论文中文题名: |
构造煤组合体加载破裂裂隙及渗透率 演化规律试验研究
|
姓名: |
王超
|
学号: |
19220089016
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井瓦斯灾害防治
|
第一导师姓名: |
李树刚
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
赵鹏翔
|
论文提交日期: |
2022-06-20
|
论文答辩日期: |
2022-06-01
|
论文外文题名: |
Experimental on loading fracture and permeability evolution law of tectonic coal combination subjects
|
论文中文关键词: |
构造煤组合体 ; 加载破裂 ; 裂隙演化 ; 声发射 ; 渗透系数
|
论文外文关键词: |
Tectonic coal assemblage ; Loading rupture ; Fracture evolution ; Acoustic emission ; permeability coefficient
|
论文中文摘要: |
︿
我国是煤炭生产和消费大国,随着能源结构转向清洁低碳的高质量阶段,国家对煤炭能源创新及安全高效发展提出了更高要求。但是,由于我国煤层地质条件复杂,导致矿井灾害事故多发,严重制约矿井安全生产。本文以山西某高瓦斯矿井煤层赋存特征为基础,制作构造煤组合体试件,开展构造煤组合体加载破裂过程力学、声发射及渗透率变化规律研究实验,得到以下结论:
(1)以山西某高瓦斯矿井煤层赋存特征为基础,利用类煤岩材料试件制作实验系统进行原生质煤、构造煤配比先导实验,得到不同配比原生质煤与构造煤的力学特性参数;最终按照原型基础参数挑选合适的力学参数配比,制作不同构造煤厚组合体试件。
(2)开展不同构造煤厚组合体单轴压缩力学及声发射特征实验,得到构造煤组合体试件抗压强度和弹性模量随构造煤厚占比增加呈逐渐减小的变化趋势,其中抗压强度平均降幅为0.375MPa;构造煤组合体峰值应力应变随构造煤厚占比增加不断增大,变化范围在3.25%~4.14%;结合分形理论,对构造煤组合体不同加载阶段裂隙网络进行分维处理,得到试件分形维数值普遍分布在0.88~1.31之间;基于声发射行为特征,得到构造煤组合体加载破裂前声发射较为稳定,能量变化较小,全原生质煤试件加载破裂前声发射增加明显,能量变化剧烈。
(3)利用煤岩芯渗透率自动测试仪进行渗透率测试实验,得到构造煤组合体渗透率与轴压、围压、气体压力之间呈负相关;进一步分析相同加载过程构造煤组合体渗透率受轴压的影响程度大于围压;并结合构造煤组合体加载过程中应力与裂隙之间的演化关系,探讨了构造煤组合体力学加载环境与渗透率的相互作用特征。
基于上述结论,本文得到了不同构造煤厚占比组合煤体加载破裂过程中的裂隙、声发射演化特征以及不同因素影响下的渗透特性,对采动卸压瓦斯抽采及矿井瓦斯灾害防治提供了一定的理论基础。
﹀
|
论文外文摘要: |
︿
China is a big country of coal production and consumption. With the energy consumption structure turning to the new normal high quality stage, the state puts forward higher requirements for the innovative development of coal energy, safe and efficient development. However, due to the complex geological conditions of coal seams in China, mine disasters and accidents occur frequently, which seriously restrict the safety of mine production. In this paper, based on the occurrence characteristics of coal seam in a high gas mine in Shanxi Province, the specimens of tectonic coal combination were made, and the mechanical, acoustic emission and permeability variation laws of tectonic coal combination during loading and fracture were studied. The following conclusions were obtained :
Based on the occurrence characteristics of coal seam in a high gas mine in Shanxi Province, the pilot experiment of the ratio of raw coal and tectonic coal was carried out by using the coal-like material specimen preparation experiment system, and the mechanical properties of raw coal and tectonic coal with different ratios were obtained. Finally, the appropriate mechanical parameters are selected according to the prototype basic parameters, and the composite specimens of different structural coal thickness are made.
