- 无标题文档
查看论文信息

论文中文题名:

 加氢站氢气泄漏风险辨识及数值模拟研究    

姓名:

 王煦青    

学号:

 20220089006    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 工业火灾与爆炸防控    

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Risk Identification and numerical Simulation of hydrogen leakage in Hydrogenation Station    

论文中文关键词:

 加氢站 ; 氢气泄漏 ; 风险辨识 ; 贝叶斯网络 ; FLUENT    

论文外文关键词:

 Hydrogen filling station ; Hydrogen leakage ; Risk identification ; Bayesian network ; FLUENT    

论文中文摘要:

随着世界能源结构变革,氢能源作为21世纪最有前景替代传统化石燃料的新能源之一,氢作为可储存的可再生能源,具有低碳、高热值、应用场景丰富的特点,因此氢能源的需求也不断增长。与此同时,氢燃料电池、氢汽车和加氢站的建设正在快速进行,为了给用户提供便捷,加氢站的选址通常位于建筑物较多、人口密度较高的城区。然而氢气具有易燃、易爆等特性,较宽的可燃性、较低的点火能量和较强的扩散系数(由于密度较低),一旦发生意外情况,极易酿成灾难性事故。因此,加氢站的安全运行需要更多的关注和进一步的研究。

(1)调研统计了欧盟HIAD 2.0数据库中已经发生的部分氢气泄漏事故,针对其中82起典型案例,整理了各事故的泄漏设备和泄漏原因,统计出各个氢泄漏事故发生的不同地点和事故的数量,分析得出最可能发生氢气意外泄漏的事故地点为加氢站,因此针对加氢站所出现的问题进行了研究,查明引起加氢站氢气泄漏问题的主要设备有储氢设备、加注系统加氢机以及动力系统压缩机,从而分析出了具体引起事故的主要因素,并针对泄漏原因,把加氢站发生泄漏的主要因素分成人为因素、设备因素、管理因素、环境因素等四种。

(2)结合加氢站的工艺流程、实际运行过程和加氢站的具体泄漏原因,进行事故树分析,得到最小割集数18个,最小径集数共16个,由最小径集计算出编号为X1至X14的基本事件结构重要度最大,为氢气泄漏方面的各项基本事件。然后将事故树与安全屏障相结合,建立Bow-Tie模型,模型显示了导致氢气泄漏的可能事件及其潜在后果。基于Bow-Tie模型的分析结果,构造模糊贝叶斯模型(BN)。应用专家打分的方式,通过三角模糊数将专家意见转化为所表示出的模糊概率,将基本事件和安全屏障发生故障的概率输入贝叶斯网络中,以此为基础利用GENIE软件建立氢气泄漏贝叶斯网络模型,通过贝叶斯公式进行更新得到更加符合实际的后验概率,从而得出导致加氢站氢气泄漏的重要因素,最后对贝叶斯模型进行敏感性分析得出,最有可能发生氢气泄漏事故的节点为储氢容器泄漏、加注机泄漏、压缩机泄漏、外力碰撞、人员操作不当、阀门失效等,从而更好地识别关键危害因素并进一步评估加氢站氢气泄漏事故的风险,为建立应急决策模型奠定了关键的基础。

(3)针对最有可能发生氢气泄漏的主要设备及典型场景,结合实际的加氢站布局,利用FLUENT软件对加氢站高压氢气泄漏进行了模拟,进行了网格划分、初始条件和边界条件的设置,分别研究了泄漏位置、泄漏方向、泄漏孔径以及环境风速四个不同的影响因素对氢气可燃气云流动扩散情况的影响。主要结论有:1)不同的泄漏位置,氢气可燃气云的流动方向以及流动趋势都不相同,泄漏量也不同;2)不同的泄漏方向对氢气云的流动扩散趋势影响效果显著。由于高压氢气泄漏速度很快,氢气气云的初始泄漏方向取决于气云的流动方向;3)泄漏孔径的不同会直接影响氢气泄漏量的大小;4)障碍物以及围墙有效地限制了氢气的继续流动,改变了氢气可燃气云的扩散方向,围墙可以将可燃氢气云限制在储氢区范围内,避免了围墙外侧有氢气云溢出,防止事故的进一步扩大,但同时导致了可燃气云的小面积积聚,增加了事故发生的风险;5)当存在环境风时,可燃气云在风效应驱动下沿风向扩散,减弱了自然对流的影响,同时,风速的增大促进了氢气和空气的混合,提高了泄漏出的氢气在空气中的稀释速率,增强了加氢站的安全性;风速越大,氢气的稀释速率越快,可燃氢气云的体积越小,加氢站的安全性更高。通过分析加氢站氢气泄漏的影响因素,为下文提出氢泄漏事故的对策及建议提供了数据参考,具有一定的工程实用价值。

