- 无标题文档
查看论文信息

题名:

 三塘湖盆地富油煤赋存特征及沉积地质控制    

作者:

 赵奔    

学号:

 22209071010    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 0818    

学科:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 富油煤地质    

导师姓名:

 师庆民    

导师单位:

 西安科技大学    

提交日期:

 2025-06-12    

答辩日期:

 2025-05-30    

外文题名:

 Occurrence Characteristics and Deposition Geological Controls of Tar-Rich Coal in Santanghu Basin    

关键词:

 富油煤 ; 沉积环境 ; 微观分子结构 ; 煤相 ; 三塘湖盆地    

外文关键词:

 tar-rich coal ; deposition environment ; molecular structure ; coal facies ; Santanghu Basin    

摘要:

新疆三塘湖盆地广泛分布可通过低温热解提取油气的富油煤资源,但其在不同沉积位置的热解焦油产率存在较大差异,制约了富油煤精细勘查评价。本文以三塘湖盆地八道湾组和西山窑组煤样为研究对象,基于宏观沉积演化背景,以焦油产率为切入点,开展沉积相判识、煤相划分、微观分子结构等研究,探讨三者之间联系,阐明沉积环境控制焦油产率的内在机理,从而建立建立沉积环境、煤岩组分、富氢结构对焦油产率的控制体系。

沼泽环境作为联系沉积演化和焦油产率之间关键枢纽,八道湾组煤形成于下三角洲平原分流间湾的低位沼泽环境,水体安静、覆水较深、凝胶化作用强,形成具有高镜质组含量煤。西山窑组煤形成于滨浅湖滨岸的高位沼泽环境,覆水较浅、泥炭常暴露于空气中,形成高惰质组含量煤。

结合傅里叶红外光谱和13C-NMR固体核磁共振对八道湾组和西山窑组煤分子结构分析,八道湾组煤中具有高脂肪氢占比,尤其是亚甲基、甲基等弱键结构含量和脂肪链长度均远高于西山窑组煤,而西山窑组煤中主要以芳香氢含量为主,包括高于八道湾组煤的含氧结构比例。亚甲基、次甲基等形式存在的脂肪链结构是富油煤产出焦油的关键微观分子结构。覆水较深、水体安静、还原性强、植物组织结构降解程度高的泥炭沼泽环境形成的煤具有多脂肪氢结构,尤其是亚甲基和次甲基结构等,从而产出更高的热解焦油。

八道湾组煤具备上述关键物质特点及成煤环境特点,从而相比西山窑组煤具有更高的焦油产率。

外文摘要:

Tar-rich coal with extractable oil and gas through low-temperature pyrolysis is widely distributed in the Santanghu Basin, Xinjiang. However, there were significant differences in the tar yield of tar-rich coal at different sedimentary horizons, which constrained detailed exploration and evaluation. This paper investigates coal samples from the Badaowan and Xishanyao Formations in the Santanghu Basin, integrating macro sedimentary evolution, tar yield analysis, sedimentary facies identification, coal facies classification, and microscopic molecular structural characterization. The objective is to elucidate the relationships among these parameters, clarify the sedimentary environment's control mechanism on tar yield, and establish a systematic framework linking the sedimentary environment, coal maceral, and hydrogen-rich structures to tar generation.

The Badaowan Formation coals, deposited in a lowland moor environment in the Interdistrbutary bay of the Lower Delta Plain facies, exhibit distinct characteristics. These settings were characterized by stable, deep overlying water and intense gelification, fostering the formation of coals with high vitrinite content. In contrast, the Xishanyao Formation coals formed in a high moor environment along the shallow lake shore facies, where shallow water and periodic peat exposure promoted oxidation, resulting in elevated inertinite content.

The molecular structure of Badaowan Formation and Xishanyao Formation coal was analyzed by Fourier transform infrared spectroscopy (FTIR) and ¹³C nuclear magnetic resonance (13C-NMR). Badaowan coals contain higher aliphatic hydrogen structures, particularly methylene and methyl, with longer aliphatic chains than Xishanyao coals. Conversely, Xishanyao coals are dominated by aromatic hydrogen structures and exhibit higher oxygen-containing functional groups. Aliphatic chain structures, particularly methylene and polymethylene structures, are identified as critical molecular structural for tar formation in tar-rich coals.

