- 无标题文档
查看论文信息

论文中文题名:

 双足机器人节能行走的步态规划与控制    

姓名:

 卢志强    

学号:

 B201503015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械电子工程    

研究方向:

 机器人工程    

第一导师姓名:

 侯媛彬    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-03-21    

论文答辩日期:

 2022-12-11    

论文外文题名:

 Gait Planning and Control of Energy-Saving Walking for Biped Robot    

论文中文关键词:

 双足机器人 ; 步态规划 ; 节能行走 ; 逆运动学计算 ; 可变零力矩点区域 ; 加速梯度优化    

论文外文关键词:

 biped robot ; gait planning ; energy-saving walking ; inverse kinematics calculation ; allowable zero moment point area ; accelerated gradient optimization    

论文中文摘要:

双足机器人具有仿人的身体结构和外观,可以很好的适应人类的生活环境,是替代人类工作的理想机器人。近50年来,科研人员在双足机器人的样机制作及控制理论进行了许多研究,并取得显著的进展。双足行走是双足机器人运动研究领域最重要、最基础的问题。按照研究思想的不同,提出的双足行走方法可分为基于简化机器人动力学模型的方法和参照人类运动方式的仿生学方法。由于目前的机器人结构与人类相比尚有较大差异,更多的科研人员倾向于研究中采用简化模型的方法。本文从机器人多质心简化模型出发,对节能行走优化算法的关键技术进行研究。

建立数学模型是设计双足机器人运动控制算法的基础。本文依据双足机器人的结构特征,将世界坐标系与浮动坐标系结合,构建机器人模型的广义坐标表示方法,分析双足机器人行走过程中关节角度、角速度与关节-连杆的位姿及其在三维空间的运动速度的变换关系,建立双足机器人正运动学模型。基于双足机器人步态控制算法优化中大规模逆运动学计算的要求,遵循运动过程中腿部各关节的几何关系,建立双足机器人逆运动学解算模型,该方法适于快速、并行计算机器人的运动参数。依照双足机器人运动过程中存在的多种脚、地接触状态,建立单足相、双足相和碰撞相等多形态机器人动力学模型。

完整的动力学模型可精确的评估机器人行走的运动状态,但模型运算产生的计算量过大,在需要大量运算的机器人参数优化算法中难以实现。本文提出依据步态周期内双足机器人行走的质量分布统计信息,建立双足机器人行走的多质心简化模型。如何在双足机器人运动中保持稳定、避免摔倒,是机器人运动控制算法应考虑的重要问题。按照算法需求,本文选择庞加莱映射判据与可变零力矩点区域结合的稳定性描述方法。高能耗问题是阻碍双足机器人应用和发展的重要因素之一,而不同的步态控制算法在机器人运动能耗方面存在很大差异。本文在机器人优化算法的能耗评价中,提出依据双足机器人质心重力作用下各关节负荷力矩及角速度,建立双足机器人运动能耗函数,以在控制算法优化中快速计算机器人的运动能耗。

如何在满足行走稳定性要求的前提下,获取双足机器人行走最小能耗的步态参数是本文算法的核心问题之一。本文提出以描述参数表征双足机器人运动中身体的限定空间,通过建立描述参数与机器人行走步态、能耗之间的映射关系,探索以数学方程表征具有高度非线性特征的机器人步态优化问题。提出的算法通过参数空间采样及步态参数计算,按照稳定裕度对样本分类,利用设计的三维单纯形种子抽取算法及方向加速梯度优化算法,实现在大范围的参数空间获取的能耗最低点的步态参数即为目标映射函数。

双足机器人行走是一个高度非线性的控制问题,在存在干扰的环境中实现双足机器人行走的最小能耗控制是本文研究的另一个核心问题。本文提出以建立步态数据库作为机器人行走认知的知识储备,探索以近似线性的控制方法实现双足机器人行走的步态控制。提出的算法利用步态类型、稳定裕度等属性的数据库检索,实现给定运动目标的最小能耗步态轨迹的动态规划,并通过实时零力矩点反馈及稳定裕度差值的线性校正,调整适配稳定裕度的步态数据项,实现双足机器人节能行走的步态控制。

为验证本文设计的双足机器人行走控制算法,分别在Matlab环境和Webots环境构造3D仿真模型。其中,在Matlab环境中,利用仿真模型对算法的各个计算过程,进行验证评估,并按照机器人行走要求精度,建立行走步态数据库。在Webots环境中,利用虚拟现实的动力学仿真模型,对步态参数优化的数据进行检验评估。机器人仿真所获的结果数据,均在实物机器人的实时行走中进行验证。仿真和实验结果表明,本文算法在机器人行走过程中具有明显的节能效果。

论文外文摘要:

Biped robots have human-like structures and appearances, which can adapt to human environment, and are ideal robots to replace human work. In the past 50 years, researchers have carried out researches on the prototype manufacturing and control theory of biped robots, and have achieved remarkable progress. Bipedal walking is the most important and basic problem in research on biped robot motion. According to different research ideas, the proposed biped walking methods can be divided into two approaches, which are methods based on simplified robot dynamic models and bionic methods referring to human motion modes. Because there are still great differences between existing robot structures and human beings, researchers prefer to adopt the method of simplifying biped models. Starting from a simplified multimass robot model, the key technology of an energy-saving walking optimization algorithm is studied.

