- 无标题文档
查看论文信息

题名:

 煤矿井下移动机器人建图与自主定位算法研究    

作者:

 刘文聪    

学号:

 22206223051    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085400    

学科:

 工学 - 电子信息    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 控制工程    

研究方向:

 3D激光SLAM    

导师姓名:

 白云    

导师单位:

 西安科技大学    

提交日期:

 2025-06-17    

答辩日期:

 2025-06-03    

外文题名:

 Research on Mapping and Autonomous Localization Algorithm of Mobile Robot in Coal Mine    

关键词:

 煤矿井下移动机器人 ; 地图构建 ; SC-LIO-SAM ; 自主定位 ; 3D LiDAR-IMU紧耦合 ; TIL-SAM    

外文关键词:

 Underground coal mine mobile robot ; Map construction ; SC-LIO-SAM ; Autonomous localization ; 3D LiDAR-IMU tight coupling ; TIL-SAM    

摘要:

         煤矿井下环境具有空间非结构化、相对封闭狭窄、光照不均等特点,此类场景给煤矿井下移动机器人的高精度地图构建和自主定位技术带来新的挑战。由于煤矿井下无法接收全球定位系统GPS(Global Positioning System)信号,导致传统定位方法失效,且井下光照不均会影响建图效果,难以直接应用室内外场景下普遍使用的地图构建和定位技术,亟需构建能够适应煤矿井下特殊环境下的移动机器人建图和自主定位系统方案。为此,本文引入同时定位与建图SLAM (Simultaneous Localization and Mapping)技术,构建三维激光雷达3D LiDAR和九轴姿态传感器IMU (Inertial Measurement Unit)紧耦合环境感知系统。主要研究内容如下:

         针对煤矿井下封闭复杂的特殊环境,分析煤矿井下移动机器人的工作环境与功能需求,研制一台煤矿井下移动机器人。该机器人的硬件系统结构分为环境感知层、动作执行层和规划决策层。软件系统包括环境探测模块、建图模块、自主定位模块、运动控制模块、通讯模块、上位机模块和电源模块,该机器人的研制为本文的建图与自主定位算法研究奠定基础。

         针对煤矿巷道结构重复、内壁特征点少易造成点云误匹配、建图场景退化的问题,提出一种基于SC-LIO-SAM(Lidar Inertial Odometry via Smoothing and Mapping with Scan Context)的煤矿井下移动机器人的建图算法。引入Scan Context进行回环检测,不再依赖传统欧式距离,融合历史帧筛选策略,建立全局数据关联,通过构建局部地图和全局位姿图优化实现建图的一致性。实验结果表明,采用SC-LIO-SAM算法建图的终点距离误差相比ALOAM、LeGO-LOAM、LIO-SAM分别降低了24.4%、27.5%、16.6%,提升建图精度,保证全局一致性。

         针对移动机器人在煤矿井下封闭式复杂环境中的自主定位问题,提出基于3D LiDAR-IMU紧耦合的TIL-SAM (Tightly-Coupled Lidar-Inertial Smoothing and Mapping)自主定位算法。建立机器人SLAM因子图模型,构建IMU预积分约束因子、3D LiDAR相对位姿约束因子以及回环检测约束因子,将三种约束因子植入因子图优化模型中实现全局位姿优化。利用3D LiDAR扫描匹配得到更为精准的位姿,修正IMU的位姿,进一步提高机器人位姿估计的精度,提高自主定位的鲁棒性。实验结果表明,TIL-SAM的均方根误差相比于ALOAM、LeGO-LOAM以及LIO-SAM分别降低了3.4%、18.6%以及5.7%,并且在最大值、最小值和与标准差上均有较大的提升,证明TIL-SAM具有更高的精度。

         以研制的煤矿井下移动机器人系统为平台,在西安科技大学煤矿主体实训基地的模拟煤矿巷道中进行现场实验,验证本文所提出的基于SC-LIO-SAM 的煤矿井下移动机器人的建图算法、基于3D LiDAR-IMU紧耦合的TIL-SAM自主定位算法的先进性和可靠性。实验结果表明,本文提出的理论和方法可为煤矿井下移动机器人建图与自主定位技术提供理论支撑,同时能够为其他类似封闭复杂环境下的机器人的地图构建与自主定位研究提供参考依据。

外文摘要:

     The underground environment of coal mines features spatial non-structuring, relatively closed and narrow spaces, and uneven lighting. Such scenarios pose new challenges for the high-precision mapping and autonomous positioning technology of mobile robots in coal mines. Due to the inability to receive Global Positioning System(GPS) signals in underground coal mines, the traditional positioning methods fail, and the uneven lighting in the underground will affect the mapping effect, so it is difficult to directly apply the map construction and positioning technology commonly used in indoor and outdoor scenes.To this end, the Simultaneous Localization and Mapping (SLAM) technology is introduced to construct a 3D LiDAR and a nine-axis Inertial Measurement Unit (IMU) tightly coupled environment perception system. The main research contents are as follows:

        To address the enclosed and complex environment of underground coal mines, this study analyzes the operational conditions and functional requirements of mobile robots in such settings and develops a dedicated underground coal mine mobile robot. The hardware system structure of the robot is divided into an environment perception layer, an action execution layer and a planning and decision-making layer. The software system comprises multiple modules, including environment detection, mapping, autonomous localization, motion control, communication, host computer interaction, and power management. The development of this robot provides a foundational platform for the research on mapping and autonomous localization algorithms presented in this paper.

       The repetitive structures and sparse feature points of coal mine roadways often lead to point cloud mismatching and mapping degradation. To solve these problems, we developed SC-LIO-SAM (Lidar Inertial Odometry via Smoothing and Mapping with Scan Context), a lidar-inertial odometry algorithm for underground mobile robot mapping. The method introduces Scan Context for loop closure detection, eliminating reliance on traditional Euclidean distance metrics. By integrating a historical keyframe selection strategy, it establishes global data association and ensures mapping consistency through local submap construction and global pose graph optimization. Experimental results demonstrated that the proposed SC-LIO-SAM algorithm reduces the endpoint distance error by 24.4%, 27.5%, and 16.6% compared to ALOAM, LeGO-LOAM, and LIO-SAM, respectively. This improvement enhances mapping accuracy and guarantees global consistency in challenging underground coal mine environments.

       To address the autonomous localization challenge for mobile robots in the enclosed and complex underground coal mine environment, this paper proposes a tightly-coupled 3D LiDAR-IMU fusion algorithm named Tightly-Coupled Lidar-Inertial Smoothing and Mapping (TIL-SAM). The approach establishes a factor graph model for robot SLAM, incorporating three key constraint factors: IMU pre-integration constraints, 3D LiDAR relative pose constraints, and loop closure detection constraints. These constraints are integrated into a unified factor graph optimization framework to achieve global pose optimization. The algorithm leverages 3D LiDAR scan matching to obtain more accurate pose estimates, which are then used to correct IMU-derived poses, thereby significantly improving both the precision and robustness of robot localization. Experimental results demonstrated that TIL-SAM reduces the root mean square error by 3.4%, 18.6%, and 5.7% compared to ALOAM, LeGO-LOAM, and LIO-SAM respectively. Furthermore, substantial improvements are observed in maximum error, minimum error, and standard deviation metrics, confirming TIL-SAM's superior localization accuracy in challenging underground environments.

        This study conducted field experiments at the simulated coal mine tunnel facility in Xi'an University of Science and Technology's Coal Mine Training Base, utilizing the developed underground coal mine mobile robot system as the experimental platform. The experiments were designed to validate the advancement and reliability of both the proposed SC-LIO-SAM based mapping algorithm and the tightly-coupled 3D LiDAR-IMU TIL-SAM autonomous localization algorithm for underground coal mine mobile robots. The experimental results demonstrated that the theoretical framework and methodologies proposed in this study can provide substantial theoretical support for mapping and autonomous localization technologies of underground coal mine mobile robots. Furthermore, the findings offer valuable reference for research on mapping and autonomous localization of robots operating in other similarly enclosed and complex environments.

参考文献:

[1]王妍,倪坤,王晨. 世界煤炭市场供需发展现状及趋势分析[J]. 煤炭经济研究,2023,43(08): 4-12.

[2]李好管. “十三五”规划关于中国能源、煤炭工业、煤炭深加工产业发展的政策导向(上)[J]. 煤化工,2017,45(03): 1-6.

[3]魏思佳. 中共中央办公厅、国务院办公厅发布《关于进一步加强矿山安全生产工作的意见》[J]. 中国应急管理,2023,(09): 5.

[4]国家矿山安监局 应急管理部 国家发展改革委 工业和信息化部 科技部 财政部 教育部联合印发《关于深入推进矿山智能化建设促进矿山安全发展的指导意见》[J]. 中国安全生产,2024,19(05): 5.

[5]张运通. 基于车路协同的煤矿井下巡检机器人定位与建图方法研究[D]. 徐州: 中国矿业大学, 2024.

[6]陶树林,刘祚时,唐雨. 基于SLAM物流移动机器人导航技术研究[J]. 机电工程技术,2024,53(06): 100-104.

[7]Zhao J, Liu S, Li J. Research and implementation of autonomous navigation for mobile robots based on SLAM algorithm under ROS[J]. Sensors, 2022, 22(11): 4172-4189.

