题名: | 基于多源异构空间数据挖掘的滑坡敏感性研究 |
作者: | |
学号: | 19209071022 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 081803 |
学科: | 工学 - 地质资源与地质工程 - 地质工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学位年度: | 2022 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地质灾害防治 |
导师姓名: | |
导师单位: | |
提交日期: | 2022-06-24 |
答辩日期: | 2022-06-01 |
外文题名: | Research on landslide susceptibility based on multi-source heterogeneous spatial data and data mining techniques |
关键词: | |
外文关键词: | Multi-source heterogeneous spatial data ; Grid units ; Slope units ; Conditioning factor extraction ; Integrated modeling comparison ; Susceptibility evaluation system |
摘要: |
神木市地处黄土丘陵沟壑区与毛乌素沙漠的过渡带,地质环境脆弱,滑坡灾害频发。基于多源异构空间数据挖掘的滑坡敏感性评价,旨在提升评价精度,为滑坡风险管理和国土规划利用等方面提供科学依据和理论指导。本文将五种分辨率的数字高程模型(DEM)数据划分为栅格单元和斜坡单元,分别建立包含19个影响因子和224个滑坡数据的数据库;再选用频率比(FR)模型进行滑坡与影响因子的空间相关性分析并基于相关属性评价(CAE)模型和模型属性评价方法的平均价值(AM)进行影响因子优选;再建立多组滑坡敏感性模型(ADT、RF-ADT、RS-ADT、FPA、RF-FPA、RS-FPA和RAF)后通过数据统计指标对比进行模型优选;最终建立神木市滑坡敏感性评价优化体系。主要研究内容如下: (1)多源异构空间数据库建立。将滑坡按7:3比例随机分割成滑坡训练、验证数据;在12.5m、25m、50m、100m和200m五种空间分辨率下各提取19个影响因子,并应用相关属性评价方法(CAE)和模型属性评价方法分析因子都具有正的预测能力;分别基于ArcGIS软件和r.slopeunits模块划分评价单元,结合5组栅格单元和180组斜坡单元作为分区单元与滑坡数据和影响因子共同构成本研究体系的数据库。 (2)滑坡与影响因子的空间相关性分析。利用FR模型分析了滑坡与影响因子间的空间相关性,在每个影响因子中确定了空间相关性较高的范围,判定该范围有利于滑坡的发生。 (3)多源变粒度下基于栅格的区域滑坡敏感性模型优选。通过不同分辨率下七组模型的目标值与输出值误差得出各模型的可靠程度;经过统计指标和受试者工作特征(ROC)曲线分析,12.5m分辨率下的RS-ADT集成模型评价精度最好(ROC曲线下面积(AUROC)=0.907);通过占比分析和Kappa对比发现,五种分辨率下七组模型的滑坡敏感性分区结果合理且具有一致性。 (4)多源变粒度下基于斜坡单元的区域滑坡敏感性模型优选。从180组斜坡单元中采用综合指标S值经过初选和再优选确定在200m空间分辨率、最小圆方差(c)为0.1、最小斜坡单元面积(a)为290000m2的参数下为最优斜坡单元进行斜坡单元滑坡敏感性建模;采用与栅格建模相同方式得出该最优斜坡单元所用七组模型的可靠程度,通过统计指标和ROC曲线认为最优斜坡单元的各模型性能较稳定,RF-ADT集成模型性能相对较好(AUROC=0.791);得出的滑坡敏感性分区图从其结果判定各模型的分区结果具有一致性,且其在不同模型下各分区中滑坡点密度比例合理可靠。 (5)基于栅格与斜坡单元的区域滑坡敏感性评价对比。滑坡数据在多源变粒度下基于栅格或斜坡单元的区域滑坡敏感性分区和滑坡点密度都呈现占比趋势相似规律;各模型在不同条件下都表现突出、性能良好,且集成模型优于单一模型;在本研究中,12.5m分辨率下的RS-ADT集成模型在神木市表现最优,其分区图可为政府管理者和工程师进行土地设计和规划提供帮助。 |
外文摘要: |
Shenmu City is located in the transition zone between the Loess Plateau and Maowusu Desert, with fragile geological environment and frequent landslide disasters. The landslide susceptibility assessment based on multi-source heterogeneous spatial data mining aims to improve the evaluation accuracy, serve for landslide risk management and landuse planning in Shenmu City, and provide scientific basis and theoretical guidance. In this paper, the digital elevation model (DEM) data with five resolutions are divided into grid units and slope units in the Shenmu City, to establish a landlside database containing 19 conditioning factors and 224 landslides data. Then, the Frequency Ratio (FR) model is used to analyze the spatial correlation between landslides and conditioning factors, and the conditioning factors are optimized based on the AM value of Correlation Attribute Evaluation (CAE) and model attribute evaluation method. After establishing multiple groups landslide susceptibility models (ADT, RF-ADT, RS-ADT, FPA, RF-FPA, RS-FPA and RAF), the models are optimized through the comparison of statistical indicators. Finally, the optimization system of landslide susceptibility evaluation in Shenmu city is established. The main research contents and results are as follows: (1) Establishment of multi-source heterogeneous spatial database. The landslides are randomly divided into landslide training and validation data according to the ratio of 7:3. Using DEM data of five resolutions and geological and hydrological maps to extract 19 conditioning factors, and applying the CAE and model attribute evaluation method to analyze the factors have positive predictive ability. Based on ArcGIS software and r.slopeunits module, the evaluation units were divided, and 5 grid units and 180 slope units were extracted as zoning units, together with landslide data and connditioning factors, to form the database of this research system. (2) Spatial correlation analysis between landslide occurrence and conditioning factors. The FR model was used to analyze the spatial correlation distribution relationship between landslide occurrence and conditioning factors, and a range with high spatial correlation was determined in each conditioning factor, which was judged to be unfavorable to the stability of landslides. (3) Optimization of the regional landslide susceptibility model based on grid units under multi-source variable granularity. The reliability of each model is obtained by the error between the target value and the output value of the seven models at different resolutions. After statistical indicators and Receiver Operating Characteristic (ROC) curve analysis, the RS-ADT integrated model with a resolution of 12.5m has the best evaluation accuracy (the area under the ROC curve (AUROC)=0.907). Through the proportion analysis and Kappa comparison, it is found that the landslide susceptibility zoning of all models at five resolutions are reasonable and consistent. (4) Optimization of the regional landslide susceptibility model based on slope units under multi-source variable granularity. Using the comprehensive index S value from 180 slope units, through preliminary selection and re-optimization, it is determined that the parameters of the optimal slope unit is 200m resolution, the c value of 0.1, and the a value of 290000m2, to the slope unit landslide susceptibility model. The reliability of the seven models used in the optimal slope unit is obtained in the same way as the grid modeling. According to statistical indicators and ROC curves, it is considered that the performance of each model of the optimal slope unit is relatively stable, and the performance of the RF-ADT integrated model is relatively good (AUROC=0.791). The obtained landslide susceptibility maps can be judged from the results that its zoning area proportion and landslide proportion under