论文中文题名: |
紧致平面阵列 Massive MIMO 系统波束方向图校准研究
|
姓名: |
袁茵
|
学号: |
20207040029
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
081001
|
学科名称: |
工学 - 信息与通信工程 - 通信与信息系统
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
通信与信息工程学院
|
专业: |
信息与通信工程
|
研究方向: |
无线通信
|
第一导师姓名: |
庞立华
|
第一导师单位: |
西安科技大学通信与信息工程学院
|
论文提交日期: |
2023-06-02
|
论文答辩日期: |
2023-06-15
|
论文外文题名: |
Research on Beam Pattern Calibration of Compact Planar Array Massive MIMO system
|
论文中文关键词: |
大规模多输入多输出 ; 互耦 ; 波束赋形 ; 非均匀阵列 ; 码本
|
论文外文关键词: |
Massive MIMO ; Mutual coupling ; Beamforming ; Non-uniform array ; Codebook
|
论文中文摘要: |
︿
大规模多输入多输出(Massive Multiple-Input Multiple-Output,Massive MIMO)技术可以显著提高无线传输的空间自由度、抗干扰能力、频谱效率等。它作为第五代移动通信(The 5th Generation Mobile Communication,5G)系统关键技术之一,也将在未来移动通信系统中发挥重要作用。Massive MIMO技术是通过在基站部署大规模天线阵列来实现的,然而由于物理空间的制约,阵列中的阵元高密度排布,导致阵元间产生电磁互耦合效应,引起波束方向图畸变,使系统性能变差。因此,本文在紧致平面阵列 Massive MIMO系统下,采用优化算法,解决波束方向图畸变问题。
(1)在获知信道状态信息的前提下,以波束方向图畸变最小为目标,提出一种互耦抑制波束赋形算法。首先基于信道状态信息得到理想忽略互耦影响情况下的波束方向图,然后采用感应电动势方法,建模互耦矩阵表征互耦合效应,进而得到考虑耦合后的波束方向图。以考虑耦合前后方向图畸变最小为目标,同时增加基站功率约束和用户间干扰功率约束,建立优化问题。通过卡鲁什-库恩-塔克条件和拉格朗日乘子法求解优化问题,得到互耦抑制波束赋形。仿真结果表明,在信噪比(Signal to Noise Ratio,SNR)为-5dB至30dB范围内,该算法的平均频谱效率分别比迫零算法、最小均方误差算法、块对角化算法提高了14.16%、13.27%、12.41%。即,考虑耦合时所提算法性能优于传统波束赋形算法的性能,且能逼近理想忽略互耦影响情况下的性能,有效解决了波束方向图畸变问题,提高了系统频谱效率。
(2)由于Massive MIMO系统获知信道状态信息的开销很大,进一步在固定阵列面积和阵元数的前提下,以阵列方向图主瓣增益差异最小为目标,在无需获知信道状态信息的条件下,提出一种非均匀阵列拓扑和激励幅值联合优化的算法,并设计匹配的非均匀阵列码本。首先得到相同阵列孔径和阵元数且忽略耦合效应的均匀阵列方向图,然后采用感应电动势方法,建模互耦矩阵表征互耦合效应,进而推导得到考虑耦合效应的非均匀阵列方向图。以非均匀阵列方向图主瓣增益逼近均匀阵列方向图主瓣增益为目标,同时增加非均匀阵列峰值旁瓣电平约束、阵元位置不重叠约束以及阵列孔径约束,建立优化问题。通过非精确块坐标下降法将复杂优化问题分解为多个子问题,进行迭代求解,得到非均匀阵列拓扑和激励幅值。然后根据上述优化结果设计非均匀阵列码本。仿真结果显示在所考虑的SNR范围内,所设计的非均匀阵列匹配所设计码本的平均频谱效率相比于均匀阵列使用经典商用离散傅里叶变换码本情况下提升了62.67%。相同阵列面积下的非均匀互质平面阵列和互质L型阵列的平均频谱效率分别是所设计阵列的46.99%和35.45%。即,所设计阵列和码本能够在低系统开销情况下有效解决波束方向图畸变问题,实现了更高的系统性能。
﹀
|
论文外文摘要: |
︿
Massive multiple-input multiple-output (MIMO) technology can significantly improve the spatial freedom, anti-interference capability, and spectral efficiency of wireless transmission. It is one of the key technologies of The 5th generation mobile communication (5G) system and will also play an important role in the future mobile communication system. Massive MIMO technology is realized by deploying massive antenna arrays at base stations, however, due to physical space constraints, the array elements in the array are arranged in high density, resulting in electromagnetic mutual coupling effects between the array elements, causing distortion of the beampattern and deteriorating the system performance. Therefore, in this paper, an optimization algorithm is used to solve the beampattern distortion problem under the tight planar array massive MIMO system.