[8]金凯乐,李发元,杨婷. 激光SLAM技术下移动机器人自主导航优化研究[J]. 激光杂志,2024,45(05): 20-24.

[9]潘树国,王向,刘宏,等. 先验地图辅助的激光-惯性自适应定位算法[J]. 中国惯性技术学报,2024,32(12): 1218-1226.

[10]Song J, Chen Y, Liu X, et al. Efficient LiDAR/inertial-based localization with prior map for autonomous robots[J]. Intelligent Service Robotics, 2024, 17(2): 119-133.

[11]Zhang W, Tu Q, Xue S, et al. Dust distribution characteristics of the breathing zone in the walkway area of fully-mechanized mining face: a case study[J]. Scientific Reports, 2025, 15(1): 1-14.

[12]Jang H, Topal E. Transformation of the Australian mining industry and future prospects[J]. Mining Technology, 2020, 129(3): 120-134.

[13]Wang H, Li C, Liang W, et al. Path planning of wheeled coal mine rescue robot based on improved potential field algorithm[J]. Coal Science and Technology, 2024, 52(8): 159-170.

[14]Li B, Xu L, Wang Z, et al. Design of High Obstacle-Crossing Robot Based on Flexible Spine Structure[C]//International Conference on Intelligent Robotics and Applications. Singapore: Springer Nature Singapore, 2024: 412-424.

[15]国家煤矿安全监察局. 煤矿机器人重点研发目录[S].北京:国家煤矿安全监察局,2019.

[16]葛世荣,胡而已,李允旺. 煤矿机器人技术新进展及新方向[J]. 煤炭学报,2023,48(01): 54-73.

[17]许旺,贾瑞清,江涛,等. 薄煤层综采工作面安全监测移动机器人的研究[J]. 矿山机械,2010,38(20): 18-21.

[18]左敏. 矿山智能巡检机器人的关键技术[J]. 金属矿山, 2012,41(7): 120-122.

[19]裴文良,张树生,李军伟. 矿用巡检机器人设计及其应用[J]. 制造业自动化,2017,39(02): 73-74+94.

[20]姜俊英,周展,曹现刚,等. 煤矿巷道悬线巡检机器人结构设计及仿真[J]. 工矿自动化,2018,44(5): 76-81.

[21]马艾强,姚顽强. 煤矿井下移动机器人多传感器自适应融合SLAM方法[J]. 工矿自动化,2024,50(05): 107-117.

[22]Zhang Y, Shi P, Li J. 3d lidar slam: A survey[J]. The Photogrammetric Record, 2024, 39(186): 457-517.

[23]高铭阳,张志刚,刘其鑫,等. 一种煤矿井下多传感器融合定位与建图算法[J]. 煤矿安全,2025,56(02): 233-241.

[24]Cheeseman P, Smith R, Self . A stochastic map for uncertain spatial relationships[C]//4th International Symposium on Robotic Research. Cambridge: MIT Press, 1987: 467-474.

[25]Weingarten J, Siegwart R. "3D SLAM using planar segments"[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006: 3062- 3067.

[26]Cho H, Kim E K, Kim S. Indoor SLAM application using geometric and ICP matching methods based on line features[J]. Robotics and Autonomous Systems, 2018, 100: 206-224.

[27]杨林,马宏伟,王岩. 煤矿井下移动机器人基于激光惯性的融合 SLAM 算法[J]. 煤炭学报,2022,47(9): 3523-3534

[28]彭真,伞红军,李春磊,等. 基于多传感器融合的室内SLAM[J]. 计算机工程与设计,2024,45(10): 3136-3142.

[29]郑银环,贺漫. 基于粒子滤波改进激光SLAM算法研究[J]. 数字制造科学,2024,22(01): 27-32.

[30]牛国臣,王瑜. 基于多约束因子图优化的无人车定位与建图方法[J]. 北京航空航天大学学报, 2021(3): 1-12

[31]Lu F, Milios E. Globally consistent range scan alignment for environment mapping [J]. Autonomous Robots, 1997, 4 (4): 333-349.

[32]Konolige K, Grisetti G, Kümmerle R, et al. Efficient sparse pose adjustment for 2D mapping[C]//Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE Press, 2010:22-29.

[33]R. Mur-Artal, J. M. M. Montiel and J. D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163.

[34]Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-time[C]//Robotics: Science and systems. 2014, 2(9): 1-9.

[35]何登科, 曾天乐, 晏非凡, 何云艳, 杨天娇. 退化环境中基于空间几何特征的激光SLAM方法[J]. 中国惯性技术学报, 2024, 32 (06): 537-546.

[36]Shan T, Englot B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 4758-4765.

[37]薛光辉,李瑞雪,张钲昊,等. 基于激光雷达的煤矿井底车场地图融合构建方法研究[J]. 煤炭科学技术,2023,51(08): 219-227.