The uniaxial compression mechanics and acoustic emission characteristics experiments of different structural coal thickness combinations were carried out, and the compressive strength and elastic modulus of structural coal combination specimens decreased gradually with the increase of structural coal thickness ratio, and the average decrease of compressive strength was 0.375 MPa ; the peak stress and strain of tectonic coal combination increased with the increase of tectonic coal thickness ratio, and the variation range was 3.25 % – 4.14 % ; combined with fractal theory, the fractal dimension of fracture network in different loading stages of tectonic coal combination is processed, and the fractal dimension values of specimens are generally distributed between 0.88 and 1.31. Based on the characteristics of acoustic emission behavior, it is obtained that the acoustic emission of tectonic coal combination is relatively stable and the energy change is small before the loading and fracture. The acoustic emission of all raw coal specimens increases significantly before the loading and fracture, and the energy change is intense.
The permeability test experiment was carried out by using the automatic permeability tester of coal rock core, and it was obtained that the permeability of tectonic coal combination was negatively correlated with axial pressure, confining pressure and gas pressure. Further analysis shows that the influence of axial pressure on the permeability of tectonic coal combination is greater than that of confining pressure during the same loading process. Combined with the evolution relationship between stress and fracture in the loading process of tectonic coal combination, the interaction characteristics between mechanical loading environment and permeability of tectonic coal combination are discussed.
Based on the above conclusions, this paper obtains the fracture, acoustic emission evolution characteristics and permeability characteristics under the influence of different factors in the process of loading and fracture of coal with different structural coal thickness ratio, which provides a theoretical basis for mining pressure relief gas drainage and mine gas disaster prevention.
﹀
|
参考文献: |
︿
[1] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211. [2] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960. [3] 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(05): 1187-1197. [4] Yuan L. Control of coal and gas outbursts in Huainan mines in China: A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 08(04): 559-567. [5] 张超林, 王恩元, 王奕博, 等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探, 2021, 49(04): 134-141. [6] 蒋长宝, 陈昱霏, 尹光志, 等. 