The establishment of a mathematical model is the basis of designing a biped robot motion control algorithm. According to the structural characteristics of a biped robot, the robot motion space combines the global coordinate system with the floating coordinate system to construct a generalized coordinate representation, analyzes the transformation relationship among the joint angle, angular velocity and the position and attitude of the joint connecting rod and its motion velocity in three-dimensional space, and establishes a forward kinematics model of the biped robot. To address the large-scale calculation requirements in the optimization of the biped robot gait control algorithm, based on the geometric relationship of the leg joints in the movement process, this research established an inverse kinematics solution model of the biped robot. The method is suitable for parallel operation to quickly calculate the motion parameters of the robot. According to the various states in the movement process of the biped robot, the contact state between the foot and ground is distinguished, and the multimodal dynamic models of the monopedal phase, bipedal phase and collision are established.

The complete dynamic model can accurately evaluate the motion state of robot walking, but the amount of calculation generated by model operation is too large to be realized in the robot parameter optimization algorithm, which requires many operations. A simplified multimass walking model is proposed on the basis of the statistical information of the biped robot walking mass distribution in the gait cycle. How to avoid falls in biped robot motion is an important problem that should be considered in robot motion control algorithms. According to the requirements of the algorithm, a stability description method combining the Poincaré mapping criterion and allowable zero-moment point region is selected. High energy consumption is one of the important factors hindering the application and development of biped robots, and different gait control algorithms have large differences in robot motion energy consumption. In the energy consumption evaluation, a method is proposed to establish the motion energy consumption function of the biped robot according to the load torque and angular velocity of each joint under the gravity of the biped robot's centroid to quickly calculate the motion energy consumption of the robot in the optimization of the control algorithm.

Obtaining the gait parameters of a biped robot with minimum energy consumption on the premise to meeting the requirements of walking stability is one of the core problems of this algorithm. In the gait parameter algorighm optimization, the limited space of the body in the movement of the biped robot is proposed, and a representation method of the robot trajectory expressed using finite term description parameters is established. Then, a method of extracting the seed set according to the sample ZMP trajectory and energy consumption function is proposed through parameter space sampling and inverse kinematics calculation. To address optimizing the minimum-energy consumption gait in the seed field, the gradient direction of the energy consumption function is determined using spacing search, and a multistep gradient optimization algorithm based on direction acceleration is employed. The gait parameters at the lowest energy consumption are obtained as the objective mapping function.

Biped robot walking is a highly nonlinear control problem. Realizing energy-saving and stable walking of biped robots in an environment with interference is another core problem studied in this paper. In the design of the control system, based on the results of the gait parameter optimization calculation, this research classified the walking gait according to step size, gait type and stability margin, and a walking gait database of the biped robot with the minimum energy consumption index is established. To address the given walking target of a biped robot, with the usage of the robot walking gait database, an algorithm planning the gait trajectory with minimum energy consumption of biped walking is proposed, and the energy-saving walking gait control of a biped robot is realized through the stability margin correction method of real-time ZMP feedback.

To verify the walking control algorithm of the biped robot designed in this paper, 3D simulation models are constructed in the MATLAB and Webots environments. In the MATLAB environment, the simulation model is used to verify and evaluate each calculation process of the algorithm, and the walking gait database is constructed according to the required accuracy of robot walking. In the Webots environment, a virtual reality dynamic simulation model is used to test and evaluate the gait parameter optimization data. The resulting data obtained from the robot simulation are verified in the real-time walking of a physical robot. Simulation and experimental results show that the proposed algorithm meets the design expectation and has an obvious energy-saving effect in the robot walking process.

参考文献:

[1] Robio F,Valero F, Llopis-albert C.A review of mobile robots:concepts,methods,theoretical framework, applications.International Journal of Advanced Robotic Systems,Mar.2019:1-22.DOI:10.1177/1729881419839596.

[2] Norton A,Ober W,Baraniecki L,et al.Analysis of human-robot interaction at the DARPA Robotics Challenge Finals[J].International Journal of Robotics Research,2017,36(5-7):483-513.

[3] kaneko K,Morisawa M,Kajita S,et al.Humanoid robot HRP-2Kai - Improvement of HRP-2 towards disaster response tasks[C] // 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids),Seoul,Korea (South),2015:132-139.DOI:10.1109/HUMANOIDS.2015.7363526.

[4] Yan T,Cempini M,Oddo CM,et al.Review of assistive strategies in powered lower-limb orthoses and exoskeletons[J].Robotics and Autonomous Systems,2015,64:120–136.

[5] Tulsulkar G,Mishra N,Thalmann NM,et al.Can a humanoid social robot stimulate the interactivity of cognitively impaired elderly?A thorough study based on computer vision methods[J].The Visual Computer,2021,37(12):3019-3038.

[6] 颜云辉,徐靖,陆志国,等.仿人服务机器人发展与研究现状[J].机器人,2017,39(4):551-564.

[7] 田彦涛,孙中波,利宏扬,等.动态双足机器人的控制与优化研究进展[J].自动化学报,2016,42(8):1142-1157.

[8] Saeedvand S,Jafari M,Aghdasi HS,et al.A comprehensive survey on humanoid robot development [J].The Knowledge Engineering Review 2019,34(e20):1-18.DOI:10.1017/S0269888919000158.

[9] Otani T,Iizuka A,Takamoto D,et al.New shank mechanism for humanoid robot mimicking human-like walking in horizontal and frontal plane[C] // 2013 IEEE International Conference on Robotics and Automation,Karlsruhe,Germany,2013:667-672.DOI:10.1109/ICRA.2013.6630644.

[10] Zecca M,Endo N,Momoki S,et al.Design of the humanoid robot KOBIAN - preliminary analysis of facial and whole body emotion expression capabilities[C] // Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots,Daejeon,Korea (South),2008:487-492.DOI:10.1109/ICHR.2008.4755969.

[11] Kishi T,Endo N,Nozawa T,et al.Bipedal humanoid robot that makes humans laugh with use of the method of comedy and affects their psychological state actively [C] // 2014 IEEE International Conference on Robotics and Automation (ICRA),Hong Kong,China,2014:1965-1970.DOI:10.1109/ICRA.2014.6907119.

