论文中文题名: | 基于机器学习的华北地区PM2.5模型构建研究 |
姓名: | |
学号: | 20210226047 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 大气环境监测 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-15 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Research on the Construction of PM2.5 Model in North China Based on Machine Learning |
论文中文关键词: | |
论文外文关键词: | ERA5 ; Water vapor pressure ; Precipitable water vaper ; Machine learning ; PM2.5 |
论文中文摘要: |
PM2.5是大多数雾霾的主要成分,高浓度的PM2.5在空气中长时间的存在会对人类健康造成严重影响,因此急需开展对PM2.5的相关研究工作。传统的PM2.5使用地面站点进行监测,空间分辨率较低。大多数学者采用暗目标算法来反演中分辨率成像光谱仪气溶胶光学厚度产品,利用其估计地面PM2.5浓度,这种方法在城市等高反射区域会产生缺失值,造成时空分辨率降低,并且很少对气象参数与PM2.5的相关性进行系统且全面的分析。本文利用欧洲中期天气预报中心(European Centre for Medium Range Weather Forecasts,ECMWF)发布的第五代再分析(ECMWF Reanalysis v5,ERA5)数据集,提出一种基于机器学习(BP神经网络,Back Propagation Neural Networks,BPNN;随机森林,Random Forest,RF)估计PM2.5的方法,这种方法的时空分辨率高且减少了数据缺失。并系统分析多种气象参数与PM2.5的相关性及变化规律。中国生态环境部空气质量报告显示华北地区是中国污染最为严重区域之一,北京不仅位于华北地区又是中国的政治中心和文化中心,因此分别以北京市和华北地区为例分别进行PM2.5的研究。具体研究内容如下: |
论文外文摘要: |
PM2.5 is the main component of most haze, and the long-term presence of high concentration of PM2.5 in the air will cause serious impact on human health, so it is urgent to carry out relevant research on PM2.5. Traditional PM2.5 monitoring uses ground monitoring stations with low spatial resolution. Other studies have retrieved the Moderate Resolution Imaging Spectroradiometer aerosol optical depth product by the dark-target algorithm. However, the estimated PM2.5 concentration on the ground will produce missing values, which will lead to the reduction of spatial and temporal resolution, and there is little systematic and comprehensive analysis of the correlation between meteorological parameters and PM2.5. Using the fifth generation reanalysis (ERA5) data set released by the European Medium-Range Weather Forecast Center (ECMWF), this paper proposes a method to estimate PM2.5 based on machine learning (Back Propagation Neural Networks, BPNN. And random forest, RF), this method has high spatial resolution and reduces data loss. And systematically analyze the correlation and variation patterns between various meteorological parameters and PM2.5. According to the Ministry of Ecology and Environment of the People’s Republic of China, North China is one of the most polluted regions in China. Beijing is not only located in North China, but also a political and cultural center of China. Therefore, Beijing and North China are taken as examples for PM2.5 research. The specific research contents are as follows: |
中图分类号: | P412.292 |
开放日期: | 2023-06-15 |