中间主应力与层理方向对页岩力学和渗透特性影响的试验研究[J]. 岩石力学与工程学报, 2017, 36(07): 1570-1578. [7] 许江, 彭守建, 张超林, 等. 瓦斯抽采降压过程中温度对煤变形及渗透率的影响[J]. 煤炭科学技术, 2015, 43(02): 68-71+75. [8] 王家臣, 吕华永, 王兆会, 等. 特厚煤层卸压综放开采技术原理的实验研究[J]. 煤炭学报, 2019, 44(03): 906-914. [9] 程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报, 2021, 46(01): 180-198. [10] 王登科, 魏建平, 尹光志. 复杂应力路径下含瓦斯煤渗透性变化规律研究[J]. 岩石力学与工程学报, 2012, 31(02): 303-310. [11] 孙光中, 荆永滨, 张瑞林, 等. 轴向应力循环加卸载作用下含瓦斯煤渗透性研究[J]. 岩石力学与工程学报, 2016, 35(05): 928-938. [12] 许江, 曹偈, 李波波, 等. 煤岩渗透率对孔隙压力变化响应规律的试验研究[J]. 岩石力学与工程学报, 2013, 32(02): 225-230. [13] 高明忠, 王明耀, 谢晶, 等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报, 2020, 45(08): 2691-2703. [14] Cheng Y. P. , Pan Z. J. Reservoir properties of Chinese tectonic coal: A review[J]. Fuel, 2020, 260: 116350-116360, DOI: 10.1016/j.fuel.2019.116350. [15] 陈亮, 王恩元. 含瓦斯煤受载破坏瓦斯涌出的前兆特征研究[J]. 中国安全科学学报, 2020, 30(12): 79-84. [16] Zhao B. , Wen G. , Sun H. , et al. Similarity criteria and coal-like material in coal and gas outburst physical simulation[J]. International Journal of Coal Science & Technology, 2018, 05(02): 167-178. [17] 姚宇平, 周世宁. 含瓦斯煤的力学性质[J]. 中国矿业学院学报, 1988(01): 4-10. [18] 李小双, 尹光志, 赵洪宝, 等. 含瓦斯突出煤三轴压缩下力学性质试验研究[J]. 岩石力学与工程学报, 2010, 29 (S1): 3350-3358. [19] 赵洪宝, 李振华, 仲淑姮, 等. 单轴压缩状态下含瓦斯煤岩力学特性试验研究[J]. 采矿与安全工程学报, 2010, 27(01): 131-134. [20] Bayram F. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J]. Cold regions science and technology, 2012, 83(02): 98-102. [21] 张军伟, 姜德义, 赵云峰, 等. 分阶段卸荷过程中构造煤的力学特征及能量演化分析[J]. 煤炭学报, 2015, 40(12): 2820-2828. [22] 高魁, 刘泽功, 刘健, 等. 构造软煤的物理力学特性及其对煤与瓦斯突出的影响[J]. 中国安全科学学报, 2013, 23(02): 129-133. [23] 卢守青, 张永亮, 撒占友, 等. 软硬组合煤体塑性破坏与突出能量失稳判据[J]. 采矿与安全工程学报, 2019, 36(03): 583-592. [24] 邹俊鹏, 陈卫忠, 杨典森, 等. 循环荷载条件下原煤力学性质及损伤演化规律[J]. 煤炭学报, 2016, 41(07): 1675-1682. [25] 朱南南, 张浪, 舒龙勇, 等. 煤与瓦斯突出的微震前兆特性试验研究与预警案例分析[J]. 岩石力学与工程学报, 2018, 37(06): 1419-1429. [26] 马衍坤, 王恩元, 李忠辉, 等. 煤体瓦斯吸附渗流过程及声发射特性实验研究[J]. 煤炭学报, 2012, 37(04): 641-646. [27] 尹光志, 秦虎, 黄滚. 不同应力路径下含瓦斯煤岩渗流特性与声发射特征实验研究[J]. 岩石力学与工程学报, 2013, 32(07): 1315-1320. [28] Dong W. G. Acoustic Emission (AE) Propagation Attenuation Theory and Rule in Non-Perfect Elastic Coal and Rock[J]. Applied Mechanics & Materials, 2013, 477(07): 620-623. [29] Li J. G. , Liu H. Application Conditions on Acoustic Emission (AE) Technique Monitoring Coal and Rock Dynamic Disasters in Mines[J]. Advanced Materials Research, 2012, 413(22): 235-240. [30] Liu X. H. , Liu C. X. , Zhuang S. , et al. Laboratory Studies on Acoustic Emission Characteristics to Coal Dynamic Response under Variable Accelerative Load[J]. Applied Mechanics & Materials, 2014, 580: 623-627, DOI: 10.4028/www.scientific.net/AMM.580-583.623. [31] 邱兆云, 潘一山, 罗浩, 等. 有效围压对煤体破裂声发射信号影响研究[J]. 