[12] Sakagami Y,Watanabe R,Aoyama C,et al.The intelligent ASIMO:system overview and integration[C] // IEEE/RSJ International Conference on Intelligent Robots and Systems,Lausanne,Switzerland,2002,3:2478-2483.DOI:10.1109/IRDS.2002. 1041641.

[13] Kanazawa M,Nozawa S,Kakiuchi Y,et al.Robust vertical ladder climbing and transitioning between ladder and catwalk for humanoid robots[C] // 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany,2015:2202-2209.DOI:10.1109/IROS.2015.7353672.

[14] Kamioka T,Watabe T,Kanazawa M,et al.Dynamic gait transition between bipedal and quadrupedal locomotion[C] // 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany,2015:2195-2201.DOI:10.1109/IROS.2015.7353671.

[15] Kaneko K,Kanehiro F,Morisawa M,et al.Humanoid robot HRP-4 - Humanoid robotics platform with lightweight and slim body[C] // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,San Francisco,CA,USA,2011:4400-4407.DOI:10.1109/IROS.2011.6094465.

[16] Ishida T.Development of a small biped entertainment robot QRIO[C] // Micro-Nanomechatronics and Human Science,2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society,2004.,Nagoya,Japan,2004:23-28.DOI:10.1109/MHS.2004.1421265.

[17] Kuindersma S,Deits R,Fallon M,et al.Optimization-based locomotion planning,estimation, control design for the atlas humanoid robot[J].Autonomous Robots,2016,40(3):429-455.

[18] Nelson G,Saunders A,Neville N,et al.PETMAN:A Humanoid Robot for Testing Chemical Protective Clothing[J].日本ロボット学会誌(日本机器人学会志),2012,30(4):372-377.

[19] Radford NA,Strawser P,Hambuchen K,et al.Valkyrie:NASA's First bipedal humanoid robot[J].Journal of Field Robotics,2015,32(3):397-419.

[20] Englsberger J,Werner A,Ott C,et al.Overview of the torque-controlled humanoid robot TORO[C] // 2014 IEEE-RAS International Conference on Humanoid Robots,Madrid,Spain,2014:916-923.DOI:10.1109/HUMANOIDS.2014.7041473.

[21] Tsagarakis NG,Caldwell DG ,Negrello F,et al.WALK‐MAN:A High‐Performance Humanoid Platform for Realistic Environments[J].Journal of Field Robotics,2017,34(7):1225-1259.

[22] Andreasson R,Alenljung B,Billing E,et al.Affective Touch in Human–Robot Interaction:Conveying Emotion to the Nao Robot[J].International Journal of Social Robotics,2018,10(3):473-491.

[23] Shamsuddin S,Ismail LI,Yussof H,et al.Humanoid robot NAO:Review of control and motion exploration[C] // 2011 IEEE International Conference on Control System,Computing and Engineering,Penang,Malaysia,2011:511-516.DOI:10.1109/ICCSCE. 2011.6190579.

[24] Park IW,Kim JY,Lee J,et al.Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3:HUBO)[C] // 5th IEEE-RAS International Conference on Humanoid Robots,2005.,Tsukuba,Japan,2005:321-326.DOI:10.1109/ICHR. 2005.1573587.

[25] Zucker M,Joo S,Grey MX,et al.A General-purpose System for Teleoperation of the DRC-HUBO Humanoid Robot[J].Journal of Field Robotics,2015,32(3):336-351.

[26] Lim J,Lee I,Shim I,et al.Robot System of DRC-HUBO+ and Control Strategy of Team KAIST in DARPA Robotics Challenge Finals[J].Journal of Field Robotics,2017,34(4),802-829.

[27] Yi SJ,Mcgill S,Vadakedathu L,et al.THOR-OP humanoid robot for DARPA Robotics Challenge Trials 2013[C] // 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI),Kuala Lumpur,Malaysia,2014:359-363.DOI:10.1109/URAI.2014.7057369.

[28] Wang J,Sheng T,Ma HX,et al.Design and Dynamic Walking Control of Humanoid Robot Blackmann[C] // 2006 6th World Congress on Intelligent Control and Automation,Dalian,China,2006:8848-8852,DOI:10.1109/WCICA.2006.1713710.

[29] Peng SJ,Shui HT and Ma HX.A simulation and experiment research on turning gait planning of blackmann-II humanoid robot[C] // IEEE ICCA 2010,Xiamen,China,2010:719-724.DOI:10.1109/ICCA.2010.5524190.

[30] Zhong QB,Pan QS,Hong BR,et al.Design and implementation of humanoid robot HIT-2[C] // 2008 IEEE International Conference on Robotics and Biomimetics,Bangkok,Thailand,2009:967-970.DOI:10.1109/ROBIO.2009.4913130.

[31] 付成龙,陈恳,王健美等.动态步行双足机器人THR-I的设计与实现[J].机器人,2008,30(2):123-129.

[32] Xia Z,Liu L,Xiong J,et al.Design aspects and development of humanoid robot THBIP-2[J].Robotica,2008,26(1):109-116.

[33] Xia ZY,Xiong J and Chen K.Global Navigation for Humanoid Robots Using Sampling-Based Footstep Planners[C] // IEEE/ASME Transactions on Mechatronics,2011,16(4):716-723.DOI:10.1109/TMECH.2010.2051679.

[34] Yu Z,Huang Q,Ma G,et al.Design and Development of the Humanoid Robot BHR-5[J].Advances in Mechanical Engineering,2014,2014(11):1-11.

