. 霍加拉特催化剂上乙烯催化燃烧动力学的研究[D]. 天津: 天津大学, 2013. [91] 康建东. 铜基催化剂氧化低浓度甲烷的反应动力学及性能调控[D]. 重庆: 重庆大学, 2020. |
中图分类号: | TQ09 |
开放日期: | 2023-06-26 |