- 无标题文档
查看论文信息

论文中文题名:

 磁性MgFe2O4系列煤热解催化剂制备与性能研究    

姓名:

 李云龙    

学号:

 18213211039    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085216    

学科名称:

 工学 - 工程 - 化学工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程    

研究方向:

 煤催化热解多联产    

第一导师姓名:

 周安宁    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-22    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Preparation and performance of magnetic MgFe2O4 series catalysts for coal pyrolysis    

论文中文关键词:

 铁氧体磁性催化剂 ; 催化热解 ; 磁选回收 ; 焦油 ; 催化剂再生     

论文外文关键词:

 Ferrite magnetic catalyst ; Catalytic pyrolysis ; Magnetic separation recovery ; The tar ; Catalyst regeneration    

论文中文摘要:

西部地区富油煤资源丰富,煤热解是实现其高效低碳化清洁利用的重要途径。但传统的煤热解技术存在焦油产率低、品质差和煤气热值低等问题。深化催化热解基础研究是突破上述技术瓶颈的关键。为此,本文聚焦煤热解催化剂的设计策略创新与催化剂构效关系这一核心科学问题,以提高煤催化热解催化剂回收性能及提高焦油产率和品质为出发点,设计制备了系列磁性催化剂MgFe2O4、SiO2@MgFe2O4、HZSM-5@SiO2@MgFe2O4(HSMF)、Mo/MgFe2O4和Mo/HSMF。并且,以补连塔煤(BLcoal)为富油煤样,系统研究磁性催化剂结构、性质,以及回收再生次数等对富油煤催化热解产物分布及品质的影响。研究结果对于富油煤催化热解关键技术应用开发有一定理论指导价值,同时,对富油煤清洁低碳化高效利用有一定现实意义。主要研究结果如下:

(1) 通过溶胶凝胶法合成了磁性能稳定的MgFe2O4。采用溶胶凝胶法,结合XRD和VSM分析,研究了焙烧温度和升温速率对MgFe2O4结构和磁性的影响规律。结果表明,焙烧温度700℃,升温速率25℃/min条件下,所合成的MgFe2O4结构及磁性能较好,其达到了181.5 emu/g,经5次循环热处理后,MgFe2O4的结构和回收率无明显变化。

(2) 以MgFe2O4为核合成了具有核壳结构的磁性催化剂SiO2@MgFe2O4和HSMF。采用Stober法和原位生长法制备了SiO2@MgFe2O4和HSMF,通过XRD、SEM、N2低温吸脱附和VSM等方法对核壳磁性催化剂结构和磁性能进行了表征。结果表明,SiO2@MgFe2O4和HSMF具有核壳结构,HSMF比表面积与HZSM-5比表面积相近;与纯MgFe2O4相比,经SiO2隔离包覆后,SiO2@MgFe2O4饱和磁化强度下降了10.7 %, 进一步经HZSM-5载体层包覆后,HSMF饱和磁化强度总体下了29.3 %,其饱和磁化强度仍能达到128.2 emu/g。因此,包覆改性是影响MgFe2O4磁性关键因素。

(3) 以MgFe2O4和HSMF为载体,采用等体积浸渍法合成了负载体型Mo/MgFe2O4和Mo/HSMF催化剂。通过XRD、N2低温吸脱附和VSM等方法对核壳磁性催化剂结构和磁性能进行了表征。结果表明,由于金属氧化物的负载量小于10%,在XRD中未发现属于Mo的特征峰。与未负载金属的磁性催化剂相比,Mo/MgFe2O4的比表面积增加了373.7%,孔径减少了43.9%,Mo/HSMF的比表面积减少了13.8%,孔径减少了2.6%,这表明活性钼氧化物已成功负载到了磁性载体上,Mo/MgFe2O4和Mo/HSMF催化剂饱和磁化强度仅分别降低了0.6%和1.7%。

(4) 磁性催化剂可以有效的提高热解产物中焦油的产率及品质。在固定床反应器上,以BLcoal煤为研究样品,对所上述系列磁性催化剂进行了催化热解性能表征。研究了磁性催化剂组成、结构和磁性对热解产物分布的影响规律。结果表明,在氢气气氛下,催化剂的活性总体优于氮气气氛,且磁性催化剂的活性大小表现为Mo/HSMF>HSMF>Mo/MgFe2O4>MgFe2O4>SiO2@MgFe2O4;在氢气气氛下,焦油收率最高达到15.08 %,比原煤提高了5.87%。GC-MS分析表明,与无催化剂相比,在磁性催化剂上,煤催化热解产生的焦油中,稠环芳烃含量减少,脂肪烃含量增加。不同磁性催化剂上,脂肪烃含量增加的顺序为HSMF>MgFe2O4>SiO2@MgFe2O4。因此,在磁性催化剂存在下,BLcoal煤热解可实现焦油产率和品质的同步提高。