(4)结合前景理论对氢气泄漏事故构建了应急决策模型,为了提高加氢站氢气泄漏事故应急决策效率,指导决策主体进行有效快速的应急决策,构建了前景理论应急决策模型,采用价值函数和概率函数代替期望效用理论中的收益和概率,待决策方案的期望效用转变为包含多种不确定因素的预期前景。在加氢站发生氢气泄漏事故时,通过前景理论应急决策模型确定出最佳应急方案,针对不同的决策主体采取相应的决策方案,有效降低应急决策的风险性,避免在发生事故时,由于情况复杂且危急而导致做出了盲目决策,将灾情的实际情况与应急方案相结合,保证了在加氢站发生氢气泄漏事故时救援的安全性及科学性。在此基础上,从减少事故发生和降低事故危害两个方面,对加氢站氢气泄漏源的预防及控制进行了简要分析,针对加氢站提出了具体的氢气泄漏事故的对策及建议。

论文外文摘要:

With the reform of the world energy structure, hydrogen energy is one of the most promising new energy sources to replace traditional fossil fuels in the 21st century. as a storable renewable energy, hydrogen has the characteristics of low carbon, high calorific value and rich application scenes. therefore, the demand for hydrogen energy is also increasing. At the same time, the construction of hydrogen fuel cell, hydrogen vehicle and hydrogen refueling station is being carried out rapidly. in order to provide convenience to users, the location of hydrogenation station is usually located in urban areas with more buildings and high population density. However, hydrogen has the characteristics of flammable and explosive, with wide flammability, low ignition energy and strong diffusion coefficient (due to low density). Once an accident occurs, it is easy to lead to catastrophic accidents. Therefore, the safe operation of the hydrogenation station needs more attention and further research.

(1) Based on the investigation and statistics of some hydrogen leakage accidents that have occurred in the EU HIAD 2.0 database, in view of 82 typical cases, the leakage equipment and causes of each accident are sorted out, and the different locations and number of hydrogen leakage accidents are calculated. It is concluded that the most likely accident site of hydrogen leakage is the hydrogen filling station, so the problems in the hydrogenation station are studied. It is found out that the main equipment causing hydrogen leakage in hydrogenation station are hydrogen storage equipment, filling system hydrogenator and power system compressor, thus the main factors causing the accident are analyzed, and aiming at the cause of leakage, the main factors of hydrogen leakage in hydrogenation station are divided into four kinds: human factors, equipment factors, management factors and environmental factors.

(2) Combined with the technological process, the actual operation process and the specific leakage causes of the hydrogen filling station, the fault tree analysis shows that the minimum number of cut sets is 18 and the minimum path set is 16. The basic event structure numbered X1 to X14 calculated from the minimum path set is the most important, which is the basic events of hydrogen leakage. Then a Bow-Tie model is established by combining the fault tree with the safety barrier, which shows the possible events that lead to hydrogen leakage and their potential consequences. Based on the analysis results of Bow-Tie model, a fuzzy Bayesian model (BN) is constructed. By using the way of expert scoring, the expert opinion is transformed into the expressed fuzzy probability by triangular fuzzy number, and the probability of failure of basic events and safety barrier is input into Bayesian network, on this basis, the Bayesian network model of hydrogen leakage is established by using GENIE software, and the more realistic a posteriori probability is obtained by updating Bayesian formula, thus the important factors leading to hydrogen leakage in hydrogenation station are obtained. Finally, through the sensitivity analysis of Bayesian model, it is concluded that the nodes most likely to have hydrogen leakage accidents are hydrogen storage container leakage, dispenser leakage, compressor leakage, external force collision, improper operation of personnel, valve failure, etc., so as to better identify the key hazard factors and further evaluate the risk of hydrogen leakage accidents in hydrogenation stations, which lays a key foundation for the establishment of emergency decision-making model.