different models are reasonable and reliable, and the zoning results among the models are consistent. (5) Comparison of regional landslide susceptibility evaluation based on grid and slope units. The landslide susceptibility zoning and landslide point density based on grid or slope units all show a similar area trend in the landslide data under the multi-source variable granularity. Each model has outstanding performance and good performance under different conditions, and the integrated model is better than the single model. In this study, the RS-ADT integrated model with 12.5m resolution performs best in Shenmu City, and its zoning map can provide help for government managers and engineers in land design and planning. |
参考文献: |
[1] 史玲, 吕涛.地质灾害风险评价与风险管理[J]. 四川建材, 2017, 43(06): 73-74. [2] 向喜琼, 黄润秋. 地质灾害风险评价与风险管理[J]. 地质灾害与环境保护, 2000, 11(1): 38-41. [3] 刘传正. 重大地质灾害防治理论与实践[M]. 北京: 科学出版社, 2009: 57-64. [4] 文宝萍. 滑坡预测预报研究现状与发展趋势[J]. 地学前缘, 1996, (1): 86-92. [5] 麻凤海, 陈霞, 季峰,等. 滑坡预测预报研究现状与发展趋势[J]. 徐州工程学院学报(自然科学版), 2018, 33(02): 30-33+63. [6] 晏同乾. 滑坡学[M]. 武汉: 中国地质大学出版社, 2010: 25-58. [7] 陈涛. 滑坡引发的次生与衍生灾害危险性评估研究[D]. 宁波: 宁波大学, 2012. [8] 中华人民共和国国家统计局. 中国统计年鉴-2020[M]. 北京: 中国统计出版社, 2020: 54-58. [10] 殷坤龙, 韩再生, 李志中. 国际滑坡研究的新进展[J]. 水文地质工程地质, 2000, 27(5): 1-4. [11] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, (03): 433-454. [13] 唐杰. 基于GIS的川藏铁路加查—朗县段滑坡易发性评价[D]. 北京: 中国地质大学(北京), 2018. [14] 阮沈勇, 黄润秋. 基于GIS的信息量法模型在地质灾害危险性区划中的应用[J]. 成都理工大学学报(自然科学版), 2001, 28(1): 89-92. [15] 殷坤龙, 朱良峰. 滑坡灾害空间区划及GIS应用研究[J]. 地学前缘, 2001, 8(2): 279-284. [16] 丛威青, 潘懋, 李铁锋,等. 基于GIS的滑坡,泥石流灾害危险性区划关键问题研究[J]. 地学前缘, 2006, 13(1): 185-185. [17] 胡德勇, 李京, 陈云浩,等. GIS支持下滑坡灾害空间预测方法研究[J]. 遥感学报, 2007, 11(6): 852-859. [18] 娄丹丹, 徐刚. GIS在地质灾害风险评价中的应用研究进展[J]. 四川地质学报, 2008, 28(4): 335-338. [19] 王惠中, 彭安群. 数据挖掘研究现状及发展趋势[J]. 工矿自动化, 2011, (02): 33-36. [20] 李德仁, 李德毅. 论空间数据挖掘和知识发现的理论与方法[J]. 武汉大学学报: 信息科学版, 2002, 27(3): 221-233. [22] 霍艾迪, 张骏, 卢玉东,等. 地质灾害易发性评价单元划分方法——以陕西省黄陵县为例[J]. 吉林大学学报, 2011, 41(2): 523-528. [24] 尚慧, 倪万魁, 程花. 斜坡单元划分在彭阳县地质灾害危险性区划中的应用[J]. 中国水土保持, 2011, 3: 48-50. [27] 刘吉平, 刘汉青, 曾忠平,等. 基于粗糙集理论滑坡影响因子评价研究——以三峡库区青干河流域为例[J]. 水文地质工程地质, 2010, 37(5): 118-122. [31] 刘辰, 刘修国, 陈启浩,等. 面向对象滑坡信息提取中DEM空间分辨率影响分析[J]. 遥感技术与应用, 2014, 29(04): 631-638. [32] 辛星. 黄土沟壑区浅层滑坡的制图和危险性评价研究[D]. 兰州: 兰州大学, 2018. [35] 刘壮, 李远耀, 张为,等. 基于改进斜坡单元法的山区城镇建设用地适宜性评价[J]. 安全与环境工程, 2019, v.26;No.126(6): 46-53+59. [40] 徐文刚, 邱恩喜. 基于统计数据的滑坡敏感性因子分析[J]. 四川地质学报, 2014, 34(3): 429-432. [41] 范强,巨能攀,向喜琼,黄健.基于结果验证的信息量法地质灾害易发性评价——以贵州省开阳县为例[J].人民长江,2015,46(15):65-68. [42] 于宪煜. 基于多源数据和多尺度分析的滑坡易发性评价方法研究[D]. 中国地质大学, 2016. [100]陕西省地质环境监测总站. 陕西省神木县地质灾害详细调查报告[R].西安:陕西省地质环境监测总站, 2014. [102] Freund Y, Mason L. The alternating decision tree learning algorithm[C]. 1999: 124-133. [117] Breiman L. Bagging predictors[J]. Machine learning, 1996, 24(2): 123-140. [118] Breiman L. Random forests[J]. Machine learning, 2001, 45(1): 5-32. |
中图分类号: | P642.22 |
开放日期: | 2026-06-26 |