Coals deposited in deeper, more reducing peat swamps with stable water columns and intense plant tissue degradation accumulate abundant aliphatic hydrogen structures, leading to higher tar yields. The Badaowan Formation coal has the above characteristics of key substances and a coal-forming environment, resulting in a higher tar yield than the Xishanyao Formation coal. In additional, the response of plant types and paleo-geothermal metamorphism at different coal-forming periods to tar yield requires further investigation.

参考文献:

[1] 樊大磊, 王宗礼, 王彧嫣等. 2024年国内外油气资源形势分析及展望 [J]. 中国矿业, 2025, 34(01): 46-54.

[2] 王双明, 师庆民, 王生全等. 富油煤的油气资源属性与绿色低碳开发 [J]. 煤炭学报, 2021, 46(05): 1365-77.

[3] 王双明, 王虹, 任世华等. 西部地区富油煤开发利用潜力分析和技术体系构想 [J]. 中国工程科学, 2022, 24(03): 49-57.

[4] 葛栋锋, 刘学良. 新疆煤炭资源种类分布特征 [J]. 内蒙古煤炭经济, 2021, (20): 61-3.

[5] 宁树正, 张莉, 徐小涛等. 新疆北部早、中侏罗世富油煤分布规律及控制因素 [J]. 煤炭科学技术, 2024, 52(01): 244-54.

[6] 东振, 张梦媛, 陈艳鹏等. 三塘湖-吐哈盆地富油煤赋存特征与资源潜力分析 [J]. 煤炭学报, 2023, 48(10): 3789-805.

[7] 惠一凡, 赵习民, 冯烁等. 新疆三塘湖盆地富油煤赋存特征及主控因素 [J]. 煤炭技术, 2023, 42(08): 117-23.

[8] 师庆民, 王双明, 王生全等. 神府南部延安组富油煤多源判识规律 [J]. 煤炭学报, 2022, 47(05): 2057-66.

[9] Shi Q, Li C, Wang S, et al. Effect of the depositional environment on the formation of tar-rich coal: A case study in the northeastern Ordos Basin, China [J]. Journal of Petroleum Science and Engineering, 2022, 216.

[10] Li B, Zhuang X, Li J, et al. Geological controls on coal quality of the Yili Basin, Xinjiang, Northwest China [J]. International Journal of Coal Geology, 2014, 131: 186-99.

[11] Huang D, Zhang D, Li J, et al. Hydrocarbon genesis of Jurassic coal measures in the Turpan Basin, China [J]. Organic Geochemistry, 1991, 17(6): 827-37.

[12] 柳广弟 张, 陈文学,杨道庆,李永林. 焉耆盆地侏罗系油气系统特征与演化 [J]. 石油学报, 2002, (06): 20-3+8-6.

[13] 卞正富, 张益东, 王猛等. 新疆煤炭资源开发潜力与开发策略 [J]. 煤炭学报, 2024, 49(02): 967-77.

[14] 何深伟, 李赛歌, 王俊民等. 新疆煤炭资源赋存规律与资源潜力预测 [J]. 中国煤炭地质, 2011, 23(08): 82-4+9.

[15] 支东明, 李建忠, 周志超等. 三塘湖盆地油气勘探开发新领域、新类型及资源潜力 [J]. 石油学报, 2024, 45(01): 115-32.

[16] 赵长毅, 赵文智, 程克明等. 吐哈盆地煤成油形成的地质条件 [J]. 沉积学报, 1997, 15(S1): 16-23.

[17] 胡社荣 侯慧敏, 吴因业,罗平. 西北侏罗系煤成油研究中的煤田地质学方法 [J]. 石油学报, 1997, (04): 14-8.

[18] 刘德汉 傅家谟, 肖贤明,陈德玉,耿安松,孙永革,王云鹏. 煤成烃的成因与评价 [J]. 石油勘探与开发, 2005, (04): 137-41.

[19] 赵长毅 赵文智, 程克明,杜美利,邵龙义. 吐哈盆地煤油源岩形成条件与生油评价 [J]. 石油学报, 1998, (03): 33-7+5.