[35] Xiong R,Sun YC,Zhu QG,et al.Impedance control and its effects on a humanoid robot playing table tennis[J].International Journal of Advanced Robotic Systems,2012,9(5):1-11.DOI:10.5772/51924.

[36] Wang S,Mei T,Zhu KP,et al.Trajectory planning to open valves for dual-arm robots[C] // 11th IEEE International Conference on Control & Automation (ICCA),Taichung,Taiwan,2014:133-138.DOI:10.1109/ICCA.2014.6870909.

[37] 窦瑞军,马培荪,谢玲.两足机器人步态的参数化设计及优化[J].机械工程学报,2002,38(4):36-39.

[38] Luo X,Zhu L,Xia L.Principle and method of speed control for dynamic walking biped robots [J].Robotics and Autonomous Systems,2015,66:129-144.

[39] McGeer T.Passive dynamic walking [J].The International Journal of Robotics Research,1990,9(2):62-82.

[40] Collins S,Ruina A,Tedrake R,et al.Efficient bipedal robots based on passive-dynamic walkers[J].Science,2005,307(5712):1082-1085.

[41] Alexander RM.Walking made simple [J].Science,2005,308(5718):58-59.

[42] Kuo AD.Harvesting energy by improving the economy of human walking [J].Science,2005,309(5741):1686-1687.

[43 Mcgeer T.Dynamics and control of bipedal locomotion[J].Journal of Theoretical Biology,1993,163(3):277-314.

[44] Collins SH,Wisse M,Ruina A.A three-dimensional passive-dynamic walking robot with two legs and knees[J].The International Journal of Robotics Research,2001,20(7):607-615.

[45] Liu N,Li JF,Wang TS.Passive walker that can walk down steps:simulations and experiments[J].Acta Mechanica Sinica,2008,24(5):569-573.

[46] Gupta S,Kumar A.A brief review of dynamics and control of underactuated biped robots[J].Advanced Robotics:The International Journal of the Robotics Society of Japan,2017,31(11/12):607-623.

[47] Wisse M and Frankenhuyzen JV.Design and construction of MIKE; a 2-D autonomous biped based on passive dynamic walking[A].In Kinmura H,Tsuchiya K,Ishiguro A and Witt H (eds).Adaptive Motion of Animals and Mechanics[C],Springer,2006,143-154.

[48] D.Hobbelen D,Boer TD and Wisse M.System overview of bipedal robots Flame and TUlip:Tailor-made for Limit Cycle Walking[C] // 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,Nice,France,2008:2486-2491.DOI:10.1109/IROS.2008.4650728.

[49] Hobbelen DGE,Wisse M .Active lateral foot placement for 3D stabilization of a limit cycle walker prototype[J].International journal of humanoid robotics,2009,6(1):93-116.

[50] Bhounsule PA,Cortell J,Grewal A,et al.Low-bandwidth reflex-based control for lower power walking:65 km on a single battery charge[J].International Journal of Robotics Research,2014,33(10):1305-1321.

[51] Tedrake R,Zhang TW,Fong MF,et al.Actuating a simple 3D passive dynamic walker[C] // IEEE International Conference on Robotics and Automation,New Orleans,LA,USA,2004,5:4656-4661.DOI:10.1109/ROBOT.2004.1302452.

[52] Morris B,Westervelt ER,Chevallereau C,et al.Achieving bipedal running with RABBIT:six steps toward infinity[A].In Diehl M and Mombaur K(eds).Fast Motins in Biomechanics and Robotics[C],Springer,2005,277-298.

[53] Sreenath K,Park HW,Poulakakis I,et al.Embedding active force control within the compliant hybrid zero dynamics to achieve stable,fast running on MABEL[J].International Journal of Robotics Research,2013,32(3):324-345.

[54] Buss BG,Ramezani A,Hamed KA,et al.Preliminary walking experiments with underactuated 3D bipedal robot MARLO[C] // 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,Chicago,IL,USA,2014:2529-2536.DOI:10.1109/IROS.2014.6942907.

[55] 付成龙,陈恳,王健美等.动态步行双足机器人THR-I的设计与实现[J].机器人,2008,30(2):123-129.

[56] 张佩杰.欠驱动双足机器人行走步态建模与动态行走控制策略研究[D].长春:吉林大学,2010.

[57] Liu X,Zang X,Zhu Y,et al.System overview and walking dynamics of a passive dynamic walking robot with flat feet[J].Advances in Mechanical Engineering,2015,7(12):1-10.DOI:10.1177/1687814015620967.

[58] 王紫东.基于欠驱动性的双足机器人高能效行走控制研究[D].杭州:浙江大学,2016.

[59] Lee Y,Lee H,Lee J,et al.Toward reactive walking: Control of biped robots exploiting an event-based FSM[J] .IEEE Transactions on Robotics,2022,38(2):683-698.

[60] Ahn DH and Cho BK.Online jumping motion generation via model predictive control[J].IEEE Transactions on Industrial Electronics,2022,69(5):4957-4965.

[61] Li T,Li Q and Liu T.Why highly compliant poles are not energetically beneficial during running: Evidence from an optimization-based biped model[J].Journal of Biomechanics,2021,117:110264.1-7.DOI:10.1016/j.jbiomech.2021.110264.

[62] Brantner G and Khatib O.Controlling ocean one:Human-robot collaboration for deep-sea manipulation [J].Journal of Field Robotics,2020(4):1-24.DOI:10.1002/rob.21960.

[63] Chang L,Piao S,Leng X,et al.Study on falling backward of humanoid robot based on dynamic multi objective optimization[J].Peer-to-Peer Networking and Applications,2020,13(3):1236-1247.DOI:10.1007/s12083-019-00858-5.

