- 无标题文档
查看论文信息

题名:

 膨胀型防火涂料制备及其对老化木材阻燃性能研究    

作者:

 肖玥琰    

学号:

 21220226166    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

导师姓名:

 赵婧昱    

导师单位:

 西安科技大学    

提交日期:

 2024-06-17    

答辩日期:

 2024-06-02    

外文题名:

 Preparation of intumescent fire-retardant coatings and their flame retardancy performance on Aging Wood    

关键词:

 建筑防火 ; 老化木材 ; 膨胀型防火涂料 ; 热稳定性 ; 阻燃性能    

外文关键词:

 Building fire prevention ; Aging wood ; Expansion type fireproof coating ; Thermal stability ; Flame retardant performance    

摘要:

木材作为我国四大建材之一,在建筑领域应用非常广泛,目前多采用涂抹防火涂料作为木材及其木结构的保护方法。为提高防火性能,本文选择了三聚氰胺甲醛树脂(MF)作为成膜树脂,磷酸脒基脲(GUP)、季戊四醇磷酸酯(PEPA)、硼酸铵(ABT)组成协效阻燃体系,研究该体系对木材涂料防火性能的影响,并揭示其阻燃机理。由于自然环境因素作用导致木材发生的老化现象严重降低木结构建筑安全性能,因此进一步将木材膨胀型防火涂料应用于老化木材表面,扩展膨胀型防火涂料应用领域,论文的研究工作主要包含以下方面:

(1)为使木材膨胀型防火涂料达到最佳阻燃性能,本文选用正交实验法,以基材背面被烧穿并出现有焰为止的耐燃时间为优化指标,设计正交实验方案,对防火涂料组成配比进行了优化,确定最优配方。结果表明:MF:GUP:PEPA:ABT的质量比3:1.8:0.8:0.3时耐燃时间最长,耐燃时间大于40 min,是空白样品耐燃时间25.13倍,满足市场对阻燃涂料的需求。

(2)在优选出木材膨胀型防火涂料的基础上,采用理化性能测试、锥形量热仪、热重实验测试等方法,对比自制木材膨胀型防火涂料(B1)与市面型其他涂料(B2、B3)的理化性能、阻燃性能、热稳定性能。结果表明:B1理化性能较好;加入自制涂料样品的点燃时间(TTI)、热释放峰值(PHRR)、总放热量(THR)、总产烟量(TSP)等参数均有明显下降,与空白样品(B0)相比,PHRR降低29.63%,TSP降低69.71%;B1残炭量高达11.23%,比空白样品(B0)提高了2.89倍。同时综合对比三种防火涂料,证明自制木材膨胀型防火涂料(B1)协同阻燃效果最好,热稳定性最优。

(3)通过TG、TG-IR与SEM等实验手段结合热解动力学方法,对自制木材膨胀型防火涂料热解过程进行分析,进一步探究其阻燃机理。结果表明:涂有膨胀型防火涂料样品的活化能远大于其对照组,需更多能量发生热解反应,阻滞了木材热分解过程,其反应模型为Avrami-Erofeev方程,即随机成核及增长模型,证明防火涂料改变木材热解途径与反应模型;阻燃机理为气相-凝聚相协同阻燃效应,ABT受热分解生成的B2O3附着于MF、GUP与PEPA生成的耐高温炭层表面,形成致密白色“B-C”混合碳层,起到隔热隔氧作用,同时释放大量不燃气体兼具气相阻燃作用,提高涂料阻燃性能。