(5) 回收磁性催化剂经再生后仍保持较好的催化活性。采用磁选方法,从热解半焦产物中回收磁性催化剂,采用800℃焙烧1h处理进行回收催化剂的再生,结合XRD、N2低温吸脱附和VSM等分析,研究了催化剂再生与循环使用次数对其结构和催化活性的影响规律。结果表明,磁选法可从催化热解半焦中高效分离回收磁性催化剂,但积炭较为严重;经再生后,再生磁性催化剂回收率最低值仍高出加入量的0.51%,其中Mo/MgFe2O4经三次循环再生后,回收率仍可达到98%。这表明磁性催化剂积炭量较大。与新鲜催化剂相比,在氢气气氛下,催化剂磁性下降程度高于氮气气氛,饱和磁化强度下降程度顺序为:1R-MgFe2O4>1R-SiO2@MgFe2O4>1R-HSMF。这表明磁性核壳结构设计有利于保护磁核MgFe2O4免受热解反应的影响。BLcoal在再生磁性催化剂上热解产物分布和规律与新鲜磁性催化剂相近,但半焦产率增加,焦油收率略有下降。其中在三次再生后Mo/MgFe2O4催化剂上,热解焦油的产率仍可达到11.7%。

论文外文摘要:

The western region is abundant in oil-rich coal resources, and coal pyrolysis plays a paramount role in realizing the efficient utilization of low-carbon clean. The western region is abundant in oil-rich coal resources, and coal pyrolysis is an important way to realize its high-efficiency, low-carbon and cleaning utilization. However, the traditional coal pyrolysis technology has the problems of low tar yield, poor quality and low calorific value of coal gas. Deepening the basic research of catalytic pyrolysis is the key to break the above technical bottlenecks. Therefore, this paper has focused on the core scientific issues of the design innovation of coal pyrolysis catalysts and the structure-activity relationship of the catalysts. With the starting point of improving the recovery performance of coal catalytic pyrolysis catalysts and improving the yield and quality of tar, a series of magnetic catalysts has been designed and prepared, such as HZSM-5@SiO2@MgFe2O4(HSMF), Mo/HSMF,MgFe2O4,SiO2@MgFe2O4 and Mo/MgFe2O4. In addition, BLcoal was used as an oil-rich coal sample, and the structure, properties of magnetic catalysts, as well as the number of recycling and regeneration times , have been systematically studied on the distribution and quality of products from the catalytic pyrolysis of oil-rich coal. The research results have a certain theoretical guiding value for the application and development of the key technology for the catalytic pyrolysis of oil-rich coal, which have a certain practical significance for the cleaning, low-carbon and efficient utilization of oil-rich coal. The main research results were as follows:

(1) MgFe2O4 with stable magnetic properties was synthesized by sol-gel method. The effects of calcination temperature and heating rate on the structure and magnetic properties of MgFe2O4 were studied by sol-gel method combined with XRD and VSM analysis. The results show the structure and magnetic properties of MgFe2O4 have the best performance when the calcination temperature is 700℃ with the heating rate of 25℃/min, which reaches 181.5 emu/g. After five cycles of heat treatment, the structure and recovery rate of MgFe2O4 have no significant change.

(2) The magnetic catalysts SiO2@MgFe2O4 and HSMF with core-shell structure were synthesized with MgFe2O4 as the core. SiO2@MgFe2O4 and HSMF were prepared by Stober and in-situ growth method. The structure and magnetic properties of the core-shell magnetic catalyst were characterized by XRD, SEM, N2 low temperature adsorption-desorption, and VSM. The results show that SiO2@MgFe2O4 and HSMF have a core-shell structure, and the specific surface area of HSMF is similar to that of HZSM-5. Compared with pristine MgFe2O4, the saturation magnetization of SiO2@MgFe2O4 is decreased 10.7% after coating with SiO2. And after further coating with HZSM-5, the saturation magnetization of HSMF decreased 29.3%, even so its saturation magnetization can still reach 128.2 emu/g. Therefore, coating modification is a key factor affecting the magnetic properties of MgFe2O4.