[20] 李贤庆 马安来, 熊波,包建平,钟宁宁. 新疆三塘湖盆地侏罗系烃源岩显微组分剖析及其生烃模式 [J]. 西南石油学院学报, 1997, (04): 41-5+5.

[21] 霍永忠 钟宁宁, 熊波. 新疆三塘湖盆地侏罗系煤有机地球化学特征 [J]. 江汉石油学院学报, 1998, (01): 34-8.

[22] 陈祥 张育民, 程克明,陈学宏. 焉耆盆地侏罗纪煤系源岩显微组分组合与生油潜力 [J]. 地球科学, 2005, (03): 337-42.

[23] 高文博, 冯烁, 田继军等. 三塘湖煤田汉水泉矿区富油煤赋存特征及沉积环境分析 [J]. 煤炭工程, 2022, 54(10): 136-40.

[24] Stanton R W, Warwick P D, Swanson S M. Tar yields from low-temperature carbonization of coal facies from the Powder River Basin, Wyoming, USA [J]. International Journal of Coal Geology, 2005, 63(1-2): 13-26.

[25] 许婷, 李宁, 姚征. 榆横矿区3#煤层富油煤的煤岩煤质及成煤环境 [J]. 煤炭技术, 2022, 41(07): 82-5.

[26] Marshall C, Large D J, Meredith W, et al. Geochemistry and petrology of Palaeocene coals from Spitsbergen — Part 1: Oil potential and depositional environment [J]. International Journal of Coal Geology, 2015.

[27] 汪寅人, 刘品双, 陈文敏. 我国若干褐煤及烟煤的化学组成与低温焦油产率的关系 [J]. 燃料学报, 1958, (01): 35-41.

[28] 张宁, 许云, 乔军伟等. 陕北侏罗纪富油煤有机地球化学特征 [J]. 煤田地质与勘探, 2021, 49(03): 42-9.

[29] 姚征, 罗乾周, 李宁等. 陕北石炭–二叠纪富油煤赋存特征及影响因素 [J]. 煤田地质与勘探, 2021, 49(03): 50-61+8.

[30] 杨甫, 段中会, 马丽等. 陕西省富油煤分布及受控地质因素 [J]. 煤炭科学技术, 2023, 51(03): 171-81.

[31] 李焕同, 朱志蓉, 张战波等. 柠条塔煤矿富油煤赋存特征及其成煤环境控制 [J]. 煤炭技术, 2022, 41(04): 63-6.

[32] 石磊. 煤共价键结构在热解过程中的阶段解离研究 [D]. 北京化工大学, 2014.

[33] Liu P, Zhang D, Wang L, et al. The structure and pyrolysis product distribution of lignite from different sedimentary environment [J]. Applied Energy, 2016, 163: 254-62.

[34] Petersen H I, Nytoft H P. Oil generation capacity of coals as a function of coal age and aliphatic structure [J]. Organic Geochemistry, 2006.

[35] Zhang D, Liu P, Lu X, et al. Upgrading of low rank coal by hydrothermal treatment: Coal tar yield during pyrolysis [J]. Fuel Processing Technology, 2016, 141: 117-22.

[36] Pickel W, Kus J, Flores D, et al. Classification of liptinite – ICCP System 1994 [J]. International Journal of Coal Geology, 2017, 169: 40-61.

[37] 欧阳征健. 三塘湖盆地构造特征及其形成演化 [D]. 西北大学, 2003.

[38] 姜官波. 三塘湖盆地侏罗系沉积体系研究 [D]. 西北大学, 2003.

[39] 鲁海鸥. 三塘湖盆地构造特征研究 [D]. 西安石油大学, 2012.

[40] 焦鑫. 新疆三塘湖盆地二叠系岩浆—热液喷流沉积岩特征与形成机理 [D]. 西北大学, 2017.

[41] 刘艳. 三塘湖盆地构造演化及其与油气的关系 [D]. 中国地质大学(北京), 2010.

[42] Hackley P C, Fishman N, Wu T, et al. Organic petrology and geochemistry of mudrocks from the lacustrine Lucaogou Formation, Santanghu Basin, northwest China: Application to lake basin evolution [J]. International Journal of Coal Geology, 2016, 168: 20-34.