(3) Aiming at the main equipment and typical scenes that are most likely to have hydrogen leakage, combined with the actual layout of hydrogen filling stations, the high pressure hydrogen leakage of hydrogenation stations is simulated by FLUENT software, and the grids are divided, the initial conditions and boundary conditions are set, and the effects of leakage location, leakage direction, leakage aperture, ambient wind speed and wind direction on the flow and diffusion of hydrogen gas cloud are studied respectively. The main conclusions are as follows: 1) Different leakage locations, the flow direction and flow trend of hydrogen combustible gas cloud are different, and the amount of leakage is also different. 2) Different leakage directions have a significant effect on the flow and diffusion trend of hydrogen cloud. Due to the high speed of hydrogen leakage under high pressure, the initial leakage direction of hydrogen cloud depends on the flow direction of gas cloud. 3) The difference of leakage pore diameter will directly affect the amount of hydrogen leakage. 4) Obstacles and walls effectively restrict the continued flow of hydrogen and change the diffusion direction of hydrogen combustible gas cloud. The fence can limit the combustible hydrogen cloud to the hydrogen storage area, avoiding the overflow of hydrogen cloud outside the fence and preventing the further expansion of the accident, but at the same time, it leads to the accumulation of flammable gas cloud in a small area and increases the risk of accidents. 5) When there is ambient wind, the flammable gas cloud spreads along the wind direction driven by the wind effect, which weakens the influence of natural convection. At the same time, the increase of the wind speed promotes the mixing of hydrogen and air, increases the dilution rate of the leaked hydrogen in the air, and enhances the safety of the hydrogen filling station. The greater the wind speed, the faster the dilution rate of hydrogen, the smaller the volume of the combustible hydrogen cloud, and the higher the safety of the hydrogen refueling station. Through the analysis of the influencing factors of hydrogen leakage in hydrogenation station, the data reference is provided for the countermeasures and suggestions of hydrogen leakage accident, which has certain engineering practical value.

(4) Combined with prospect theory, an emergency decision-making model for hydrogen leakage accident is constructed. In order to improve the emergency decision-making efficiency of hydrogen leakage accident in hydrogenation station and guide decision-makers to make effective and rapid emergency decision-making, an emergency decision-making model of prospect theory is constructed. The value function and probability function are used to replace the income and probability in the expected utility theory, and the expected utility of the decision scheme is transformed into the expected prospect with many uncertain factors. When a hydrogen leakage accident occurs in a hydrogen filling station, the best emergency plan is determined through the prospect theory emergency decision-making model, and the corresponding decision-making schemes are adopted for different decision-makers to effectively reduce the risk of emergency decision-making and avoid the occurrence of an accident. Due to the complex and critical situation, blind decisions are made, combining the actual situation of the disaster with the emergency plan. It ensures the safety and scientific nature of the rescue when there is a hydrogen leakage accident in the hydrogen filling station. On this basis, this paper briefly analyzes the prevention and control of hydrogen leakage source in hydrogenation station from two aspects of reducing accident occurrence and accident harm, and puts forward specific countermeasures and suggestions for hydrogen leakage accident in hydrogenation station.

参考文献:

[1] 王焕霞. 氢能发展与加氢站建设的思考[J]. 石油库与加油站, 2019,28(06):21-24.

[2] 王峰,俞华栋,厉劲风,等. 液氢加氢站泄漏爆炸事故模拟及分析[J]. 低温与特气, 2023,41(01):40-46.

[3] 人民日报.全国建成加氢站超270座[N]. http://www.gov.cn/xinwen/2022- 08/14/content_5705293.htm. 2022.

[4] 商铭恒. 加氢站氢气泄漏燃烧爆炸影响因素模拟分析[D]. 济南:山东建筑大学,2022.

[5] 李权. 管道内障碍物对氢—空气预混火焰传播动力学影响研究[D]. 合肥:中国科学技术大学, 2019.