(4)光老化是自然老化作用的主要方式之一,基于木材在自然环境影响下易发生老化作用的背景下,将制备出的阻燃高效的木材膨胀型防火涂料,进一步应用于光老化木材与未老化原木表面,对其热稳定性、阻燃、抑烟性能进行分析。结果表明:光老化过程中木材的光降解主要是木质素的降解,老化木材的孔隙增大,纹路断裂,内部细胞结构被破坏逐渐脱落;膨胀防火涂料涂料(水性)可以顺着纹路填满木材表层,填充被破坏细胞结构,干燥后与老化木材附着更均匀与紧密,使其阻燃、抑制效果比原木更好。具体表现为木材膨胀型防火涂料对光老化木材在热稳定性、活化能、阻燃性能与抑烟性能等各个方面的提升、保护效果均大于未老化原木,证明自制膨胀型木材防火涂料适用于老化木材表面,为老化木材与木结构建筑的保护提供技术依据。

关键词:建筑防火;老化木材;膨胀型防火涂料;热稳定性;阻燃性能

木材作为我国四大建材之一,在建筑领域应用非常广泛,目前多采用涂抹防火涂料作为木材及其木结构的保护方法。为提高防火性能,本文选择了三聚氰胺甲醛树脂(MF)作为成膜树脂,磷酸脒基脲(GUP)、季戊四醇磷酸酯(PEPA)、硼酸铵(ABT)组成协效阻燃体系,研究该体系对木材涂料防火性能的影响,并揭示其阻燃机理。由于自然环境因素作用导致木材发生的老化现象严重降低木结构建筑安全性能,因此进一步将木材膨胀型防火涂料应用于老化木材表面,扩展膨胀型防火涂料应用领域,论文的研究工作主要包含以下方面:

(1)为使木材膨胀型防火涂料达到最佳阻燃性能,本文选用正交实验法,以基材背面被烧穿并出现有焰为止的耐燃时间为优化指标,设计正交实验方案,对防火涂料组成配比进行了优化,确定最优配方。结果表明:MF:GUP:PEPA:ABT的质量比3:1.8:0.8:0.3时耐燃时间最长,耐燃时间大于40 min,是空白样品耐燃时间25.13倍,满足市场对阻燃涂料的需求。

(2)在优选出木材膨胀型防火涂料的基础上,采用理化性能测试、锥形量热仪、热重实验测试等方法,对比自制木材膨胀型防火涂料(B1)与市面型其他涂料(B2、B3)的理化性能、阻燃性能、热稳定性能。结果表明:B1理化性能较好;加入自制涂料样品的点燃时间(TTI)、热释放峰值(PHRR)、总放热量(THR)、总产烟量(TSP)等参数均有明显下降,与空白样品(B0)相比,PHRR降低29.63%,TSP降低69.71%;B1残炭量高达11.23%,比空白样品(B0)提高了2.89倍。同时综合对比三种防火涂料,证明自制木材膨胀型防火涂料(B1)协同阻燃效果最好,热稳定性最优。

(3)通过TG、TG-IR与SEM等实验手段结合热解动力学方法,对自制木材膨胀型防火涂料热解过程进行分析,进一步探究其阻燃机理。结果表明:涂有膨胀型防火涂料样品的活化能远大于其对照组,需更多能量发生热解反应,阻滞了木材热分解过程,其反应模型为Avrami-Erofeev方程,即随机成核及增长模型,证明防火涂料改变木材热解途径与反应模型;阻燃机理为气相-凝聚相协同阻燃效应,ABT受热分解生成的B2O3附着于MF、GUP与PEPA生成的耐高温炭层表面,形成致密白色“B-C”混合碳层,起到隔热隔氧作用,同时释放大量不燃气体兼具气相阻燃作用,提高涂料阻燃性能。

(4)光老化是自然老化作用的主要方式之一,基于木材在自然环境影响下易发生老化作用的背景下,将制备出的阻燃高效的木材膨胀型防火涂料,进一步应用于光老化木材与未老化原木表面,对其热稳定性、阻燃、抑烟性能进行分析。结果表明:光老化过程中木材的光降解主要是木质素的降解,老化木材的孔隙增大,纹路断裂,内部细胞结构被破坏逐渐脱落;膨胀防火涂料涂料(水性)可以顺着纹路填满木材表层,填充被破坏细胞结构,干燥后与老化木材附着更均匀与紧密,使其阻燃、抑制效果比原木更好。具体表现为木材膨胀型防火涂料对光老化木材在热稳定性、活化能、阻燃性能与抑烟性能等各个方面的提升、保护效果均大于未老化原木,证明自制膨胀型木材防火涂料适用于老化木材表面,为老化木材与木结构建筑的保护提供技术依据。