[43] 何静, 黄涛, 冯烁等. 三塘湖煤田西山窑组煤地球化学特征及沉积环境意义 [J]. 煤炭科学技术, 2020, 48(05): 173-81.

[44] 王兴刚, 范谭广, 焦立新等. 三塘湖盆地煤炭地下气化地质评价与有利区域 [J]. 新疆石油地质, 2023, 44(03): 307-13.

[45] Ma J, Huang Z, Liang S, et al. Geochemical and tight reservoir characteristics of sedimentary organic-matter-bearing tuff from the Permian Tiaohu Formation in the Santanghu Basin, Northwest China [J]. Marine and Petroleum Geology, 2016, 73: 405-18.

[46] 袁文俊. 三塘湖盆地马朗凹陷中侏罗统西山窑组沉积相研究 [D]. 成都理工大学, 2018.

[47] 吴斌. 新疆三塘湖盆地控煤因素分析 [D]. 西安科技大学, 2015.

[48] 张利伟. 三塘湖盆地西山窑组煤储层孔隙结构及其控制因素分析 [D]. 中国地质大学, 2019.

[49] 冯烁. 三塘湖盆地中—下侏罗统沉积演化及聚煤规律研究 [D]. 新疆大学, 2015.

[50] 文静, 于家义, 王厉强等. 三塘湖盆地牛圈湖油田东区侏罗系西山窑组Ⅱ砂组沉积相研究 [J]. 石油天然气学报, 2011, 33(05): 168-71+340-1.

[51] 谷东辉. 三塘湖盆地马朗凹陷西山窑组沉积体系及储层特征研究 [D]. 中国石油大学(华东), 2019.

[52] 李增学, 何玉平, 刘海燕等. 琼东南盆地崖城组煤的沉积学特征与聚煤模式 [J]. 石油学报, 2010, 31(04): 542-7.

[53] Sen S, Naskar S, Das S. Discussion on the concepts in paleoenvironmental reconstruction from coal macerals and petrographic indices [J]. Marine and Petroleum Geology, 2016, 73: 371-91.

[54] Yang Y, Sun G, Wang Y, et al. Diagenesis and sedimentary environment of the lower Xiaganchaigou formation deposited during the Eocene/Oligocene transition in the Lenghu tectonic belt, Qaidam Basin, China [J]. Environmental Earth Sciences, 2020, 79: 1-14.

[55] 代世峰, 唐跃刚, 姜尧发等. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅰ:镜质体 [J]. 煤炭学报, 2021, 46(06): 1821-32.

[56] 代世峰, 赵蕾, 唐跃刚等. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅳ:类脂体 [J]. 煤炭学报, 2021, 46(09): 2965-83.

[57] 康西栋,李宝芳,潘治贵. 吐哈盆地侏罗纪煤层的显微煤岩特征及生烃潜力评价 [J]. 中国煤田地质, 1995, (03): 37-9.

[58] Zhang J, Tao Y, Zhang W, et al. Experimental study on the macerals enrichment of Shenhua low-rank coal by Falcon centrifugal concentrator [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(21): 2588-600.

[59] 代世峰, 王绍清, 唐跃刚等. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅱ:惰质体 [J]. 煤炭学报, 2021, 46(07): 2212-26.

[60] 侯贤旭, 唐跃刚, 宋晓夏等. 重庆中梁山矿区主要煤层的煤岩学和煤相特征 [J]. 煤田地质与勘探, 2013, 41(05): 6-10.

[61] Shi Q, Li C, Wang S, et al. Variation of molecular structures affecting tar yield: A comprehensive analysis on coal ranks and depositional environments [J]. Fuel, 2023, 335.

[62] Rimmer S M, Davis A. The influence of depositional environments on coal petrographic composition of the Lower Kittaning Seam, western Pennsylvania [J]. Organic Geochemistry, 1988, 12(4): 375-87.

[63] Horsfield B, Yordy K, Crelling J. Determining the petroleum-generating potential of coal using organic geochemistry and organic petrology [M]. Organic Geochemistry in Petroleum Exploration. Elsevier. 1988: 121-9.

