论文中文题名: | 基于3D网格的单目视觉人员定位技术研究 |
姓名: | |
学号: | 21207223043 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 计算机视觉 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-14 |
论文答辩日期: | 2024-06-04 |
论文外文题名: | Research on Monocular Vision Personnel Localization Technology Based on 3D Mesh |
论文中文关键词: | |
论文外文关键词: | Deep learning ; Person detection ; Monocular Vision Localization ; Target Depth Estimation ; Three-dimensional space positioning |
论文中文摘要: |
随着深度学习技术的快速发展,基于运动视觉平台的目标识别、定位与跟踪技术已经成为智能监控、人工智能等领域的热点研究方向。目前,基于二维图像的目标定位与跟踪理论研究已经相对成熟,但面向低成本运动视觉平台场景的目标三维空间定位与跟踪问题仍然存在诸多难点,如复杂环境下目标检测模型精度低、复杂环境下视觉定位精度低、单目视觉对目标空间深度估计不准等问题,本文采用基于深度学习的目标检测算法和视觉定位算法,以及几何约束的单目深度估计算法实现单目摄像头下人员三维空间定位。本文的具体研究内容如下: |
论文外文摘要: |
With the rapid development of deep learning technology, target recognition, localization, and tracking based on motion vision platforms have become hot research topics in fields such as intelligent surveillance and artificial intelligence. Currently, the theoretical research on target localization and tracking based on 2D images is relatively mature. However, there are still many challenges in the problem of target three-dimensional spatial localization and tracking in low-cost motion vision platform scenarios. These challenges include low model detection accuracy in complex environments, low visual localization accuracy in complex environments, inaccurate depth estimation of targets by monocular vision, etc. In this thesis, we use deep learning-based target detection algorithms, visual localization algorithms, and monocular depth estimation algorithms with geometric constraints to achieve three-dimensional spatial localization of personnel under a monocular camera. The specific research content of this thesis is as follows: |
中图分类号: | TP391.41 |
开放日期: | 2024-06-14 |