外文摘要:

Wood, as one of the four major building materials in China, is widely used in the construction field. Currently, the application of fireproof coatings is commonly used as a protection method for wood and its wooden structures. In order to improve fire resistance, this article selected melamine formaldehyde resin (MF) as a film-forming resin, and a synergistic flame retardant system composed of guanylurea phosphate (GUP), pentaerythritol phosphate (PEPA), and ammonium borate (ABT) to study the impact of this system on the fire resistance of wood coatings and reveal its flame retardant mechanism. Due to the influence of natural environmental factors, the aging phenomenon of wood seriously reduced the safety performance of wooden structure buildings. Therefore, further application of wood expansion type fireproof coating on the surface of aged wood was proposed to expand the application field of expansion type fireproof coating. The research work of this paper mainly included the following aspects:

(1) To achieve the best flame retardant performance of wood expansion type fireproof coatings, this article used the orthogonal experimental method, with the flame resistance time until the back of the substrate was burned through and there was flames as the optimization index, designed an orthogonal experimental plan, optimized the composition ratio of fireproof coatings, and determined the optimal formula. The results showed that when the mass ratio of MF:GUP:PEPA:ABT was 3:1.8:0.8:0.3, the flame resistance time was the longest, with a flame resistance time greater than 40 minutes, which was 25.13 times that of the blank sample, meeting the market demand for flame retardant coatings. .

(2) On the basis of selecting the optimal wood expansion type fireproof coating, physical and chemical performance testing, cone calorimeter, thermogravimetric test and other methods were used to compare the physical and chemical properties, flame retardancy, and thermal stability of self-made wood expansion type fireproof coating (B1) with other commercially available coatings (B2, B3). The results showed that B1 had good physical and chemical properties; The experimental parameters such as ignition time (TTI), peak heat release (PHRR), total heat release (THR), and total smoke production (TSP) of the self-made coating sample were significantly reduced. Compared with the blank sample (B0), PHRR decreased by 29.63% and TSP decreased by 69.71%; The residual carbon content of B1 was as high as 11.23%, which was 2.89 times higher than that of B0. At the same time, a comprehensive comparison of three types of fireproof coatings proved that B1 had the best synergistic flame retardant effect and thermal stability.

(3) By using experimental methods such as TG, hot red combination, and SEM combined with pyrolysis kinetics, the pyrolysis process of self-made wood expandable fireproof coatings was analyzed to further explore their flame retardant mechanism. The results showed that the activation energy of wood expansion type fireproof coating was much higher than that of its control group, requiring more energy to undergo pyrolysis reaction, which hindered the wood thermal decomposition process. The reaction model was Avrami Erofeev equation, which was a random nucleation and growth model, proving that fireproof coating changed the wood pyrolysis pathway and reaction model. The flame retardant mechanism was a synergistic flame retardant effect of gas phase and condensed phase. The B2O3 generated by the thermal decomposition of ABT adhered to the surface of the high-temperature resistant carbon layer generated by MF, GUP, and PEPA, forming a dense white "B-C" mixed carbon layer, which played a role in insulation and oxygen isolation. At the same time, it released a large amount of non combustible gas and had a gas-phase flame retardant effect, improving the flame retardant performance of the coating.