[64] Kashyap AK,Parhi DR and Kumar S.Dynamic stabilization of NAO humanoid robot based on whole-body control with simulated annealing [J].International Journal of Humanoid Robotics,2020,17(03):204-218.

[65] Znegui W,Gritli H and Belghith S.Stabilization of the passive walking dynamics of the compass-gait biped robot by developing the analytical expression of the controlled Poincaré map[J].Nonlinear Dynamics,2020,101(8):1061-1091.

[66] Fu C,Liu Z and Chen K.Section-map stability criterion for biped robots part I:Theory[C] // 2007 International Conference on Mechatronics and Automation,Harbin,China,2007:1529-1534.DOI:10.1109/ICMA.2007.4303776.

[67] Fu CL,Wang JM,Huang YL,et al.Section-map stability criterion for biped robots part II:Applications and experiments[C] // 2007 International Conference on Mechatronics and Automation,Harbin,China,2007:1535-1540.DOI:10.1109/ICMA.2007.4303777.

[68] Ames AD,Galloway K,Grizzle JW.Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics [J].IEEE Transactions on Automatic Control,2014,59(4):876-891.DOI:10.1109/TAC.2014.2299335.

[69] Vukobratovic M and Borovac B.Zero-moment point - thirty five years of its life [J].International Journal of Humanoid Robotics,2004,01(01):157-173.

[70] Wahrmann D,Wu YZ,Sygulla F,et al.Time-variable,event-based walking control for biped robots [J].International Journal of Advanced Robotic Systems,2018,15(2):1-9.DOI:10.1177/1729881418768918.

[71] Pi M,Kang Y,Xu C,et al.Adaptive time-delay balance control of biped robots [J].IEEE Transactions on Industrial Electronics,2020,67(4):2936-2944.

[72] Chevallereau C,Razavi H,Six D,et al.Self-synchronization and self-stabilization of 3D bipedal walking gaits[J].Robotics and Autonomous Systems,2018,100:43-60.

[73] Faraji S and Ijspeert AJ.3LP:a linear 3D-walking model including torso and swing dynamics[J].International Journal of Robotics Research,2016,36(4):436-455.

[74] Moghadam SM,Talarposhti MS,Niaty A,et al.The simple chaotic model of passive dynamic walking[J].Nonlinear Dynamics,2018,93(4):1183-1199.

[75] Znegui W,Gritli H and Belghith S.Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model[J].Chaos,Solitons & Fractals,2020,133:1-18.DOI:10.1016/j.chaos.2020.109652.

[76] Akhond S,Herzig N,Wegiriya H,et al.A method to guide local physical adaptations in a robot based on phase portraits [J].IEEE Access,2019,7:78830-78841.

[77] Kajita S,Kanehiro F,Kaneko K,et al.The 3D linear inverted pendulum mode:A simple modeling for a biped walking pattern generation [C] // 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems,Maui,HI,USA,2001:239-246.DOI:10.1109/IROS.2001.973365.

[78] Hong S,Oh Y,Kim D,et al.Real-time walking pattern generation method for humanoid robots by combining feedback and feedforward controller [J].IEEE Transactions on Industrial Electronics,2014,61(1):355-364.

[79] Yu ZG,Zhou QQ,Chen XC,et al.Disturbance rejection for biped walking using zero-moment point variation based on body acceleration [J].IEEE Transactions on Industrial Informatics,2019,15(4):2265–2276.

[80] Hosseinmemar A,Baltes J,erson J,et al.Closed-loop push recovery for inexpensive humanoid robots[J].Applied Intelligence,2019,49(3):1-14.

[81] Mobinipour V.Gate planning and control of a nine-link biped robot with toe joints via impact efects[J].International Journal of Humanoid Robotics,2019,16(1):1-27.DOI:10.1142/S0219843619500014.

[82] Janardhan V,Kumar RP.Generating real-time trajectories for a planar biped robot crossing a wide ditch with landing uncertainties[J].Robotica,2018,37(1):1-32.DOI:10.1017/S0263574718000887.

[83] Morisawa M,Cisneros R,Benallegue M,et al.Sequential Trajectory Generation for Dynamic Multi-Contact Locomotion Synchronizing Contact [J].International Journal of Humanoid Robotics,2020,17(1):1-28.DOI:10.1142/S0219843620500036.

[84] Chang L,Piao S,Leng X,et al.Inverted pendulum model for turn-planning for biped robot[J].Physical Communication,2020,42:1-20.DOI:10.1016/j.phycom.2020.101168.

[85] Dong S,Yuan ZH,Yu XJ,et al.On-line gait adjustment for humanoid robot robust walking based on divergence component of motion [J].IEEE Access,2019,7:159507-159518.

[86] Leng X,Piao SH,Chang L,et al.Universal walking control framework of biped robot based on dynamic model and quadratic programming [J].Complexity,2020,2020:1-13.DOI:10.1155/2020/2789039.

[87] Shafii N,Abdolmaleki A,Lau N,et al.Development of an omnidirectional walk engine for soccer humanoid robots[J].International Journal of Advanced Robotic Systems 2015,12:1-14.DOI:10.5772/61314.

[88] Liu CJ,Zhang T,Liu M,et al.Active balance control of humanoid locomotion based on foot position compensation[J].Journal of Bionic Engineering,2020,17(1):134-147.

[89] Mohamed SA,Maged SA and Awad MI.A performance comparison between closed form and numerical optimization solutions for humanoid robot walking pattern generation[J].International Journal of Advanced Robotic Systems,2021,18(4):172988142110297.1-20.DOI:10.1177/17298814211029774.

[90] 朱洪波.仿人机器人高效步行模式生成与高稳定动态行走控制方法研究[D].合肥:中国科学技术大学,2017.