(1)A mutual coupling suppression beamforming algorithm is proposed with the objective of minimizing the distortion of the beampattern under the premise of obtaining the channel state information. Firstly, the beampattern with the neglect of mutual coupling influence under ideal condition is obtained based on the channel state information, and then the mutual coupling effect is characterized by modeling the mutual coupling matrix using the induced electromotive force method, and then the beampattern after considering the coupling is obtained. With the objective of minimizing distortion of the beampattern before and after considering the coupling, the optimization problem is established by adding both the base station power constraint and the inter-user interference power constraint. The mutual coupling suppression beam beamforming is obtained by solving the optimization problem with the Karush-Kuhn-Tucker condition and the lagrange multiplier method. The simulation results show that the average spectral efficiency of this algorithm is improved by 14.16%, 13.27%, and 12.41% compared to the zero forcing algorithm, minimum mean square error algorithm, and block diagonalization algorithm, respectively, in the signal to noise ratio (SNR) range of -5dB to 30dB. That is, the performance of the proposed algorithm is better than that of theconventional beamforming algorithm when coupling is considered, and it can approximate the performance in the ideal case of neglecting the influence of mutual coupling, effectively solving the beampattern distortion problem and improving the system spectral efficiency.
(2)Due to the high overhead of obtaining channel state information in Massive MIMO systems, under the premise of fixed array area and array element number,we further propose an algorithm without obtaining channel state information for joint optimization of nonuniform array topology and excitation amplitude and design matching nonuniform array codebook, with the objective of minimizing the difference in the main lobe gain of the array pattern. Firstly, the uniform array pattern with the same array aperture and array element number and neglecting the coupling effect is obtained, and then the mutual coupling effect is characterized by modeling the mutual coupling matrix using the induced electromotive force method, and then the non-uniform array pattern with considering the coupling effect is deduced. The main lobe gain of the non-uniform array pattern approximates the main lobe gain of the uniform array pattern as the target, while adding the non-uniform array peak sidelobe level constraint, the array element position non-overlap constraint and the array aperture constraint to establish the optimization problem. The complex optimization problem is decomposed into multiple subproblems by the inexact block coordinate descent method and solved iteratively to obtain the nonuniform array topology and excitation amplitude. Then the non-uniform array codebook is designed based on the above optimization results. The simulation results show that the average spectral efficiency of the designed non-uniform array matching the designed codebook is improved by 62.67% compared to the uniform array using the classical commercial discrete fourier transform codebook in the considered SNR range. The average spectral efficiencies of the non-uniform coprime planar array and coprime L-shaped array with the same array area are 46.99% and 35.45% of the designed arrays, respectively. That is, the designed array and codebook can effectively solve the beampattern distortion problem with low system overhead and achieve higher system performance.