[6] Yu X, Wang C, He Q. Numerical study of hydrogen dispersion in a fuel cell vehicle under the effect of ambient wind[J]. International Journal of Hydrogen Energy, 2019,44(40): 22671-22680.

[7] 李静媛,赵永志,郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 杭州:浙江大学学报(工学版), 2015,49(07): 1389-1394.

[8] 莫皓,贾佳,杨丹等.加氢站安全风险及评估方法综述[J].油气与新能源, 2022, 34(06):36-42.

[9] 林业恒. 加氢站和氢能汽车泄漏事故的模拟研究和风险分析[D]. 济南:山东大学, 2020.

[10] 金星. 加氢站高压储氢容器气体泄漏扩散定量计算方法研究[D]. 北京:北京化工大学, 2021.

[11] 丁晓晔. 工业事故性泄漏及应急堵漏的模拟研究与软件研制[D]. 南京:南京工业大学, 2005

[12] Li X, Han Z, Zhang R, et al. Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29630-29642.

[13] Ade N, Wilhite B, Goyette H. An integrated approach for safer and economical design of Hydrogen refueling stations[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32713-32729.

[14] 王春琪. 大规模液氢泄漏形成氢气云团扩散行为的数值模拟[D]. 大连:大连理工大学, 2021.

[15] Thomas G O, Oakley G L. Overpressure development during the combustion of a hydrogen–air mixture partial filling a confined space[J]. Process Safety and Environmental Protection, 2010, 88(1): 24-27.

[16] Li F, Yuan Y, Yan X, et al. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship[J]. Renewable and Sustainable Energy Reviews, 2018,97: 177-185.

[17] 吴梦茜. 大规模液氢泄漏扩散的数值模拟与影响因素分析[D]. 杭州:浙江大学, 2017.

[18] Witcofski R D, Chirivella J E. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 1984, 9(5): 425-435.

[19] Statharas J C, Venetsanos A G, Bartzis J G, et al. Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of Hazardous Materials, 2000,77(1): 57-75.

[20] Schefer R W, Houf W G, Williams T C. Investigation of small-scale unintended releases of hydrogen: Momentum-dominated regime[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6373-6384.

[21] Merilo E G, Groethe M A, Colton J D, et al. Experimental study of hydrogen release accidents in a vehicle garage[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2436-2444.

[22] Stefano M D, Rocourt X, Sochet I, et al. Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9031-9040.

[23] Lacome J, Jamois D, Perrette L, et al. Large-scale hydrogen release in an isothermal confined area[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2302-2312.

[24] Cariteau B, Tkatschenko I. Experimental study of the effects of vent geometry on the dispersion of a buoyant gas in a small enclosure[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8030–8038.

[25] Shiruill L C, Roberts T A, Royle M, et al. Safety studies on high-pressure hydrogen vehicle refuelling stations: Releases into a simulated high-pressure dispensing area[J]. International Journal of Hydrogen Energy, 2012, 37(8): 6949-6964.

[26] Britter R E, Snyder W H. Fluid modeling of dense gas dispersion over a ramp[J]. Journal of Hazardous Materials, 1988,18(1): 37-67.

[27] 丁信伟,王淑兰,徐国庆. 可燃及毒性气体泄漏扩散研究综述[J]. 化学工业与工程, 1999(02): 58-62.

[28] 潘旭海,蒋军成. 化学危险性气体泄漏扩散模拟及其影响因素[J]. 南京化工大学学报(自然科学版), 2001(01): 19-22.

[29] 潘旭海,蒋军成.泄漏液池动态蒸发过程模型研究与分析[J]. 工业安全与环保, 2006(04): 43-46.

[30] 姜传胜,丁辉,刘国梁,等. 重气连续泄漏扩散的风洞模拟实验与数值模拟结果对比分析[J]. 中国安全科学学报, 2003(02): 14-19.

[31] Han S H, Chang D, Kim J S. Experimental investigation of highly pressurized hydrogen release through a small hole[J]. International Journal of Hydrogen Energy, 2014,39(17): 9552-9561.