(3) Mo/MgFe2O4 and Mo/HSMF catalysts were synthesized by the equal volume impregnation method with MgFe2O4 and HSMF as carriers. The structure and magnetic properties of the core-shell magnetic catalyst were characterized by XRD, N2 low temperature adsorption-desorption, and VSM. The results show that no characteristic signals belong to Mo are found in XRD, since the loading of metal oxides is less than 10%. Compared with the magnetic catalyst without metal supporting, the specific surface area of Mo/MgFe2O4 and Mo/HSMF increased 373.7%and13.8%, meanwhile the pore diameter decreased 43.9% and 2.6% respectively, which indicated that the active molybdenum oxide was loaded onto the magnetic carrier successfully. The saturation magnetization of Mo/MgFe2O4 and Mo/HSMF catalysts decreased 0.6% and 1.7%, respectively.

(4) Magnetic catalyst can effectively improve the yield and quality of tar in pyrolysis products. The above series of magnetic catalysts were characterized in a fixed bed reactor with BLcoal as the research sample. The effects of composition, structure and magnetism of magnetic catalysts on the distribution of pyrolysis products were investgated. The results show that the activity of the catalyst in hydrogen atmosphere is better than that in nitrogen atmosphere, and the activity of the magnetic catalyst is Mo/HSMF> HSMF > Mo/MgFe2O4 > MgFe2O4 > SiO2@MgFe2O4. GC-MS analysis showed that the content of polycyclic aromatic hydrocarbons decreased and the content of aliphatic hydrocarbons increased in the tar produced of coal catalytic pyrolysis on magnetic catalyst compared with that without catalyst. On different magnetic catalysts, the increasing order of aliphatic hydrocarbon content is HSMF>MgFe2O4>SiO2@MgFe2O4. Therefore, in the presence of magnetic catalyst, the yield and quality of tar can be improved simultaneously.

(5) The magnetic catalyst remained positive catalytic activity after recycle experiments. Magnetic catalyst was recovered from pyrolysis semi coke by magnetic separation. The catalyst was calcined at 800 ℃ for 1 h for regeneration. The effects of regeneration and recycling times on the structure and catalytic activity of the catalyst were studied by XRD, N2 adsorption-desorption and VSM. The results show that magnetic separation can effectively separate and recover magnetic catalyst from catalytic pyrolysis semi coke, but carbon deposition is serious; after regeneration, the lowest recovery of regenerated magnetic catalyst is still higher than 0.51% of the added amount, and the recovery of Mo/MgFe2O4 can still reach 98% after three cycles of regeneration. This indicates that the amount of carbon deposited on the magnetic catalyst is abundant. Compared with the fresh catalyst, the decrease degree of magnetic properties of the catalyst in hydrogen atmosphere is higher than that in nitrogen atmosphere, and the order of saturation magnetization decrease degree is: 1R-MgFe2O4>1R-SiO2@MgFe2O4>1R-HSMF. This indicates that the design of magnetic core-shell structure is beneficial to protect the magnetic core MgFe2O4 from pyrolysis reaction. The distribution and regularity of pyrolysis products of BLcoal on the regenerated magnetic catalyst is similar to that of the fresh magnetic catalyst, but the yield of semi-coke increases and the yield of tar decreases slightly. Among them, on the Mo/MgFe2O4 catalyst after three regenerations, the yield of pyrolysis tar can still reach 11.7%.

参考文献:

[1]谢克昌. "十四五"能源规划需两手抓[J]. 能源评论, 2019(9):1-1.

[2]彭苏萍,张博,王佟.我国煤炭资源“井”字形分布特征与可持续发展战略[J].中国工程科学,2015,17(09):29-35.

[3]张军兴.磁性核壳结构煤定向热解催化剂的制备及性能研究[D].西安科技大学,2019.

[4]贺新福,张小琴,周均,等.煤热解气相焦油原位催化裂解提质研究进展[J].应用化工,2018,47(07):1513-1517.

[5]孙任晖,何立新,郜丽娟,等.宝日褐煤及其干燥煤和半焦的润湿热变化规律[J].煤炭转化,2015,38(02):14-18.

[6]Zhang D, Liu P, Lu X, et al. Upgrading of low rank coal by hydrothermal treatment: Coal tar yield during pyrolysis[J]. Fuel Processing Technology,2016,141.

[7]倪明江,李敏,方梦祥,等.富氢气氛对煤热解特性的影响[J].热力发电,2015(6):36-41.

[8]宗煜,杨志彬,金云学,等.焦炉煤气气氛下甲烷CO2重整改质的热力学研究[J].煤化工,2016, 044(002):25-29.