﹀
|
参考文献: |
︿
[1]ERICSSON, Ericsson Mobility Report: Special edition world economic forum, white paper[M]. Stockholm, Sweden: Ericsson, 2019. [2]Lin Zhang, Ying-Chang Liang, Dusit Niyato.6G Visions:Mobile Ultra-Broadband, Super Internet-of-Things,and Artificial Intelligence[J].中国通信, 2019, 16(08):1- 14. [3]赵亚军, 郁光辉, 徐汉青. 6G 移动通信网络: 愿景, 挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963-987. [4]Giordani M, Polese M, Mezzavilla M, et al. Toward 6G networks: Use cases and technologies[J]. IEEE Communications Magazine, 2020, 58(3): 55-61. [5]Zong B, Fan C, Wang X, et al. 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 18-27. [6]Strinati E C, Barbarossa S, Gonzalez-Jimenez J L, et al. 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 42-50. [7]Bi Q. Ten trends in the cellular industry and an outlook on 6G[J]. IEEE Communications Magazine, 2019, 57(12): 31-36. [8]卢安安, 高西奇. 大规模MIMO传输技术研究与展望[J]. 中国科学基金, 2020, 34(2): 186-192. [9]Marzetta T L, Yang H. Fundamentals of massive MIMO[M]. Cambridge University Press, 2016. [10]John S, Akinola E, Ibikunle F, et al. Modeling of Orthogonal Frequency Division Multiplexing (OFDM) for Transmission in Broadband Wireless Communications[J]. Emerging Trends in Computing and Information Sciences, 2012, 3(4): 534-539. [11]Liu G, Huang Y, Li N, et al. Vision, requirements and network architecture of 6G mobile network beyond 2030[J]. China Communications, 2020, 17(9): 92-104. [12]Kammoun A, Alouini M S. Elevation beamforming with full dimension MIMO architectures in 5G systems: A tutorial[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3238-3273. [13]Ezzati V, Fakharzadeh M, Farzaneh F, et al. Effect of Antenna Coupling on the SNR Improvement of Mm-Wave Massive MIMO for 5G[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 417-418. [14]丁志清, 邢贝贝, 姚婷,等. 一种5G手机的紧凑型16单元多频MIMO天线[J]. 太赫兹科学与电子信息学报, 2019, 17(6): 1017-1022. [15]Biswas S, Masouros C, Ratnarajah T. Performance analysis of large multiuser MIMO systems with space-constrained 2-D antenna arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(5): 3492-3505. [16]Chen S, Sun S, Gao Q, et al. Adaptive beamforming in TDD-based mobile communication systems: State of the art and 5G research directions[J]. IEEE Wireless Communications, 2016, 23(6): 81-87. [17]Ghorbani Z, Hosseini S E. Mutual Coupling Compensation in Array Antennas Using Isolated-Element Pattern Approach[C]//2019 Sixth Iranian Conference on Radar and Surveillance Systems. IEEE, 2019: 1-3. [18]Mei X, Wu K L. How low does mutual coupling need to be for MIMO antennas[C]//2018 IEEE International Symposium On Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018: 1579-1580. [19]Khan S, Sajjad H, Ozdemir M K, et al. Mutual coupling compensation in receiving antenna arrays[C]//2020 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE, 2020: 1-2. [20]SalarRahimi M, Vandenbosch G A E. Decreasing mutual coupling in a phased array using a mutual coupling based element[C]//2019 IEEE Asia-Pacific Microwave Conference (APMC). IEEE, 2019: 1098-1100. [21]Arnold B T, Jensen M A. The effect of antenna mutual coupling in a mimo radar system[C]//2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017: 2281-2282. [22]Ahmadi N, Poormohammad S, Farzaneh F. Sub-optimal beamforming for 3D cylindrical arrays of dipoles including the mutual coupling effects[C]//2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2019: 1298-1302. [23]SalarRahimi M, Vandenbosch G A E. Decreasing mutual coupling in a phased array using a mutual coupling based element[C]//2019 IEEE Asia-Pacific Microwave Conference (APMC). IEEE, 2019: 1098-1100. [24]Raniszewski A, Piasecki P. The investigation of mutual coupling effects on a large array antenna radiation pattern[C]//2018 22nd International Microwave and Radar Conference (MIKON). IEEE, 2018: 52-56. [25]Sun X, Tang M C, Xiong D, et al. Mutual Coupling Reduction between High-density, Broadband, Dual-polarized Cross-dipoles Using