[32] 柯道友,毕景良,李雪芳. 氢气泄漏过程的理论模型计算及CFD模拟[J]. 化工学报, 2013, 64(09): 3088-3095.

[33] 杨灿剑,付晋. 加氢站氢气泄漏事故模拟及后果分析[J]. 消防科学与技术, 2011, 30(04): 358-362.

[34] 董晓强,李坤,刘玉婷, 等. 氢制冷机房氢气泄漏扩散的数值模拟[J]. 制冷学报, 2017, 38(06): 12-19.

[35] 苗扬,陈彦京,王凯,等. 光面式高压氢气泄漏快速可视化检测方法及数值仿真研究[J]. 计测技术, 2020, 40(05): 37-42.

[36] 刘自亮,熊思江,花争立,等. 埋地输氢管道泄漏爆炸事故后果模拟分析[J]. 中国安全生产科学技术, 2019, 15(12): 94-100.

[37] 卢明,徐晔,肖学章. 室内氢气泄漏扩散的数值模拟[J]. 中国安全生产科学技术, 2011, 7(08): 29-33.

[38] Choi J, Hur N, Kang S, et al. A CFD simulation of hydrogen dispersion for the hydrogen leakage from a fuel cell vehicle in an underground parking garage[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8084-8091.

[39] Qian J, Li X, Gao Z, et al. A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2020,45(28): 14428-14439.

[40] 李静媛,赵永志,郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(07): 1389-1394.

[41] Kikukawa S, Yamaga F, Mitsuhashi H. Risk assessment of Hydrogen fueling stations for 70MPa FCVs[J]. International Journal of Hydrogen Energy, 2008,33(23): 7129-7136.

[42] 夏登友,钱新明,黄金印,等. 液氢泄漏扩散模拟及危害评估[J]. 中国安全科学学报, 2014, 24(3): 6.

[43] 赵泽滢. 撬装式加氢站氢气泄漏及爆炸事故安全分析[D]. 济南:山东大学, 2022.

[44] Tsunemi K, Kihara T, Kato E, et al. Quantitative risk assessment of the interior of a hydrogen refueling station considering safety barrier systems[J]. International Journal of Hydrogen Energy, 2019.

[45] Arabian-Hoseynabadi H, Oraee H, Tavner P J. Failure Modes and Effects Analysis (FMEA) for wind turbines[J]. International Journal of Electrical Power & Energy Systems, 2010, 32( 7):817-824.

[46] 李丹丹. 基于Bow-tie模型的继电保护现场作业风险评估研究[D]. 西安:西安建筑科技大学, 2022.

[47] Rosyid O A, Jablonski D, Hauptmanns U. Risk analysis for the infrastructure of a hydrogen economy[J]. International Journal of Hydrogen Energy, 2007, 32(15):3194-3200.

[48] 张陈诗. 燃料电池汽车加氢站风险评价研究[D]. 重庆:重庆大学, 2019.

[49] 杨太华,秦静,李志翔. 基于故障树和改进灰色关联法的新能源汽车加氢站安全风险评价[J]. 现代电子技术, 2021 44(02):115-121.

[50] Casamirra M, Castiglia F, Giardina M, et al. Safety studies of a hydrogen refuelling station: Determination of the occurrence frequency of the accidental scenarios[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5846-5854.

[51] Tomoya S, Yu-ichiro I, Atsumi M. Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane-ScienceDirect[J]. Journal of Loss Prevention in the Process Industries, 2021, 71.

[52] 李静,安骁.加氢站风险分析及安全建议措施[J]. 石化技术, 2022, 29(03): 225-226.

[53] Shahriar A, Sadiq R, Tesfamariam S. Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy based bow-tie analysis[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(3): 505-523.

[54] 姜文士. Bow-Tie模型在天然气液化冷箱泄漏风险分析与控制中的应用[J]. 化工安全与环境, 2022, 35(21): 14-18.

[55] 李维东,周德红,肖振航,等. 基于Bow-tie正态云模型的LNG储罐风险分析[J]. 消防科学与技术, 2021, 040(009): 1322-1327.

[56] 高威,林惠松. 基于燃气场站Bow-Tie风险分析技术的应用研究[J]. 应用能源技术, 2022(000-006).