中国安全生产科学技术, 2015, 11(04): 47-53. [32] 赵洪宝, 尹光志. 含瓦斯煤声发射特性试验及损伤方程研究[J]. 岩土力学, 2011, 32(03): 667-671. [33] 高保彬, 李回贵, 李林, 等. 同组软硬煤煤样声发射及分形特征研究[J]. 岩石力学与工程学报, 2014, 33 (S2): 3498-3504. [34] 王常彬, 曹安业, 井广成, 等. 单轴受载下岩体破裂演化特征的声发射CT成像[J]. 岩石力学与工程学报, 2016, 35(10): 2044-2053. [35] Unteregger D. , Fuchs B. , Hofstetter G. A damage plasticity model for different types of intact rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 80(12): 402-411. [36] Zhao T. B. , Guo W. Y. , Lu C. P. , et al. Failure characteristics of combined coal-rock with different interfacial angles[J]. Geomechanics and Engineering, 2016, 11(03): 345-359. [37] Dai C. Q. , Wang L. H. , Zhao Z. H. , et al. Compression-shear strength criterion of coal-rock combination model considering interface effect[J]. Tunnelling and underground space technology, 2015. 47(02):193-199. [38] Zhao Z. , Lv X. , Wang W. , et al. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect[J]. SpringerPlus, 2016, 05(01):292-311. [39] 宋义敏, 姜耀东, 马少鹏, 等. 岩石变形破坏全过程的变形场和能量演化研究[J]. 岩土力学, 2012, 33(05): 1352-1356+1365. [40] 左建平, 谢和平, 吴爱民, 等. 深部煤岩单体及组合体的破坏机制与力学特性研究[J]. 岩石力学与工程学报, 2011, 30(01): 84-92. [41] Jie L. , Wang E. , Song D. , et al. Effect of rock strength on failure mode and mechanical behavior of composite samples[J]. Arabian Journal of Geosciences, 2014,08(07): 4527-4539. [42] 聂百胜, 何学秋, 王恩元, 等. 煤体剪切破坏过程电磁辐射与声发射研究[J]. 中国矿业大学学报, 2002(06): 65-67. [43] 李地元, 李夕兵, 李春林, 等. 单轴压缩下含预制孔洞板状花岗岩试样力学响应的试验和数值研究[J]. 岩石力学与工程学报, 2011, 30(06): 1198-1206. [44] 肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学, 2012, 33(11): 3251-3256. [45] 朱谭谭, 靖洪文, 苏海健, 等. 孔洞-裂隙组合型缺陷砂岩力学特性试验研究[J]. 煤炭学报, 2015, 40(07): 1518-1525. [46] Li D. , Wang E. , Kong X. , et al. Mechanical behaviors and acoustic emission fractal characteristics of coal specimens with a pre-existing flaw of various inclinations under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 116(01): 38-51. [47] 朱红光, 谢和平, 易成, 等. 岩石材料微裂隙演化的CT识别[J]. 岩石力学与工程学报, 2011, 30(06): 1230-1238. [48] 王宇, 李晓, 阙介民, 等. 基于CT图像灰度水平的孔隙率计算及应用[J]. 水利学报, 2015, 46(03): 357-365. [49] 李果, 张茹, 徐晓炼, 等. 三轴压缩煤岩三维裂隙CT图像重构及体分形维研究[J]. 岩土力学, 2015, 36(06): 1633-1642. [50] 钟江城, 王子辉, 王路军, 等. 基于CT三维重构的深部煤体损伤演化规律[J]. 煤炭学报, 2019, 44(05): 1482-1494. [51] 王刚, 秦相杰, 江成浩, 等. 温度作用下CT三维重建煤体微观结构的渗流和变形模拟[J]. 岩土力学, 2020, 41(05): 1750-1760. [52] 王登科, 张平, 浦海, 等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2243-2252. [53] 王登科, 张平, 魏建平, 等. CT可视化的受载煤体三维裂隙结构动态演化试验研究[J]. 