(4) Light aging was one of the main ways of natural aging. Based on the background that wood was prone to aging under the influence of natural environment. The flame retardant and efficient wood expansion type fireproof coating prepared was further applied to the surface of light aged wood and unaged logs, and its thermal stability, flame retardancy, and smoke suppression performance were analyzed. The results showed that the photodegradation of wood during photoaging was mainly due to the degradation of lignin. The pores of aged wood increase, the grain breaks, and the internal cell structure was gradually destroyed and falls off; Expansion fireproof coating (water-based) could filled the surface of wood along the grain, filled the damaged cell structure, and adhered more evenly and tightly to aged wood after drying, making its flame retardant and inhibitory effect better than that of raw wood. Specifically, the improvement and protection effect of wood expansion type fireproof coating on photo aged wood in various aspects such as thermal stability, activation energy, flame retardancy, and smoke suppression performance were greater than those of unaged logs. This proved that self-made expansion type fireproof coating was suitable for the surface of aged wood and provided technical basis for the protection of aged wood and wooden structure buildings.

参考文献:

[1] 陈志俊. 林木资源的光理化特性研究及其利用[J].中南林业科技大学学报, 2023, 43(12): 1-13.

[2] 嘠力巴, 刘姝, 王鲁英, 等. 木材阻燃研究及发展趋势[J]. 化学与黏合, 2012, 34(4): 68-71.

[3] Yin W, Yamamoto H, Yin M, et al. Estimating the volume of large-size wood parts in historical timber-frame buildings of China: Case study of imperial palaces of the Qing Dynasty in Shenyang[J]. Journal of Asian Architecture and Building Engineering, 2012, 11(2): 321-326.

[4] 朱丹青. 温湿循环对木材膨胀型防火涂料的影响规律及机理研究[D]. 重庆科技学院, 2023.

[5] 许祥吉. 木制品粉尘爆炸事故概率分析与对策研究[J]. 中小企业管理与科技, 2020(8): 128-129.

[6] 邓军, 刘同双, 宋佳佳, 等. 自然老化作用对杨木热行为特征影响试验研究[J]. 中国安全科学学报, 2021, 31(12): 17-23.

[7] 王辉, 张典, 张文博, 等. 故宫养心殿区古建筑望板老化状况分析[J]. 林业机械与木工设备, 2021, 49(6): 59-64.

[8] 张晋, 王斌, 宗钟凌, 等. 木结构榫卯节点耐火极限试验研究[J]. 湖南大学学报(自然科学版), 2016, 43(1): 117-123

[9] 张晋, 郑成宇, 陈豪. 我国防火涂料在木结构中的应用与研究现状[J]. 建设科技, 2019(17): 74-79.

[10] 赵毅磊, 王洁莹, 张广鑫, 等. 防火涂料的制备与应用研究进展[J]. 化学与粘合, 2022, 44(6): 531-534.

[11] Lin S, Qin Y, Huang X, et al. Use of pre-charred surfaces to improve fire performance of wood[J]. Fire Safety Journal, 2023: 103745.

[12] Huang R, Zhang X, Chen Z, et al. Thermal stability and flame resistance of the coextruded wood-plastic composites containing talc-filled plastic shells[J]. International Journal of Polymer Science, 2020, 2020: 1-9.

[13] Cai J, Xu D, Dong Z, et al. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2705-2715.

[14] 邓军, 宋佳佳, 赵婧昱, 等. 自然老化木材燃烧过程热行为特性研究[J]. 中国安全科学学报, 2022, 32(2): 83-89.

[15] 陈玲珠, 韩重庆, 许清风, 等. 阻燃涂料处理三面受火锯材木梁耐火极限的试验研究[J].建筑结构, 2022, 52(3):5.

[16] 何梦凡, 李晓玉, 连海兰, 等. 木材阻燃技术的研究进展[J]. 林业机械与木工设备, 2022, 50(3): 21-29+36.

[17] 曹源, 陈海涛. 古建筑防火新技术研究[J]. 武警学院学报, 2011, 27(6): 44-46.

[18] 刘丹, 王俊胜, 林贵德, 等.木材用水性膨胀饰面型防火涂料阻燃及烟气特性[J]. 消防科学与技术, 2017, 36(2): 237-241.

[19] 徐晓楠, 周政懋. 防火涂料[M]. 北京: 化学工业出版社, 2004, 96-97.