[91] Cianca DR,Weckx M,Fabian REJ,et al.A variable stiffness actuator module with favorable mass distribution for a bio-inspired biped robot[J].Frontiers in Neurorobotics,2019,13:1-19.DOI:10.3389/fnbot.2019.00020.

[92] Wu L and Li TS.Fuzzy dynamic gait pattern generation for real-time push recovery control of a teen-sized humanoid robot [J].IEEE Access,2020,8:36441-36453.

[93] Kashyap AK and Parhi DR.Particle swarm optimization aided PID gait controller design for a humanoid robot [J].ISA Transactions,2020,2020:1-43.DOI:10.1016/j.isatra. 2020.12.033.

[94] Almeida L,Santos V and Ferreira J.Learning-based analysis of a new wearable 3D force system data to classify the underlying surface of a walking robot [J].International Journal of Humanoid Robotics,2020,17(3):1-17.DOI:10.1142/S0219843620500115.

[95] Tao CB,Xue J,Zhang ZF,et al.Gait optimization method for humanoid robots based on parallel comprehensive learning particle swarm optimizer algorithm[J].Frontiers in Neurorobotics,2021,14:600885.1-14.DOI:10.3389/fnbot.2020.600885.

[96] 吴垚.基于强化学习的双足周期步行控制研究[D].武汉:武汉大学,2019.

[97] Esfanabadi VS,Rostami M,Rahmati SM,et al.The average speed of motion and optimal power consumption in biped robots [J].The Knowledge Engineering Review,2019,34(e25):1-13.

[98] Boutin L,Eon A,Zeghloul S,et al.From human motion capture to humanoid locomotion imitation application to the robots HRP-2 and HOAP-3[J].Robotica,2011,29(2):325-334.

[99] Dariush B,Gienger M,Jian B,et al.Whole body humanoid control from human motion descriptors [C] // 2008 IEEE International Conference on Robotics and Automation,Pasadena,CA,USA,2008:2677-2684.DOI:10.1109/ROBOT.2008.4543616.

[100] Moro FL,Tsagarakis NG, Caldwell DG.Efficient human-like walking for the compliant huMANoid COMAN based on linematic Motion Primitives (kMPs)[C] // 2012 IEEE International Conference on Robotics and Automation,Saint Paul,MN,USA,2012:2007-2014.DOI:10.1109/ICRA.2012.6224847.

[101] Ames AD.Human-inspired control of bipedal walking robots[J].IEEE Transactions on Automatic Control,2014,59(5):1115-1130.

[102] Zhu HB,Luo MZ,Mei T,et al.Energy-efficient Bio-inspired Gait Planning and Control for Biped Robot Based on Human Locomotion Analysis[J].Journal of Bionic Engineering,2016,13(2):271-282.

[103] 吴伟国,栗华,高力扬.人体步行捕捉下的双足机器人跟随步行与实验[J].哈尔滨工业大学学报,2017,49(1):21-29.

[104] Chen XC,Yu ZG,Zhang WM,et al.Bioinspired control of walking with toe-off,heel-strike, disturbance rejection for a biped robot [J].IEEE Transactions on Industrial Electronics,2017,64(10):7962-7971.

[105] 赵晓军,黄强,彭朝琴,等.基于人体运动的仿人型机器人动作的运动学匹配[J].机器人,2005,27(04):358-361+379.

[106] 李宏凯,孙久荣,戴振东.动物运动指令的中枢模式发生器对机器人运动控制的启示[J].机器人 ,2008(03):279-288.

[107] Liu CJ,Wang DW,Goodman ED,et al.Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators[J].Journal of Bionic Engineering,2016,13(4):572-584.

[108] Juang CF, Yeh YT.Multiobjective evolution of biped robot gaits using advanced continuous ant-colony optimized recurrent neural networks[J].IEEE Transactions on Cybernetics,2018,48(6):1910-1922.

[109] Lin CJ,Yang J,An K,et al.Rhythmic-reflex hybrid adaptive walking control of biped robot [J].Journal of Intelligent & Robotic Systems,2019,94:603-619.

[110] He B,Si YY,Wang ZP,et al.Hybrid CPG–FRI dynamic walking algorithm balancing agility and stability control of biped robot [J].Autonomous Robots,2019,43:1855-1865.

[111] Missura M ,Bennewitz M , Behnke S .Capture steps:Robust walking for humanoid robots [J].International Journal of Humanoid Robotics,2020,16(6):1-28.DOI:10.1142/S0219843619500324.

[112] Yao CP,Liu CJ,Xia L,et al.Humanoid adaptive locomotion control through a bioinspired CPG-based controller.Robotica,2021:1-18.DOI:10.1017/ S0263574721000795.

[112] Vundavilli PR, Pratihar DK.Dynamically balanced optimal gaits of a ditch-crossing biped robot[J].Robotics and Autonomous Systems,2010,58(4):349-361.

[113] Panwar R, Sukavanam N.Trajectory tracking using artificial neural network for stable human-like gait with upper body motion[J].Neural Computing and Applications,2020,32(3):2601-2619.

[114] Naveros F,Luque NR,Ros E,et al.VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model[J].IEEE Transactions on Cybernetics,2020,50(11):4744-4757.

[115] Maeda G,Koç O, Morimoto J.Phase portraits as movement primitives for fast humanoid robot control [J].Neural Networks,2020,129:109-122.

[116] 刘国才.液压驱动双足机器人及其动态平衡运动控制研究[D].哈尔滨:哈尔滨工业大学,2017.

[117] Wang HN,Liu N,Zhang YY,et al.Deep reinforcement learning:a survey [J].Frontiers of Information Technology &Electronic Engineering,2020,21(12):1726-1744.