煤炭学报, 2019, 44 (S2): 574-584. [54] Somerton W. H. , Sylemezolu I. M. , Dudley R. C. Effect of stress on permeability of coal[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1975, 12(05): 129-145. [55] Durucan S. , edwards J. S. The effects of stress and fracturing on permeability of coal[J]. Mining Science & Technology, 1986, 03(03): 205-216. [56] Gentzis T. , Deisman N. , Chalaturnyk R. J. Geomechanical properties and permeability of coals from the Foothills and Mountain regions of western Canada[J]. International Journal of Coal Geology, 2007, 69(03): 153-164. [57] Harpalania S. ,Schraufnagel R. A. Shrinkage of coal matrix with release of gas and its impact on permeability of coal[J]. Fuel, 1990, 69(05): 551-556. [58] Ma D. , Miao X. X. , Chen Z. Q. , et al. Experimental Investigation of Seepage Properties of Fractured Rocks Under Different Confining Pressures[J]. Rock Mechanics and Rock Engineering, 2013, 46(05): 2183-2183. [59] Wang H. , Xu W. Relationship Between Permeability and Strain of Sandstone During the Process of Deformation and Failure[J]. Geotechnical and Geological Engineering, 2013, 31: 347-353, DOI: 10.1007/s10706-012-9588-0. [60] Wang H. , Xu W. , Shao J. , et al. The gas permeability properties of low-permeability rock in the process of triaxial compression test[J]. Materials Letters, 2014, 116(13): 386-388. [61] Rui Z. , Jiang Z. , Qiang S. , et al. The relationship between the deformation mechanism and permeability on brittle rock[J]. Natural Hazards, 2013, 66(02): 1179-1187. [62] 姜德义, 张广洋, 胡耀华, 等. 有效应力对煤层气渗透率影响的研究[J]. 重庆大学学报(自然科学版), 1997(05): 24-27. [63] 谭学术, 鲜学福, 张广洋, 等. 煤的渗透性研究[J]. 西安矿业学院学报, 1994(01): 22-25+21. [64] 李志强, 鲜学福, 隆晴明. 不同温度应力条件下煤体渗透率实验研究[J]. 中国矿业大学学报, 2009, 38(04): 523-527. [65] 李波, 魏建平, 王凯, 等. 煤层瓦斯渗流非线性运动规律实验研究[J]. 岩石力学与工程学报, 2014, 33 (S1): 3219-3224. [66] Li Y. , Tang D. , Xu H. , et al. Experimental research on coal permeability: The roles of effective stress and gas slippage[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 481-488, DOI: 10.1016/j. jngse. 2014. 09. 004. [67] Zou J. , Chen W. , Yang D. , et al. The impact of effective stress and gas slippage on coal permeability under cyclic loading[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 236-248, DOI: 10.1016/j.jngse.2016.02.037. [68] 胡国忠, 王宏图, 范晓刚, 等. 低渗透突出煤的瓦斯渗流规律研究[J]. 岩石力学与工程学报, 2009, 28(12): 2527-2534. [69] 黄启翔, 尹光志, 姜永东. 地应力场中煤岩卸围压过程力学特性试验研究及瓦斯渗透特性分析[J]. 岩石力学与工程学报, 2010, 29(08): 1639-1648. [70] 蒋长宝, 黄滚, 黄启翔. 含瓦斯煤多级式卸围压变形破坏及渗透率演化规律实验[J]. 煤炭学报, 2011, 36(12): 2039-2042. [71] 潘荣锟, 王力, 陈向军, 等. 卸载煤体渗透特性及微观结构应力效应研究[J]. 煤炭科学技术, 2013, 41(07): 75-78. [72] 孟召平, 张纪星, 刘贺, 等. 考虑应力敏感性的煤层气井产能模型及应用分析[J]. 煤炭学报, 2014, 39(04): 593-599. [73] 李东印, 王文, 李化敏, 等. 重复加-卸载条件下大尺寸煤样的渗透性研究[J]. 采矿与安全工程学报, 2010, 27(01): 121-125. [74] 魏建平, 吴松刚, 王登科, 等. 温度和轴向变形耦合作用下受载含瓦斯煤渗流规律研究[J]. 采矿与安全工程学报, 2015, 32(01): 168-174. [75] 孙光中, 李建坤, 周英豪, 等. 不同应力路径下两种典型煤样瓦斯渗透性研究[J]. 西南大学学报(自然科学版), 2019, 41(12): 120-127. [76] 刘超, 黄滚, 赵宏刚, 等. 