[38]Shan T, Englot B, Meyers D, et al. LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping[C]//2020 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2020: 5135-5142.

[39]刘京,魏志强,蔡春蒙,等. 基于激光雷达与惯导融合的掘进机定位方法[J]. 工矿自动化,2025,51(03): 78-85+95.

[40]陶崇瑾. 基于视觉传感器和激光雷达融合的汽车障碍物检测与识别研究[J]. 汽车测试报告,2024,(24): 134-136.

[41]张霞峰,柳畅,单业奇,等. 基于视觉传感器的无人驾驶机器人控制系统设计与研究[J]. 机电工程技术,2024,53(12): 146-148+186.

[42]吴文昊,谷玉海. 多传感器融合的无人车SLAM系统研究[J]. 重庆理工大学学报(自然科学),2025,39(01): 229-235.

[43]张旭涛,肖天中,陈兵,等. 基于激光/IMU/GNSS的全局环境地图构建与定位技术研究[J]. 应用激光,2024,44(10): 128-135.

[44]毛清华,柴建权,陈彦璋,等. 激光雷达和IMU融合的煤矿掘进巷道三维重建方法[J]. 煤炭科学技术,2025,53(02): 351-362.

[45]李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12): 68-78.

[46]Ye H, Chen Y, Liu M. Tightly coupled 3D lidar inertial odometry and mapping[C]//IEEE International Conference on Robotics and Automation(ICRA), Montreal, 2019:3144-3150.

[47]Qin C, Ye H, Pranata C E, et al. Lins: A lidar-inertial state estimator for robust and efficient navigation[C]//2020 IEEE international conference on robotics and automation (ICRA). IEEE, 2020: 8899-8906.

[48]Xu W, Zhang F. Fast-LIO: A fast, robust 3D LiDAR-inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters, 2021,6(2):3317-3324.

[49]Xu W, Cai Y, He D, et al. FAST-LIO2: Fast direct LiDAR-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073.

[50]曾俊皓. 基于ROS的移动机器人系统平台的设计与实现[D]. 广州: 华南理工大学, 2018.

[51]McDermott M, Rife J. Correcting motion distortion for LIDAR scan-to-Map Registration[J]. IEEE Robotics and Automation Letters, 2023, 9(2): 1516-1523.

[52]Shi J, Wang W, Li X, et al. Motion distortion elimination for LiDAR-inertial odometry under rapid motion conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-16.

[53]白云. 煤矿蛇形探测机器人位姿控制方法研究[D]. 西安: 西安科技大学, 2019.

[54]董志华,姚顽强,蔺小虎,等. 煤矿井下顾及特征点动态提取的激光SLAM算法研究[J]. 煤矿安全,2023,54(08): 241-246.

[55]牛延博. 基于融合建图的钻孔机器人巷道定位方法研究[D]. 徐州: 中国矿业大学, 2022.

[56]Li Y T, Li M G, Zhu H, Hu E Y. Development and applications of rescue robots for explosion accidents in coal mines [J]. Journal of Field Robotics, 2020(37): 466-489.

[57]殷江,林建德,孔令华等. 基于激光雷达的移动机器人三维建图与定位[J]. 福建工程学院学报,2020,18(04): 370-374.

[58]胡青松, 李敬雯, 张元生, 李世银, 孙彦景. 面向矿井无人驾驶的IMU与激光雷达融合SLAM技术[J]. 工矿自动化, 2024, 50 (10): 21-28.

[59]赵一凡. 基于3D激光雷达与IMU融合的室外移动机器人SLAM技术研究[D]. 济南: 山东大学, 2022.

[60]马艾强, 姚顽强, 蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU 融合定位与建图方法[J]. 工矿自动化,2022,48(12): 49-56.

[61]徐健斌. 多传感器融合的井下巷道定位与建图[D]. 徐州: 中国矿业大学, 2023.

[62]林鑫. 面向自动驾驶的3D激光雷达与惯性观测单元外参标定技术研究[D]. 武汉: 华中科技大学, 2022.

[63]韩超, 陈敏, 黄宇昊, 赵明辉, 杜乾坤, 梁庆华. 基于全局特征描述子的激光SLAM回环检测方法[J]. 上海交通大学学报, 2022, 56 (10): 1379-1387.

[64]李猛钢. 面向井下钻孔机器人应用的精确定位与地图构建技术研究[D]. 徐州: 中国矿业大学, 2020.

[65]诸葛晶昌,高宏,罗其俊,等. 激光雷达IMU紧耦合SLAM算法研究[J]. 仪器仪表学报,2024,45(11): 243-251.  

中图分类号:

 TP242    

开放日期:

 2026-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式