[57] 陈静,董敏,史博文.基于Bow-Tie模型和贝叶斯网络的LNG加气站动态风险分析[J]. 石油工业技术监督, 2023, 39(02): 41-49+77.

[58] 闫绪娴,王俊丽,范玲,李文超.韧性城市视角下地铁洪涝灾害风险分析——基于Bow-Tie—贝叶斯网络模型[J]. 灾害学, 2022, 37(02): 36-43.

[59] 陈钊,袁航,黄鹏宇,周子龙,王秉.基于改进条件概率的贝叶斯网络隧道坍塌安全风险评价[J]. 中南大学学报(自然科学版), 2023, 54(01): 327-340.

[60] Zarei E, Khakzad N, Cozzani V, et al. Safety analysis of process systems using Fuzzy Bayesian Network (FBN)[J]. Journal of Loss Prevention in the Process Industries, 2019, 57(1): 7-16.

[61] Li D. Real-time risk analysis of road tanker containing flammable liquid based on fuzzy Bayesian network[J]. Transactions of The Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B, 2020, 134.

[62] 杨继君,曾子轩. 基于态势预测的非常规突发事件应急决策模型构建[J]. 统计与决策, 2018, 34(18): 43-47.

[63] 徐元元. 基于动态贝叶斯网络的高层建筑火灾应急决策研究[D]. 郑州:郑州大学, 2019.

[64] 谢梅玉. 基于CBR与贝叶斯网络的建筑物火灾应急决策模型研究[D]. 长春:吉林大学, 2018.

[65] 李学鑫. 基于贝叶斯网络的危险品突发事故应急决策模型研究[D]. 长春:吉林大学, 2016.

[66] 杨坤,庄元,吕鹏飞,等. 基于贝叶斯网络的内河搁浅船舶应急决策方法[J]. 中国航海, 2017, 40(03): 77-82.

[67] 吴倩,谈伟,盖文妹. 基于动态贝叶斯网络的民航突发事件情景分析研究[J]. 中国安全生产科学技术, 2016, 12(03): 169-174.

[68] Taskin S, Jr E J L. A Bayesian decision model with hurricane forecast updates for emergency supplies inventory management[J]. Palgrave Macmillan UK, 2016.

[69] 李明磊,王红卫,祁超,等. 非常规突发事件应急决策方法研究[J]. 中国安全科学学报, 2012, 22(03): 158-163.

[70] 江新,徐平,郑霞忠. 水电工程施工突发事件应急响应方案决策研究[J]. 中国安全科学学报, 2016, 26(04): 161-167.

[71] 、王刚桥,刘奕,杨盼,等. 面向突发事件的复杂系统应急决策方法研究[J]. 系统工程理论与实践, 2015, 35(10): 2449-2458.

[72] Tamura H, Yamamoto K, Tomiyama S, et al. Modeling and analysis of decision making problem for mitigating natural disaster risks[J]. European Journal of Operational Research, 2000, 122(2): 461-468.

[73] 王思思. 基于案例推理的台风决策系统设计与实现[D]. 秦皇岛:燕山大学, 2017.

[74] 刘雅玉. 基于案例推理的台风灾害快速评估方法[D]. 武汉:武汉大学, 2018.

[75] Guo X, Ji J, Khan F, et al. Withdrawn: Fuzzy Bayesian network based on an improved similarity aggregation method for risk assessment of storage tank accident[J]. Process Safety and Environmental Protection, 2020,144: 242-252.

[76] Pasman H, Reniers G. Past, present and future of Quantitative Risk Assessment (QRA) and the incentive it obtained from Land-Use Planning (LUP)[J]. Journal of Loss Prevention in the Process Industries, 2014,28: 2-9.

[77] Li H, Deng J, Chen X, et al. Qualitative and quantitative characterisation for explosion severity and gaseous–solid residues during methane–coal particle hybrid explosions: An approach to estimating the safety degree for underground coal mines[J]. Process Safety and Environmental Protection, 2020,141: 150-166.

[78] Goossens L H J, Cooke R M. Applications of some risk assessment techniques: Formal expert judgement and accident sequence precursors[J]. Safety Science, 1997,26(1): 35-47.