复杂应力路径下原煤力学与渗透特性试验[J]. 岩土力学, 2018, 39(01): 191-198. [77] 尹光志, 蒋长宝, 王维忠, 等. 不同卸围压速度对含瓦斯煤岩力学和瓦斯渗流特性影响试验研究[J]. 岩石力学与工程学报, 2011, 30(01): 68-77. [78] 蒋长宝, 尹光志, 黄启翔, 等. 含瓦斯煤岩卸围压变形特征及瓦斯渗流试验[J]. 煤炭学报, 2011, 36(05): 802-807. [79] 尹光志, 刘玉冰, 李铭辉, 等. 真三轴加卸载应力路径对原煤力学特性及渗透率影响[J]. 煤炭学报, 2018, 43(01): 131-136. [80] 王向宇, 周宏伟, 钟江城, 等. 三轴循环加卸载下深部煤体损伤的能量演化和渗透特性研究[J]. 岩石力学与工程学报, 2018, 37(12): 2676-2684. [81] 刘厅, 赵洋, 林柏泉. 双重卸压效应下煤体力学行为响应及对渗透率的影响规律[J]. 煤炭学报: 1-21. [82] 贾荔丹, 李波波, 李建华, 等. 采气–采煤阶段煤岩渗透率演化机制研究[J]. 岩石力学与工程学报, 2022, 41(01): 132-146. [83] 胡耀青, 赵阳升, 魏锦平. 三维应力作用下煤体瓦斯渗透规律实验研究[J]. 西安矿业学院学报, 1996(04): 20-23. [84] 张朝鹏, 高明忠, 张泽天, 等. 不同瓦斯压力原煤全应力应变过程中渗透特性研究[J]. 煤炭学报, 2015, 40(04): 836-842. [85] Zhi W. Y. , Lei Z. , Ding Y. H. , et al. Experimental study on the response characteristics of coal permeability to pore pressure under loading and unloading conditions[J]. Journal of Geophysics & Engineering, 2017, 14(05):1020-1031. [86] 祝捷, 唐俊, 王琪, 等. 含瓦斯煤渗透率演化模型和实验分析[J]. 煤炭学报, 2019, 44(06): 1764-1770. [87] 尹光志, 李小双, 赵洪宝, 等. 瓦斯压力对突出煤瓦斯渗流影响试验研究[J]. 岩石力学与工程学报, 2009, 28(04): 697-702. [88] 王刚, 程卫民, 郭恒, 等. 瓦斯压力变化过程中煤体渗透率特性的研究[J]. 采矿与安全工程学报, 2012, 29(05): 735-739+745. [89] 魏建平, 王登科, 位乐. 两种典型受载含瓦斯煤样渗透特性的对比[J]. 煤炭学报, 2013, 38 (S1): 93-99. [90] 魏建平, 秦恒洁, 王登科, 等. 含瓦斯煤渗透率动态演化模型[J]. 煤炭学报, 2015, 40(07): 1555-1561. [91] 郝忠, 蹇开林, 彭守建, 等. 煤与瓦斯突出过程中瓦斯流动规律的理论模型及数值解法[J]. 煤炭学报, 2020, 45 (S2): 833-840. [92] 赵洪宝, 李金雨, 刘一洪, 等. 不透气夹矸层对煤层瓦斯运移特性影响研究[J]. 采矿与安全工程学报, 2020, 37(04): 852-860. [93] Lu S. , Li L. , Cheng Y. , et al. Mechanical failure mechanisms and forms of normal and deformed coal combination containing gas: Model development and analysis[J]. Engineering Failure Analysis, 2017, 80(12): 241-252, DOI: 10.1016/ j.engfailanal.2017.06. 022. [94] Liu J. , Qin Y. Experimental study and evaluation of remoulded coal samples based on mechanics and permeability characteristics[J]. Arabian Journal of Geosciences, 2021, 14(01):14-23. [95] 许江, 鲜学福, 杜云贵, 等. 含瓦斯煤的力学特性的实验分析[J]. 重庆大学学报(自然科学版), 1993(05): 42-47. [96] 王汉鹏, 张庆贺, 袁亮, 等. 含瓦斯煤相似材料研制及其突出试验应用[J]. 岩土力学, 2015, 36(06): 1676-1682. [97] 朱传奇, 谢广祥, 王磊. 松软煤体波速演化规律与破坏程度量化指标[J/OL]. 煤炭学报. https://doi.org/10.13225/j.cnki.jccs.2021.1398. [98] 左建平, 陈岩, 张俊文, 等. 不同围压作用下煤-岩组合体破坏行为及强度特征[J]. 煤炭学报, 2016, 41(11): 2706-2713. [99] 孟召平, 章朋, 田永东, 等. 围压下煤储层应力-应变、渗透性与声发射试验分析[J]. 煤炭学报, 2020, 45(07): 2544-2551. [100] 尹光志, 蒋长宝, 李晓泉, 等. 突出煤和非突出煤全应力-应变瓦斯渗流试验研究[J]. 岩土力学, 2011, 32(06): 1613-1619. [101] 赵洪宝, 尹光志, 李小双. 突出煤渗透特性与应力耦合试验研究[J]. 岩石力学与工程学报, 2009, 28 (S2): 3357-3362. [102] 蒋长宝, 尹光志, 李晓泉, 等. 突出煤型煤全应力–应变全程瓦斯渗流试验研究[J]. 岩石力学与工程学报, 2010, 29(S2): 3482-3487. [103] 张磊, 田苗苗, 卢硕, 等. 不同含水率煤体液氮致裂渗透率变化规律及应力敏感性分析[J].岩土力学, 2022, 43(S1): 1-10.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2022-06-20
|