[20] Wang TS, Liu T, Ma T, et al. Study on degradation of phosphorus and nitrogen composite UV-cured flame retardant coating on wood surface[J]. Progress in Organic Coatings, 2018, 124 : 240-248.

[21] Cheng LS, Ren S, Brosse N,et al. Synergic flame-retardant effect of cellulose nanocrystals and magnesium hydroxide in polyurethane wood coating[J]. Journal of Wood Chemistry and Technology, 2022, 42(4): 297-304.

[22] Huang YS, Ma TT, Wang QW, et al. Facile synthesis and construction of renewable, waterborne and flame-retardant UV-curable coatings in wood surface[J]. Progress in Organic Coatings, 2022, 107104

[23] Wang FQ, Zhang ZJ, Wang JY, et al. Fire-retardant and smoke-suppressant performance of an intumescent waterborne amino-resin fire-retardant coating for wood[J]. Frontiers of Forestry in China, 2008, 3(4) : 487-492.

[24] 高明, 孙彩云, 李桂芬, 等. 胍类阻燃剂处理木材的热解机理[J]. 北京工业大学学报, 2009, 35(3): 391-396.

[25] 马国儒, 邵路山, 张玉涛, 等. 国内外木结构建筑防火技术研究现状[J]. 农业与技术, 2021, 41(24): 49-53.

[26] 中国涂料行业“十四五”规划(一)[J]. 中国涂料, 2021, 36(3): 9-23.

[27] 赵文君.不同防火涂料的应用探究[J]. 冶金与材料, 2022,42(4): 187-189.

[28] 俞巍.防火涂料的研究与进展[J]. 科技资讯, 2017, 15(25): 56-57.

[29] 刘德红, 刘芝君, 王振, 等. 树脂基料对超薄型钢结构防火涂料性能的影响[J]. 新型建筑材料, 2018, 45(1): 37-39

[30] 韩忠智, 李石, 郭晓军, 等. 可膨胀石墨改性环氧防火涂料的制备及性能研究[J]. 涂层与防护, 2019, 40(4): 45-48.

[31] 戴静,陈伟佳,潘梦丽,等.硅改性木质素成炭剂协同膨胀阻燃聚丙烯制备及性能研究[J].工业安全与环保,2023,49(3):50-54.

[32] Shi J, Yang YQ .study on base resin of fire-proof and anticorrosive steel structure coatings[J]. IOP Conference Series: Materials Science and Engineering. 2019, 542: 012064.

[33] 王新钢, 张泽江, 孟东伟, 等. 水性透明木材防火涂料研究[J]. 消防科学与技术, 2016, 35(11): 1587-1590.

[34] Li S, Liu LB,Xu MJ, et al. Effect of a biomass based waterborne fire retardant coating on the flame retardancy for wood[J]. Polymers for Advanced Technologies, 2021, 32(12): 4805-4814.

[35] De HMPL, Labidi J, Bouhtoury CE, et al. Wood fireproofing coatings based on biobased phenolic resins[J]. Acs Sustainable Chemistry & Engineering, 2021, 9(4): 1729-1740.

[36] 赵潘宇, 范金福, 刘猛, 等. 膨胀型防火涂料研制及阻燃机理研究进展[J]. 涂层与防护, 2018, 39(10):44-48.

[37] 周颖, 张道海, 何敏, 等. 无卤阻燃热塑性聚氨酯弹性体复合材料研究进展[J]. 塑料助剂, 2017(4): 1-4.

[38] Chen XX, Gao M, Zhou X, et al. Fire protection properties of wood in waterborne epoxy coatings containing functionalized graphene oxide[J]. Journal of Wood Chemistry and Technology, 2019, 39(5): 313-328.

[39] Hu XC, Sun ZQ. Nano CaAlCO3-layered double hydroxide-doped intumescent fire-retardant coating for mitigating wood fire hazards[J]. Journal of Building Engineering, 2021, 44: 102987.