Composite Isolator[C]//2019 International Applied Computational Electromagnetics Society Symposium-China (ACES). IEEE, 2019, 1: 1-2. [26]Alqadami A S M, Nguyen-Trong N, Bialkowski K, et al. Mutual coupling reduction in wideband electromagnetic medical imaging antenna array using compact electromagnetic band gap[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 999-1000. [27]Faraz F, Li Q, Chen X, et al. Mutual coupling reduction for linearly arranged MIMO antenna[C]//2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). IEEE, 2019: 1-3. [28]Ameen A M, Yousef B M, Attiya A M. Mutual coupling reduction between mm-wave microstrip antennas using CSRR metamaterial structure[C]//2020 37th National Radio Science Conference (NRSC). IEEE, 2020: 48-56. [29]Zhang J, Yan S, Hu X, et al. Reduction of mutual coupling for wearable antennas[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). IEEE, 2019: 1-2. [30]Panugothu S R N, Gundugallu P, Manikandan T, et al. Analysis of Mutual Inductance Between Rectangular Structured Wireless Coupled Coils with Different Misalignments Using Finite Element Modeling[C]//2019 National Power Electronics Conference (NPEC). IEEE, 2019: 1-5. [31]Sarkar D, Mikki S, Antar Y. On the design of four-element pattern diversity MIMO antennas for mutual coupling reduction[C]//2020 URSI Regional Conference on Radio Science (URSI-RCRS). IEEE, 2020: 1-3. [32]Yang Y, Mao X, Jiang G, et al. Spatially separated nested vector-sensor array with reduced mutual coupling[J]. IEEE Sensors Journal, 2019, 19(14): 5801-5817. [33]Abd El-Raheem M A, Khaled E M. Design of a Planar Array of Microstrip Antennas with Reduced Mutual Coupling for Medical Imaging[C]//2019 7th International Japan-Africa Conference on Electronics, Communications, and Computations,(JAC-ECC). IEEE, 2019: 188-191. [34]Luan H, Chen C, Chen W, et al. Mutual coupling reduction of closely E/H-plane coupled antennas through metasurfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 1996-2000. [35]Meng D, Wang X, Shen C, et al. DOA Estimation with Unknown Mutual Coupling for Monostatic MIMO Radar via Weighted Block Sparse Reconstruction[C]//2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020: 190-192. [36]Tian J, Liang Y, Huang Q. Mutual Coupling Calibration for Adaptive Array Based on the Mutual Coupling Grid[C]//2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2019: 1-4. [37]Tian J, Liang Y, Huang Q. Mutual Coupling Calibration for Adaptive Array Based on the Mutual Coupling Grid[C]//2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2019: 1-4. [38]Yue Y, Xu Y, Zhuang J, et al. Mutual coupling self-calibration for parameter estimation with vector antennas[C]//2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). IEEE, 2019: 1-5. [39]Neil C T, Garcia-Rodriguez A, Smith P J, et al. On the Performance of Spatially Correlated Large Antenna Arrays for Millimeter-Wave Frequencies[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 132-148. [40]Amani N, Bencivenni C, Glazunov A A, et al. MIMO channel capacity gains in mm-wave LOS systems with irregular sparse array antennas[C]//2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 2017: 264-265. [41]Sahad A J, Islam M S, Islam M R, et al. Design and Analysis of a Non-Uniform Planar Antenna Array[C]//2020 IEEE Region 10 Symposium (TENSYMP). IEEE, 2020: 1140-1143. [42]Minvielle P, Tantar E, Tantar A A, et al. Sparse antenna array optimization with the cross-entropy method[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 2862-2871. [43]Rajamäki R, Chepuri S P, Koivunen V. Hybrid beamforming for active sensing using sparse arrays[J]. IEEE Transactions on Signal Processing, 2020, 68: 6402-6417. [44]Pinchera D, Migliore M D, Schettino F, et al. Antenna arrays for line-of-sight massive MIMO: Half wavelength is not enough[J]. Electronics, 2017, 6(3): 57. [45]Rahardjo E T, Sandi E, Zulkifli F Y. Design of linear sparse array based on the Taylor line source distribution element spacing[C]//2017 IEEE Asia Pacific Microwave Conference (APMC). IEEE, 2017: 61-64. [46]Peng W, Li Y, Peng Y, et al. Non-Uniform Linear Antenna Array Design and Optimization for Millimeter-Wave Communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7343-7356. [47]Zheng H, Zhou C, de Almeida A L F, et al. DOA estimation via coarray tensor completion with missing slices[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 5053-5057. [48]Zheng H, Shi Z, Zhou C, et al. Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array[J]. IEEE Signal Processing Letters, 2021, 28: 1545-1549. [49]Jang D, Hur J, Park J, et al. Design of a non-uniform 8-element array for passive coherent location systems[C]//2019 International Symposium on Antennas and Propagation (ISAP). IEEE, 2019: 1-2. [50]Tuan S C. Optimization analysis of non-uniform array antennas for millimeter waves[C]//2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). IEEE, 2018: 1-3. [51]塞吉·N.马卡洛夫, SergeyN.Makarov, 马卡洛夫,等. 通信天线建模及其MATLAB仿真分析[M]. 北京邮电大学出版社, 2006. [52]Fallahi R, Roshandel M. Effect of mutual coupling and configuration of concentric circular array antenna on the signal-to-interference performance in CDMA systems[J]. Progress In Electromagnetics Research, 2007, 76: 427-447. [53]Liu Y, Li M, Haupt R L, et al. Synthesizing shaped power patterns for linear and planar antenna arrays including mutual coupling by refined joint rotation/phase optimization[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4648-4657. [54]Echeveste J I, de Aza M A G, Zapata J. Shaped beam synthesis of real antenna arrays via finite-element method, floquet modal analysis, and convex programming[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1279-1286. [55]Yang F, Yang S, Long W, et al. Synthesis of low-sidelobe 4-D heterogeneous antenna arrays including mutual coupling using iterative convex optimization[J]. IEEE transactions on antennas and propagation, 2020, 68(1): 329-340. [56]Bencivenni C, Ivashina M V, Maaskant R, et al. Design of maximally sparse antenna arrays in the presence of mutual coupling[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 159-162. [57]Yan F, Yang P, Yang F, et al. Synthesis of pattern reconfigurable sparse arrays with multiple measurement vectors FOCUSS method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 602-611. [58]Gong Y, Xiao S, Wang B Z. An ANN-based synthesis method for nonuniform linear arrays including mutual coupling effects[J]. IEEE Access, 2020, 8: 144015-144026. [59]Wang F, Bialkowski M E, Liu X. Performance of block diagonalization broadcasting scheme for multiuser MIMO system operating in presence of spatial correlation and mutual coupling[J]. Int'l J. of Communications, Network and System Sciences, 2010, 3(03): 266. [60]Chen X, Zhang S, Li Q. A review of mutual coupling in MIMO systems[J]. IEEE Access, 2018, 6: 24706-24719. [61]Balanis C A. Antenna theory: analysis and design[M]. John wiley & sons, 2015. [62]Masouros C, Chen J, Tong K, et al. Towards massive-MIMO transmitters: On the effects of deploying increasing antennas in fixed physical space[C]//2013 Future Network & Mobile Summit. IEEE, 2013: 1-10. [63]Biswas S, Masouros C, Ratnarajah T. Performance analysis of large multiuser MIMO systems with space-constrained 2-D antenna arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(5): 3492-3505. [64]Lin Z, Hu H, Lei S, et al. Low-sidelobe shaped-beam pattern synthesis with amplitude constraints[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(4): 2717-2731. [65]Yang Y, Pesavento M, Luo Z Q, et al. Inexact block coordinate descent algorithms for nonsmooth nonconvex optimization[J]. IEEE Transactions on Signal Processing, 2020, 68: 947-961. [66]Razaviyayn M. Successive convex approximation: Analysis and applications[D]. University of Minnesota, 2014. [67]Wu Q, Zhang R. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1735-1748.
﹀
|
中图分类号: |
TN92
|
开放日期: |
2023-06-16
|