[64] 师庆民, 赵奔, 王双明等. 三塘湖盆地侏罗系富油煤特征及沉积环境控制 [J]. 石油学报, 2024, 45(05): 787-803.

[65] 代世峰 任, 唐跃刚. 煤中常量元素的赋存特征与研究意义 [J]. 煤田地质与勘探, 2005, (02): 1-5.

[66] Dai S, Hower J C, Ward C R, et al. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau [J]. International Journal of Coal Geology, 2015, 144-145: 23-47.

[67] Bai Y, Liu Z, Sun P, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China [J]. Journal of Asian Earth Sciences, 2015, 97: 89-101.

[68] Huang X, Qian Z, Lu D, et al. Element geochemistry and depositional setting of ordovician miboshan formation in central–Southern Helan mountain [J]. Acta Geoscientica Sinica, 2009, 30: 65-71.

[69] Mejjad N, Laissaoui A, El-Hammoumi O, et al. Sediment geochronology and geochemical behavior of major and rare earth elements in the Oualidia Lagoon in the western Morocco [J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309(3): 1133-43.

[70] Yu C, Huang W, Jiu B, et al. Geochemistry Characteristics and Paleoenvironmental Significance of Trace Elements in Coal and Coal Gangue in the Yangcheng Mining Area, Qinshui Basin [J]. ACS Omega, 2022, 7(16): 13557-76.

[71] Yu C, Mu N, Huang W, et al. Major and Rare Earth Element Characteristics of Late Paleozoic Coal in the Southeastern Qinshui Basin: Implications for Depositional Environments and Provenance [J]. ACS Omega, 2022, 7(35): 30856-78.

[72] Chen J, Liu G, Jiang M, et al. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China [J]. International Journal of Coal Geology, 2011, 88(1): 41-54.

[73] Dai S, Ren D, Chou C-L, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization [J]. International Journal of Coal Geology, 2012, 94: 3-21.

[74] 邹建华, 刘东, 田和明等. 内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征 [J]. 煤炭学报, 2013, 38(06): 1012-8.

[75] 邹建华, 王冰峰, 王慧等. 重庆芦塘矿晚二叠世煤中微量元素和稀土元素的地球化学特征 [J]. 煤炭学报, 2022, 47(08): 3117-27.

[76] 马新涛, 魏迎春, 孟涛. 鲁西南煤田东滩煤矿煤质特征及煤相分析 [J]. 中国煤炭地质, 2022, 34(08): 9-14+72.

[77] 张冀, 韦波, 田继军等. 新疆哈密三塘湖特大整装煤田中—下侏罗统煤层煤质及煤相特征 [J]. 地质学报, 2015, 89(05): 917-30.

[78] Lv D, Wang D, Li Z, et al. Depositional environment, sequence stratigraphy and sedimentary mineralization mechanism in the coal bed- and oil shale-bearing succession: A case from the Paleogene Huangxian Basin of China [J]. Journal of Petroleum Science and Engineering, 2017, 148: 32-51.

[79] Damoulianou M-E, Kalaitzidis S, Pasadakis N. Turonian-Senonian organic-rich sedimentary strata and coal facies in Parnassos-Ghiona Unit, Central Greece: An assessment of palaeoenvironmental setting and hydrocarbon generation potential [J]. International Journal of Coal Geology, 2022, 258.

[80] Misiak J. Petrography and depositional environment of the No. 308 coal seam (Upper Silesian Coal Basin, Poland)—a new approach to maceral quantification and facies analysis [J]. International Journal of Coal Geology, 2006, 68(1-2): 117-26.

[81] Diessel C. On the correlation between coal facies and depositional environments; proceedings of the Proceeding 20th Symposium of Department Geology, University of New Castle, New South Wales, F, 1986 [C].

[82] Calder J H, Gibling M R, Mukhopadhyay P K. Peat formation in a westphalian B piedmont setting, cumberland basin, Nova Scotia: Implications for the maceral-based interpretation of rheotrophic and raised paleomires. Contribution series No. 91-002 [J]. 1991.

[83] Lu J, Shao L, Yang M, et al. Depositional model for peat swamp and coal facies evolution using sedimentology, coal macerals, geochemistry and sequence stratigraphy [J]. Journal of Earth Science, 2017, 28(6): 1163-77.