[40] Liang CB, Ma AJ, Ma ZL, et al. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 1-10.

[41] Wang C, Huo SQ, Liu S, et al. Exfoliated and functionalized boron nitride nanosheets towards improved fire resistance and water tolerance of intumescent fire retardant coating[J]. Journal of Applied Polymer Science, 2020, 138(15): 50177

[42] 余泓琛, 彭辉, 詹天翼, 等. 木材光老化表征与评价方法研究进展[J]. 世界林业研究, 2023, 36(2): 63-68.

[43] 秦莉, 于文吉. 木材光老化的研究进展[J]. 木材工业, 2009, 23(4): 33-36.

[44] 童军, 丁金华, 胡波, 等. 土工格栅户外老化试验初步研究[J]. 长江科学院院报, 2017, 34(2): 13-16.

[45] 郭燕芬, 陶友季, 马坚, 等. 湿热环境户外自然老化对PS分子结构的影响[J]. 塑料, 2013, 42(3): 108-112

[46] 刘军进, 严凡, 赵羽习. 幕墙用密封胶加速老化试验方法研究[J]. 中国胶粘剂, 2018, 27(8): 5-9.

[47] 易苏, 陈建芳, 张蓉, 等. 人工加速老化对棉纤维结构与性能的影响[J]. 湘潭大学自然科学学报, 2015, 37(1): 72-75.

[48] 杨国良, 骆锦安, 毕永韬, 等. Evotherm温拌橡胶沥青的老化特性及红外光谱分析[J]. 合成橡胶工业, 2020, 43(5): 366-370.

[49] 戴晓栋, 程沁灵, 丁敏, 等. 基于FTIR和GPC的沥青热老化特征研究[J]. 浙江交通职业技术学院学报, 2019, 20(2): 11-16.

[50] 王玉海, 石光, 杨丽庭. ABS材料人工加速老化与户外自然老化的相关性[J]. 工程塑料应用, 2016, 44(11): 85-91.

[51] 汪鹏飞, 贺小帆, 张涵, 等. 涂层加速老化与自然曝晒试验的相关性研究[J]. 北京航空航天大学学报, 2020, 1001.

[52] 陈树元. 太阳紫外线(UV)辐射对植物的影响. 环境科学, 1992, 13(6): 52-56.

[53] 李熠诗. 我国现代木结构防护措施在工程中的应用现状[J].工程质量,2023,41(9):68-71.

[54] 王春川. 人工加速光老化试验方法综述[J]. 电子产品可靠性与环境试验, 2009, 27(1): 65-69.

[55] 周和荣, 王珂, 吴涛, 等. 351 nm紫外光对梓木表面性能和组成的影响[J]. 林业工程学报, 2023, 8(6): 84-92.

[56] 王小青, 任海青, 赵荣军, 等. 毛竹材表面光化降解的FTIR和XPS分析[J]. 光谱学与光谱分析, 2009, 29(7): 1864-1867.

[57] 余泓琛, 彭辉, 詹天翼, 等. 木材光老化表征与评价方法研究进展[J]. 世界林业研究, 2023, 15: 1-7.

[58] Krishna K P. Study of the effect of photo-irradiation on the surface chemistry of wood[J]. Polymer Degradation and Stability. 2005, 90(1): 9-20.

[59] Horn B A, Qiu J J. FTIR Studies of weathering effects in western red cedar and southern pine[J].Society for Applied Spectroscopy. 1994, 48(6): 662-668.

[60] 李坚. 木质材料耐候性的研究[J].林业科学, 1988, 24(3): 366-371.

[61] 付自政. 木粉复合材料的制备及其紫外加速老化性能研究[D]. 华中农业大学, 2009.

[62] 于云鹏. 氨基树脂基透明膨胀型阻燃涂料的制备及性能研究[D]. 东北林业大学, 2023.

[63] 李佳朋. 透明膨胀型氨基树脂木材阻燃涂料的制备与性能研究[D]. 东北林业大学, 2018.