[118] 冯春,张祎伟,黄成等.双足机器人步态控制的深度强化学习[J].计算机集成制造系统,2021,27(8):2341-2349.

[119] Xi A,Mudiyanselage TW,Tao DC,et al.Balance control of a biped robot on a rotating platform based on efficient reinforcement learning[J].IEEE/CAA Journal of Automatica Sinica,2019,6(4):938-951.

[120] García J, Shafie D.Teaching a humanoid robot to walk faster through Safe Reinforcement Learning[J].Engineering Applications of Artificial Intelligence,2020,88:103360.1-10.DOI:10.1016/j.engappai.2019.103360.

[121] Saeedvand S,Mandala H and Baltes J.Hierarchical deep reinforcement learning to drag heavy objects by adult-sized humanoid robot[J].Applied Soft Computing,2021:107601.1-21.DOI:10.1016/j.asoc.2021.107601.

[122] Taşkiran E,Yilmaz M,Koca Ö,et al.Trajectory generation with natural ZMP references for the biped walking robot SURALP [C] // 2010 IEEE International Conference on Robotics and Automation,Anchorage,AK,USA,2010:4237-4242.DOI:10.1109/ROBOT.2010.5509792.

[123] Hong YD,Park CS and Kim JH.Humanlike stable bipedal walking with a large stride by the height variation of the center of mass using an evolutionary optimized central pattern generator [C].// IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society,Melbourne,VIC,Australia,2011:177-182.DOI:10.1109/IECON.2011.6119308.

[124] You YW,Xin SY,Zhou CX,et al.Straight leg walking strategy for torque-controlled humanoid robots [C] // 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO),Qingdao,2016:2014-2019.DOI:10.1109/ROBIO.2016.7866625.

[125] Martin AE and Gregg RD.Incorporating human-like walking variability in an HZD-based bipedal model[J].IEEE Transactions on Robotics,2017,32(4):943-948.

[126] Okajima S,Tournier M,Alnajjar FS,et al.Generation of human-like movement from symbolized information[J].Frontiers in Neurorobotics,2018,12:43.1-13.

[127] 刘义祥.含有跖趾关节的气动肌肉驱动双足机器人研究[D].哈尔滨:哈尔滨工业大学,2019.

[128] Olvera JRG,Leon ED,Bergner F,et al.Plantar tactile feedback for biped balance and locomotion on unknown terrain [J].International Journal of Humanoid Robotics,2019,17(1):1-21.DOI:10.1142/S0219843619500361.

[129] Kim D,Zhao Y,Thomas G,et al.Stabilizing series-elastic point-foot bipeds using whole-body operational space control[J].IEEE Transactions on Robotics,2016,32(6):1362-1379.

[130] Ferreira JP,Franco G,Coimbra AP,et al.Human-like gait adaptation to slippery surfaces for the NAO robot wearing instrumented shoes [J].International Journal of Humanoid Robotics,2020,17(3):2050007.1-19.DOI:10.1142/S0219843620500073.

[131] Fu C,Chen K.Gait synthesis and sensory control of stair climbing for a humanoid robot[J].IEEE Transactions on Industrial Electronics,2008,55(5):2111-2120.

[132] Bertram JEA.Constrained optimization in human walking:cost minimization and gait plasticity [J].Journal of Experimental Biology,2005,208(6):979-991.

[133] Paparisabet MA,Dehghani R, Ahmadi AR.Knee and torso kinematics in generation of optimum gait pattern based on human-like motion for a seven-link biped robot [J].Multibody System Dynamics,2019,47:117-136.

[134] Sellaouti R,Stasse O,Kajita S,et al.Faster and smoother walking of humanoid HRP-2 with passive toe Joints [C] // 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,2006:4909-4914.DOI:10.1109/IROS.2006.282449.

[135] Corral E,García MJG,Castejón C,et al.Dynamic modeling of the dissipative contact and friction forces of a passive biped- walking robot [J].Applied Sciences 2020,10(7):2342.1-16.DOI:10.3390/app10072342.

[136] Liu YB,Heng S,Zang XZ,et al.Multiphase trajectory generation for planar Biped robot using direct collocation method[J].Mathematical Problems in Engineering,2021,2021:6695528 (1-14).DOI:10.1155/2021/6695528.

[137] Znegui W,Gritli H,Belghith S.A new Poincaré map for investigating the complex walking behavior of the compass-gait biped robot[J].Applied Mathematical Modelling,2021,94(1):534-557.

[138] Spong MW,Holm JK and Lee DJ.Passivity-based control of bipedal locomotion[J].IEEE Robotics & Automation Magazine,2007,14(2):30-40.缺

[139] 冷晓琨.双足机器人参数设计及步态控制算法研究[D].哈尔滨:哈尔滨工业大学,2020.

[140] 孟立波.仿人机器人的摔倒保护策略及其运动规划[D].北京:北京理工大学,2018.

[141] Wang KY,Ren L,Qian ZH,et al.Development of a 3D printed bipedal robot: Towards humanoid research platform to study human musculoskeletal biomechanics[J].Journal of Bionic Engineering,2021,18(1):150-170.

[142] Lu ZQ,Hou YB,Chai XL,et al.A grid gradien approximation method of energy-efficient gait planning for biped robots[J].International Journal of Advanced Robotic Systems,2021,18(3):1-11.

[143] Ugurlu B,Kawamura A.On the backward hopping problem of legged robots[J].IEEE Transactions on Industrial Electronics,2013,61(3):1632-1634.

[144] Grizzle JW,Abba G,and Plestan F.Asymptotically stable walking for biped robots: Analysis via systems with impulse effects[J].IEEE Transactions on Automatic Control,2001,46(1):51-64.