[84] Ketris M P, Yudovich Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals [J]. International Journal of Coal Geology, 2009, 78(2): 135-48.

[85] Krzeszowska E. Geochemistry of the Lublin Formation from the Lublin Coal Basin: Implications for weathering intensity, palaeoclimate and provenance [J]. International Journal of Coal Geology, 2019, 216.

[86] Qin M-Y, Guo J-H, Tan H, et al. Sedimentary facies characteristics and organic matter enrichment mechanism of lower Cambrian Niutitang Formation in South China [J]. Journal of Central South University, 2020, 27(12): 3779-92.

[87] Amijaya H, Littke R. Microfacies and depositional environment of Tertiary Tanjung Enim low rank coal, South Sumatra Basin, Indonesia [J]. International Journal of Coal Geology, 2005, 61(3-4): 197-221.

[88] 吴志远. 十三间房及周围地区煤系烃源岩评价及油气成藏机制研究 [D]. 中国矿业大学(北京), 2017.

[89] 徐春光. 黄骅坳陷上古生界煤和煤系烃源岩生烃特性研究 [D]. 中国矿业大学(北京), 2014.

[90] Kumar O P, Naik A S, Gopinathan P, et al. Petrographic and geochemical analysis of Barmer Basin Paleogene lignite deposits: Insights into depositional environment and paleo-climate [J]. Journal of Geochemical Exploration, 2024, 256.

[91] 李小彦, 司胜利. 鄂尔多斯盆地煤的热解生烃潜力与成烃母质 [J]. 煤田地质与勘探, 2008, (03): 1-5+11.

[92] 黄文辉, 敖卫华, 肖秀玲等. 鄂尔多斯盆地侏罗纪含煤岩系生烃潜力评价 [J]. 煤炭学报, 2011, 36(03): 461-7.

[93] Zeng L, Huang W, Pan C, et al. Assessment of oil potentials for humic coals on the basis of flash Py-GC, Rock-Eval and confined pyrolysis experiments [J]. Organic Geochemistry, 2020, 148.

[94] 姚素平 胡, 薛春燕,张景荣,曹剑. 瓦窑堡煤系有机岩石学特征及煤成烃潜力研究 [J]. 沉积学报, 2004, (03): 518-24.

[95] 李鲜蓉. 三塘湖盆地及周边石炭系烃源岩评价 [D]. 西北大学, 2009.

[96] Ibarra J, Moliner R, Bonet A J. FT-ir investigation on char formation during the early stages of coal pyrolysis [J]. Fuel, 1994, 73(6): 918-24.

[97] Pandolfo A, Johns R, Dyrkacz G, et al. Separation and preliminary characterization of high-purity maceral group fractions from an Australian bituminous coal [J]. Energy & fuels, 1988, 2(5): 657-62.

[98] Mastalerz M, Bustin R. Application of reflectance micro-Fourier Transform infrared analysis to the study of coal macerals: an example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada [J]. International Journal of Coal Geology, 1996, 32(1-4): 55-67.

[99] Xuguang S. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy [J]. Spectrochim Acta A Mol Biomol Spectrosc, 2005, 62(1-3): 557-64.

[100]Sonibare O O, Haeger T, Foley S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy [J]. Energy, 2010, 35(12): 5347-53.

[101]Yoshida T, Maekawa Y. Characterization of coal structure by CP/MAS carbon-13 NMR spectrometry [J]. Fuel processing technology, 1987, 15: 385-95.

[102]You Y, Han X, Liu J, et al. Structural characteristics and pyrolysis behaviors of huadian oil shale kerogens using solid-state 13C NMR, Py-GCMS and TG [J]. Journal of Thermal Analysis and Calorimetry, 2017, 131(2): 1845-55.

[103]Wang Q, Hou Y, Wu W, et al. A study on the structure of Yilan oil shale kerogen based on its alkali-oxygen oxidation yields of benzene carboxylic acids, 13C NMR and XPS [J]. Fuel Processing Technology, 2017, 166: 30-40.

中图分类号:

 P618.11    

开放日期:

 2028-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式