[64] 曾平, 谢维跃, 蒋健. 高度醚化三聚氰胺甲醛树脂的合成[J]. 精细石油化工进展, 2013, 14(5): 50-53.

[65] Xie YJ, Xu JJ, Militz H, et al. Thermo-oxidative decomposition and combustion behavior of scots pine (pinus sylvestris l.) sapwood modified with phenol and melamine-formaldehyde resins[J]. Wood Science and Technology, 2016, 50(6): 1125-1143.

[66] 丁丹鹏. 热塑性聚烯烃的阻燃和防水改性研究[D]. 北京化工大学, 2024.

[67] 李章武, 谢思正, 周侃. 低粘度微胶囊包裹聚磷酸铵的制备及性能表征[J]. 化学工程与装备, 2023(10): 8-11

[68] 张其, 肖泽芳, 龚宸, 等. 磷酸脒基脲和季戊四醇磷酸酯复合改性MUF木材涂料的阻燃性能研究[J]. 林业工程学报, 2018, 3(6): 48-55.

[69] Huo S, Song P, Yu B, et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives[J]. Progress in Polymer Science, 2021, 114: 101366.

[70] Xie YJ, Xu JJ, Militz H, et al. Thermo-oxidative decomposition and combustion behavior of scots pine (pinus sylvestris l.) sapwood modified with phenol and melamine-formaldehyde resins[J]. Wood Science and Technology, 2016, 50(6).

[71] 贾莹莹, 宋永明, 于富磊, 等. 磷酸脒基脲与聚磷酸铵协同阻燃的木粉/HDPE复合材料[J]. 林业科学, 2013, 49(5): 154-159.

[72] 于守武, 肖淑娟, 韩艳丽. 膨胀型阻燃体系中协效剂的研究进展[J]. 中国塑料, 2015, 29(7): 1-6.

[73] Tang S, Qian L, Qiu Y, et al. Synergistic flame‐retardant effect and mechanisms of boron/phosphorus compounds on epoxy resins[J]. Polymers for Advanced Technologies, 2018, 29(1): 641-648.

[74] Liu DF, Chen SS, Liu P, et al. Synthesis and application of a triazine derivative containing boron as flame retardant in epoxy resins[J]. Arabian Journal of Chemistry, 2020, 13(1): 2982-2994.

[75] 胡来勇, 俞马宏. 硼酸铵-磷酸氢二铵协效阻燃杨木单板的制备与表征研究[J]. 西南林业大学学报(自然科学), 2017, 37(2): 197-202.

[76]张其. 基于磷酸脒基脲和季戊四醇磷酸酯协效阻燃木材涂料研究[D]. 东北林业大学, 2019.

[77] 李雅红, 胡浩斌, 王玉峰. 黄土基膨胀型木结构防火涂料的制备及性能研究[J]. 陇东学院学报, 2023, 34(2): 63-68.

[78] 施云舟, 王彪, 朱方亮. 超声乳化-原位聚合法制备薄荷脑微胶囊[J]. 东华大学学报(自然科学版), 2013, 39(1): 6-12.

[79] 李元杰, 王峰. 微胶囊壁材用三聚氰胺甲醛树脂的改性及性能研究[J]. 材料导报,2009, 23 (10): 42-44.

[80] 王一帆. 微胶囊聚磷酸铵用于全水发泡聚氨酯硬质泡沫阻燃性能研究[D]. 西南石油大学, 2018.

[81] 王群芳, 赵桂兰. 绝缘纸的阻燃改性及其热降解研究[J]. 应用化工, 2006(7): 517-519.

[82] 陈修敏. 磷硅协效阻燃尼龙66的制备与性能研究[D]. 重庆理工大学, 2019.

[83] Shi Y, Wang G. An intumescent flame retardant containing caged bicyclic phosphate and oligomer: Synthesis, thermal properties and application in intumescent fire resistant coating[J]. Progress in Organic Coatings, 2016, 90: 83-90.