[79] Abuswer M, Amyotte P, Khan F, et al. Retrospective risk analysis and controls for Semabla grain storage hybrid mixture explosion[J]. Process Safety and Environmental Protection, 2016,100: 49-64.

[80] Meel A, Seider W D. Plant-specific dynamic failure assessment using Bayesian theory[J]. Chemical Engineering Science, 2006,61(21): 7036-7056.

[81] Adedigba S A, Khan F, Yang M. Dynamic safety analysis of process systems using nonlinear and non-sequential accident model[J]. Chemical Engineering Research and Design, 2016,111: 169-183.

[82] Kalantarnia M, Khan F, Hawboldt K. Modelling of BP Texas City refinery accident using dynamic risk assessment approach[J]. Process Safety and Environmental Protection, 2010,88(3): 191-199.

[83] George P G, Renjith V R. Evolution of Safety and Security Risk Assessment methodologies towards the use of Bayesian Networks in Process Industries[J]. Process Safety and Environmental Protection, 2021,149: 758-775.

[84] Kalantarnia M, Khan F, Hawboldt K. Dynamic risk assessment using failure assessment and Bayesian theory[J]. Journal of Loss Prevention in the Process Industries, 2009,22(5): 600-606.

[85] Hegde J, Rokseth B. Applications of machine learning methods for engineering risk assessment A review[J]. Safety Science, 2020,122: 104492.

[86] Jiao Z, Ji C, Sun Y, et al. Deep learning based quantitative property-consequence relationship (QPCR) models for toxic dispersion prediction[J]. Process Safety and Environmental Protection, 2021,152: 352-360.

[87] 郭艺源. 基于"情景—应对"的非常规突发事件应急响应救援决策研究[D]. 太原:山西财经大学. 2016

[88] 冯志达. 动机冲突视角下的建筑工人不安全行为决策偏差机理研究[D]. 镇江:江苏大学, 2019.

[89] 许伦辉,骈宇庄,林永杰,等. 基于累积前景理论的无信控路段人车通行冲突博弈分析[J]. 中国公路学报, 2022, 35(1):18.

[90] 罗贤运. 突发水污染事件个体风险感知和行为决策研究[D]. 镇江:江苏大学, 2013.

[91] 张园园, 张巨伟, 尚思思,等. 泄漏气体扩散模型的研究与应用[J]. 当代化工, 2013, 42(4):3.

[92] European Hydrogen Incidents and Accidents database HIAD 2.0, European Commission, Joint Research Centre, Petten, the Netherlands

[93] Ugurlu H, Cicek I. Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis[J]. Ocean engineering, 2022(245-Feb.1).

[94] Suryoputro M R, Sari A D, Kurnia R D . Preliminary Study for Modeling Train Accident in Indonesia Using Swiss Cheese Model[J]. Procedia Manufacturing, 2015, 3:3100-3106.

[95] Sakar C, Toz A C, Buber M, et al. Risk Analysis Of Grounding Accidents By Mapping A Fault Tree Into A Bayesian Neywork [J]. Applied Ocean Research, 2021, 113(1):1-12.

[96] 马德仲,周真,于晓洋,等. 基于模糊概率的多状态贝叶斯网络可靠性分析[J]. 系统工程与电子技术, 2012, 34(12): 5.

[97] 孙智浩. 受限空间内高压氢气泄漏的数值模拟研究[D]. 济南:山东大学,2019.

[98] 张铭恒. 加氢站氢气泄漏燃烧爆炸影响因素模拟分析[D]. 济南:山东建筑大学, 2022.

[99] 余照. 氢泄漏与扩散数值仿真研究[D]. 长沙:国防科技大学, 2022.

[100]Schefer R W, Houf W G, Williams T C. Investigation of small-scale unintended releases of hydrogen: Momentum-dominated regime[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6373-6384.

[101]孙多勇.突发事件与行为决策[M] 北京:社会科学文献出版社, 2007.

[102]高建伟, 刘慧晖, 谷云东. 基于前景理论的区间直觉模糊多准则决策方法[J]. 系统工程理论与实践, 2014, 34(12): 7.

中图分类号:

 X928    

开放日期:

 2024-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式