[9]王婷婷,靳立军,石巧囡,等.气氛和预氧化对褐煤热解焦油产率影响的研究[J].煤炭技术,2017,36(10):274-276.

[10]Dorado C, Mullen C A, Boateng A A. H-ZSM5 Catalyzed Co-Pyrolysis of Biomass and Plastics[J]. Acs Sustainable Chemistry & Engineering, 2017, 2(2):301–311.

[11]Wei J, Yan G, Guo Q, et al. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity[J]. Bioresource Technology, 2017, 227:345.

[12]Tchapda A H , Krishnamoorthy V , Yeboah Y D , et al. Analysis of tars formed during co-pyrolysis of coal and biomass at high temperature in carbon dioxide atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128(nov.):379-396.

[13]贺新福,杨蕾,吴红菊,等.煤热解制焦油的工艺研究进展[J].广州化工,2014(12).

[14]王远丽.焦热载体下热解气氛影响低阶煤流化床热解特性的实验研究[D].浙江大学,2020.

[15]臧立彬,崔虎锋,李庆春.弱氧化气氛下烟煤热解特性及热解产物组成[J].煤田地质与勘探,2020,48(05):34-39.

[16]刘源,贺新福,杨伏生,等.热解温度及气氛变化对神府煤热解产物分布的影响[J].煤炭学报,2015,40(S2):497-504.

[17]朱学栋,朱子彬,朱学余,等.煤化程度和升温速率对热解分解影响的研究[J].煤炭转化,1999,22( 2) :43-47.

[18]郭树才.煤化工工艺学[M].北京:化学工业出版社,1992.

[19]赵忠维.升温速率对不同变质程度煤自燃影响实验研究[J].煤,2021,30(01):27-33.

[20]鞠付栋,陈汉平,杨海平,等.不同变质煤热解和气化中燃料氮的转化规律[J].煤炭转化,2011,34(03):21-26.

[21]莫宝庆,白金锋,刘洋,等.不同变质程度炼焦煤的热解特性研究[J].辽宁科技大学学报,2019,42(05):371-373+400.

[22]吕太,张翠珍,吴超.粒径和升温速率对煤热分解影响的研究[J].煤炭转化,2005(01):17-20.

[23]崔丽萍,蔡会武.粒度和升温速率对黄陵煤热解动力学的影响[J].应用化工,2016(S2):201-204.

[24]张健,吴升潇,孔少亮,等.煤热解影响因素文献综述[J].山东化工,2016,45(12):56-57+61.

[25]苗青,郑化安,张生军,等.低温煤热解焦油产率和品质影响因素研究[J].洁净煤技术, 2014(4):77-82.

[26]高晋生.煤的热解、炼焦和煤焦油加工[M].化学工业出版社, 2010.

[27]Niksa S, Liu G, Hurt R H. Coal conversion submodels for design applications at elevated pressures: Part I. Devolatilization and char oxidation [J].Progress in Energy and Combustion Science,2003,29( 5):425-477.

[28]熊源泉,刘前鑫,章明耀.加压条件下煤热解反应动力学的实验研究[J].热能动力工程,1997,12( 3):77- 81.

[29]赵小楠,丁力,郭启海,等.实验条件对天脊褐煤热解产物的影响研究[J].煤炭加工与综合利用,2017(02):49-52+64.

[30]吴洁,狄佐星,罗明生,等.N_2气氛下温度和压力对煤热解的影响[J].化工进展,2019,38(S1):116-121.

[31]敦启孟,陈兆辉,皇甫林,等.温度和停留时间对煤热解挥发分二次反应的影响[J].过程工程学报,2018,18(01):140-147.

[32]张俊杰,徐绍平,王光永,等.停留时间对低阶煤快速热解产物分布、组成及结构的影响[J].化工进展,2019,38(03):1346-1352.

[33]郭延红,伏瑜.Fe_2O_3/CaO复合催化剂对低阶煤催化热解行为的影响[J].煤炭科学技术,2017,45(04):181-187.

[34]郭红闵,吴桐.Co-Ni-Ca-Na熔融盐催化剂对煤热解的影响及动力学分析[J].能源与节能,2020(01):37-40.

[35]孙任晖,高鹏,刘爱国,等.低阶煤催化热解研究进展及展望[J].洁净煤技术, 2016, 22(01):54-59.

[36]王东,马士伟, 向文国,等.Fe/CaO催化剂对脱灰徐州烟煤热解特性的影响[J].化工进展,2020, v.39;No.341(02):148-153.