[84] 唐文婕, 彭振锋, 帅翰韬, 等. 五硼酸铵对622型镍钴锰酸锂电化学性能的影响[J]. 成都大学学报, 2019, 38(3): 312-315.

[85] Tang Y, Hei J, Wang K F, et al. Ammonium tetraborate tetrahydrate as a new boron source for the fabrication of p-type emitters in silicon solar cell[J]. Solar Energy, 2022, 235: 73-81.

[86] 高伟, 曹金珍. 聚乙二醇对五硼酸铵改性结构刨花板力学性能的影响[J]. 广东林业科技, 2012, 28(1): 7-12.

[87] 张强华. 改性硼硅溶胶对真丝织物的阻燃整理及其性能研究[D]. 苏州大学, 2017.

[88] Yu YP, Fang YQ, Yan MF, et al. Synergistic effect of graphene oxide and ammonium biborate tetrahydrate for flame retardancy of amino resin coatings[J]. Progress in Organic Coatings, 2024, 189: 108331.

[89] 程皓. 木质素热解过程化学键的断裂规律与产物调控途径[D]. 华南理工大学, 2018.

[90] 伍聪, 杨丹丹, 吴刚, 等. 苯基次磷酸盐离聚物/聚磷酸铵协效阻燃增韧改性聚乳酸[J].高分子学报, 2021, 52(2): 176-185.

[91] 张强. 污泥热解气化及燃烧特性研究[D]. 华北电力大学, 2018.

[92] 霍美玉, 刘贵锋, 霍淑平, 等. 木质素及其衍生物在木材胶黏剂中应用研究进展[J]. 生物质化学工程, 2024, 58(1): 56-66.

[93] 洪莉, 胡健, 徐桂龙, 等. 三聚氰胺甲醛树脂在阻燃型空气滤纸中的应用[J]. 中国造纸, 2011, 30(9): 28-31.

[94] Pabeli1a K G, Lumban C O, Ramos H J. Plasma impregnation of wood with fire retardants[J]. Nuclear Instruments&Methods in Physics Research, 2012, 272: 365-369

[95] 李熠诗. 我国现代木结构防护措施在工程中的应用现状[J]. 工程质量, 2023, 41(9): 68-71.

[96] 余泓琛, 彭辉, 詹天翼, 等. 木材光老化表征与评价方法研究进展[J]. 世界林业研究, 2023, 36(2): 63-68.

[97] 张典. 古建筑落叶松木构件自然老化材性变化[J/OL]. 土木与环境工程学报(中英文): 1-9[2023-10-13].

[98] 李能, 陈玉和, 包永洁, 等. 竹木材料耐紫外光老化性能研究进展[J]. 浙江林业科技, 2011, 31(6): 70-73.

[99] Deng J, Yang Y, Zhang YNi, et al. Inhibiting effects of three commercial inhibitors in spontaneouscoal combustion[J]. Energy, 2018, 160: 1174-1185

[100]Zhai X, Ge H, Wang T, et al. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal[J]. Energy, 2020, 205: 118076.

[101]Zhao J, Xiao Y, Song J, et al. Kinetic properties of non-caking coal spontaneous combustion by evolution of its functional groups[J]. Fuel, 2023, 354: 129428.

[102]邢丽萍. 膨胀型防火涂层与钢质基体传热过程影响因素研究[D]. 青岛科技大学, 2023.

[103]陈晓坤, 唐怡潇, 王秋红, 等. 聚甲基丙烯酸甲酯板材燃烧性能分析研究[J]. 消防科与技术, 2019, 38(11): 1499-1502.

[104]刘兴. 砖木结构古建筑火灾模拟分析与轰燃预测[D]. 长安大学, 2022.

[105]杨梦单, 张雷林. 低阶煤高温燃烧特性参数实验研究[J]. 煤矿安全, 2022, 53(7):

中图分类号:

 TU545    

开放日期:

 2026-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式