[145] Luo RC and Chen CC.Biped walking trajectory generator based on three-mass with angular momentum model using model predictive control [J].IEEE Transactions on Industrial Electronics,2016,63(1):268-276.

[146] Shin HK and Kim BK.Energy-efficient gait planning and control for biped robots utilizing vertical body motion and allowable ZMP region [J].IEEE Transactions on Industrial Electronics,2015,62(4):2277-2286.

[147] Srinivasan M, Ruina A.Computer optimization of a minimal biped model discovers walking and running [J].Nature,2006,439(5):72-75.

[148] Lee G,Park S,Lee D,et al.Minimizing energy consumption of parallel mechanisms via redundant actuation [J].IEEE/ASME Transactions on Mechatronics,2015,20(6):2805-2812.

[149] Shimmyo S,Sato T and Ohnishi K.Biped walking pattern generation by using preview control based on three-mass model [J].IEEE Transactions on Industrial Electronics,2013,60(11):5137-5147.

[150] Luo RC,Lee KC and Spalanzani A.Humanoid robot walking pattern generation based on five-mass with angular momentum model [C] // 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE),Santa Clara,CA,USA,2016:375-380.DOI:10.1109/ISIE.2016.7744919.

[151] Luo RC and Chen CC.Quasi-natural humanoid robot walking trajectory generator based on five-mass with angular momentum model [J].IEEE Transactions on Industrial Electronics,2018,65(4):3355-3364.

[152] Kuo AD.Choosing your steps carefully [J].IEEE Robotics & Automation Magazine,2007,14(2):18-29.

[153] Hong Y,Park C and Kim J.Stable bipedal walking with a vertical center-of-mass motion by an evolutionary optimized central pattern generator [J].IEEE Transactions on Industrial Electronics,2014,61(5):2346-2355.

[154] Wright J and Jordanov I.Intelligent approaches in locomotion - a review [J].Journal of Intelligent & Robotic Systems,2015,80(2):255-277.

[155] Dau VH,Chew C, Poo A.Achieving energy- efficient bipedal walking trajectory through GA-based optimization of key parameters [J].International Journal of Humanoid Robotics,2009,6(4):609-629.

[156] Elhosseinia MA,Haikal AY,Badawy M,et al.Biped robot stability based on an A-C parametric whale optimization algorithm [J].Journal of computational Science,2019,31:17-32.

[157] Mandava RK and Vundavilli PR.An optimal PID controller for a biped robot walking on flat terrain using MCIWO algorithms [J].Evolutionary Intelligence,2019,12(1):33–48.

[158] Huan TT, Anh HPH.Optimal stable gait for nonlinear uncertain humanoid robot using central force optimization algorithm [J].Engineering Computations,2019,36(2):599-621.

[159] Mandava RK and Vundavilli PR.An adaptive PID control algorithm for the two-legged robot walking on a slope [J].Neural Computing and Applications,2020,32(1):1-15.DOI:10.1007/s00521-019-04326-2.

[160] Bae S,Lee C and Oh S.Minimum energy-cost walking exploiting natural dynamics of multiple spring-mass model[C] // 2020 IEEE-RAS 20th International Conference on Humanoid Robots,2021:216-221,DOI:10.1109/HUMANOIDS47582.2021.9555791.

[161] Hobart CG,Mazumdar A,Spencer SJ,et al.Achieving versatile energy efficiency with the WANDERER biped robot[J].IEEE Transactions on Robotics,2020,36(3):959-966.

[162] Hobon, M,De-León-Gómez V,Abba G et al.Feasible speeds for two optimal periodic walking gaits of a planar biped robot[J]. Robotica,2022,40(2):377-402.

[163] Liu Y,Heng S,Zang X,et al.Multiphase trajectory generation for planar biped robot using direct collocation method[J].Mathematical Problems in Engineering,2021:6695528:1-14.DOI:10.1155/2021/6695528.

[164] Miura K,Hashimoto K,Gangloff J,et al.Visual servoing without Jacobian using mdified simplex optimization[C] // 2005 IEEE International Conference on Robotics and Automation,2005:3504-3509,DOI:10.1109/ROBOT.2005.1570652.

[165] Yao L and Lu GF.Double structure scaled simplex representation for multi-view subspace clustering[J].Neural Networks,2022,151:168-177.

[166] Li H and Lin ZC.Accelerated alternating direction method of multipliers: an optimal O(1 / K) nonergodic analysis[J].Journal of Scientific Computing,2019,79:671-699.

[167] Li H and Lin ZC.On the complexity analysis of the primal solutions for the accelerated randomized dual coordinate ascent[J].Journal of Machine Learning Research,2020,21(33):1-45.

[168] Kim D and Fessler JA.Optimized first-order methods for smooth convex minimization[J]. Mathematical Programming,2016,159:81–107.

[169] Nesterov Y.Smooth minimization of non-smooth functions[J]. Mathematical Programming,2005,103:127–152.

[170] Florea MI and Vorobyov SA.A generalized accelerated composite gradient method: uniting nesterov's fast gradient method and FISTA[J].IEEE Transactions on Signal Processing,2020,68:3033-3048.

[171] Dehghani R,Fattah A and Abedi E.Cyclic gait planning and control of a five-link biped robot with four actuators during single support and double support phases [J].Multibody System Dynamics,2015,33:389-411.

[172] Li L,Xie ZQ,Luo X,et al.Trajectory planning of flexible walking for biped robots using linear inverted pendulum model and linear pendulum model[J].Sensors,2021,21(4):1082:1-16.

[173] Kim J.Multi-axis force-torque sensors for measuring zero-moment point in humanoid robots:a review [J].IEEE Sensors Journal,2020,20(3):1126-1141.

中图分类号:

 TP242    

开放日期:

 2023-03-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式