[37]李刚. 基于过渡金属氧化物/USY催化剂的神东煤催化热解研究[D].西北大学,2018.

[38]杨晓霞,田大香,黄银.钴系催化剂对神府煤热解油收率及品质的影响[J].煤炭技术,2018,37(05):296-298.

[39]郑小峰,周安宁,杨晓霞.铁系催化剂对神府煤加氢热解焦油收率的影响[J].广州化工,2016,44(05):100-102+105.

[40]张琦.胜利褐煤催化热解的产物特性及动力学研究[D].中国矿业大学,2014.

[41]张彦军.低阶煤对微波的介电响应及其微波热解特性研究[D].中国矿业大学(北京),2018.

[42]梁丽彤,张乾,黄伟,等.低阶煤催化解聚半焦的孔结构特点与CO_2气化反应性[J].煤炭学报,2020,45(10):3573-3579.

[43]常慧.预处理对低变质煤热解特性影响的研究[D].西北大学,2019.

[44]陈丽铎,姜震,于瑞敏,等.磁性催化剂的研究进展[J]. 化学工程师(2期):52-55.

[45]解从霞,刘悦,于世涛.磁性催化剂的研究进展[J]. 青岛科技大学学报(自然科学版), 2015, 036(003):237-244.

[46]张续成.磁性碳基固体酸催化剂的制备及其应用研究[D]. 中国科学技术大学, 2017.

[47]齐荣.磁性纳米固体碱催化剂的结构设计与性能研究[D]. 北京化工大学, 2003.

[48]武攀峰.基于Keggin型多酸的易回收高活性磁性复合材料的制备及催化性能研究[D]. 西北大学.

[49]谢小莉.磁性催化剂的研究进展[J]. 广州化工, 2010(04):20-22.

[50]杨巧珍.层状前驱体制备尖晶石铁氧体及其应用性能研究[D]. 北京化工大学, 2005.

[51]曹建文,田晓霞,蒙澳,等.铁酸镁/氧化锌纳米磁性复合材料的光催化性能[J].人工晶体学报,2020,49(03):462-467.

[52]Miguel Clemente-León, Coronado E , Primo V , et al. Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide[J]. Solid State Sciences, 2008, 10(12):1807-1813.

[53]Virginia Dávila, Enrique Lima, Silvia Bulbulian, et al. Mixed Mg(Al)O oxides synthesized by the combustion method and their recrystallization to hydrotalcites, Microporous and Mesoporous Materials ,Volume 107, Issue 3,2008,Pages 240-246,ISSN 1387-1811

[54]Zhao J, Yang L, Chen T, et al. Magnetic Co1?xZnxFe2O4 granular films fabricated via layered double hydroxide precursors[J]. Journal of Physics and Chemistry of Solids, 2012, 73(12):1500-1504.

[55]刘大鹏,冯锡岚,李强.一种稳定性好的纳米金属催化剂及其制备方法与应用, CN108579763A[P].

[56]孙鹏飞,颉克蓉,张锋伟,等.生物相容性Fe3O4@SiO2纳米粒子的合成及性能[J].中国组织工程研究, 2011, 15(51):9579-9582.

[57]Zhao W, Gu J, Zhang L, et al . Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. Journal of the American Chemical Society, 2005, 127(25):8916-8917.

[58]季朝阳.一锅法制备二氧化硅包覆的金属纳米粒子及其在光限幅材料中的应用[D].青岛科技大学,2020.

[59]Jinwoo Lee Dr.,Youjin Lee, et al. Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and their Application as Magnetically Separable High‐Performance Biocatalysts[J]. Small,2008,4(1).

[60]Chae H S, Sang D K, Shang H P, et al. Core-shell structured Fe3O4 @SiO2, nanoparticles fabricated by sol–gel method and their magnetorheology [J]. Colloid & Polymer Science, 2016, 294(4):647-655.

[61]彭红霞,胡传跃,吴腾宴,等.Fe3O4@SiO2@mTiO2介孔多功能纳米复合颗粒的制备及载药能力[J].无机化学学报, 2016, 32(7):1154-1160.

[62]赵琛.磁性负载型超强酸催化的锡林浩特褐煤的加氢裂解[D].中国矿业大学,2016.

[63]徐美玲.新疆皮里青次烟煤的逐级热溶与固体超强碱催化的加氢转化[D].中国矿业大学,2020.

[64]潘冠福.补连塔煤燃烧特性综合分析[J].当代化工,2019,48(07):1384-1387.

中图分类号:

 TQ530.2    

开放日期:

 2023-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式