- 无标题文档
查看论文信息

论文中文题名:

 矿井复杂环境下无线信道建模及容量分析    

姓名:

 雷诗洁    

学号:

 19307205018    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 矿井无线通信    

第一导师姓名:

 王安义    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Research on wireless channel modeling and capacity in complex mine environment    

论文中文关键词:

 矿井巷道 ; LS-SVM ; 路径损耗 ; 多径衰落 ; 中继协作通信    

论文外文关键词:

 Mine roadway ; LS-SVM ; Path loss ; Multipath fading ; Relay cooperative communication    

论文中文摘要:

煤炭作为国家的重要能源,为国民经济的发展提供动力,在煤炭行业向智能化、安全化和信息化发展的过程中,离不开高效可靠的煤矿井下无线通信系统,因此如何在复杂的矿井环境中建立一个稳定实用的无线通信系统成为煤矿行业的关注热点。无线通信系统的性能与无线信道息息相关,无线电波在井下信道中传输时会产生多种衰落,对信号的传输带来不确定性。为了解矿井无线信道中电波的传播规律,提高通信系统的性能,本文创建了矿井无线通信系统的路径损耗预测模型,同时对于多径衰落问题,建立了中继协作MIMO系统模型,为实际中矿井无线通信系统的设计和建立提供了合理的参考价值。
本文分析了矿井无线信道衰落特性,通过波导模式法研究了矩形巷道中的电磁波传播衰减特性,并仿真天线工作频率、巷道电参数、粗糙度和倾斜度等环境因素带来的影响。在此基础上,利用LS-SVM算法建立了矿井巷道路径损耗预测模型,以上几个影响因子作为预测输入,信道的路径损耗值作为输出,将仿真结果与测试样本曲线进行拟合比较,说明该模型能较好的实现预测。接着,利用模拟退火算法寻找最佳的LS-SVM核函数参数和正则化参数,得到了优化后SA+LS-SVM预测模型。将优化后的模型与LS-SVM模型和BP模型进行对比,可以看出其预测精度得到了明显提高,验证了该模型的有效性和优越性。
针对矿井无线信道中的多径衰落问题,建立了基于中继MIMO技术的矿井无线通信模型,推导出关于中断概率与信道容量的公式并以此为评价指标,分别仿真分析了不同天线数目、不同中继协议以及不同能量阈值下的系统通信性能,得出不同条件下的传输性能规律,说明所建立的模型能明显提升系统的传输速率,可以有效地对抗多径衰落问题。

论文外文摘要:

Coal, as an important energy source of the country, provides power for the development of the national economy. In the coal industry to intelligent, security and information development process, can not do without efficient and reliable wireless communication system in the coal mine.So how to establish a stable and practical wireless communication system in the complex mine environment has become the focus of attention of the coal mine industry.
Firstly, This paper analyzes the fading characteristics of mine wireless channel, selects rectangular roadway as the object, uses the waveguide mode method to study the electromagnetic wave propagation and attenuation characteristics.And the effects of environmental factors,such as roadway electrical parameters, roadway roughness,antenna working frequency and inclination are simulated and analyzed.On this basis, the path loss prediction model of mine roadway is established by using LS-SVM algorithm. The above influence factors are used as the prediction input and the path loss value of channel is used as the prediction output. The simulation results are fitted and compared with the test sample curve, which shows that the model can better realize the prediction.Next, the simulated annealing(SA) algorithm is used to optimize the kernel function parameters and regularization parameters in LS-SVM, and the optimized SA+LS-SVM prediction model is obtained.Comparing the optimized model with LS-SVM model and BP model, it can be seen that the prediction accuracy has been significantly improved, which verifies the effectiveness and superiority of the model.
Aiming at the problem of multipath fading in mine wireless channel, a mine wireless channel based on relay cooperation and MIMO technology is established.The formula of outage probability and channel capacity is derived and used as the evaluation index.The system communication performance under different antenna numbers, different relay protocols and different energy thresholds is simulated and analyzed respectively, and the transmission performance laws under different conditions are obtained. It shows that the model can significantly improve the transmission rate of the system and effectively combat the problem of multipath fading.

参考文献:

[1]煤炭工业“十四五”安全高效煤矿建设指导意见[M].中国煤炭工业协会,2021-12-15.

[2]景少波.煤矿智能化开采技术发展现状及展望[J].陕西煤炭,2021,40(06),184-187.

[3]候振堂,候尚武,翟军民等.5G技术在智慧煤矿自动化系统中的应用[J].电子技术,2021,50(08): 94-95.

[4]王国法,赵国瑞,胡亚辉.5G技术在煤矿智能化中的应用展望[J].煤炭学报,2020,45(01):16-23.

[5]朱春华,姚金魁,杨铁军.无线信道建模方法综述[J].无线互联科技,2015,16:26-27.

[6]Paul Delogne. Basic mechanisms of tunnel propagation[J].Radio Science,1976,11(04):295-303.

[7]Alfred. G. Emslie, Robert L. Lagace, Peter F. Strong. Theory of the Propagation of UHFRadio waves in Coal Mine Tunnels[J]. IEEE Transactions on Antennas and propagation,1975, 23(2): 192-205.

[8]Osama M,Abo Seida.Propagation of Electromagnetic Waves in a Rectangular Tunnel[J].IEEE Applied Mathematics and Computation.,2003,136:405-413.

[9]Christoper L,David A,Roger A et a1.Radio wave propagation characteristics in lossy circular waveguides such as tunnels mine shaf[J].IEEE Wansagtions on antennas anpropagation,2000,48(9):1354-1365.

[10]Alok Ranjan, Prasant Misra, Bharat Dwivedi.Studies on Propagation Characteristics of Radio Waves for Wireless Networks in Underground Coal Mines[J].Wireless Personal Communications,2017,97(02):2819-2832.

[11]Mohammad Ali Moridi, Youhei Kawamura.An investigation of underground monitoring and communication system based on radio waves attenuation using ZigBee[J].Tunnelling and Underground Space Technology,2014,43(11):362-369.

[12]孙继平,成凌飞.梯形巷道中电磁波传播的等效分析方法[J].煤炭科学技术,2006,34(01):81-83.

[13]孙继平,成凌飞.矩形隧道中电磁波传播模式的分析[J].电波科学学报,2005,20(04):522-525.

[14]成凌飞,鲍鑫行,卢超.半圆拱形巷道中电磁波传播的等效分析方法[J].煤炭工程,2015,47(01):104-106.

[15]张冰丽,成凌飞,高慧等.粗糙度对矩形巷道电磁波传播特性影响的仿真[J].计算机仿真,2016,33(02):216-220.

[16]成凌飞,张薇静,焦晓龙.天线选型对隧道中电磁波传播的影响[J].传感器与微系统,2020,39(09):20-23.

[17]姚述福,余伟健.矿井空巷道无线信道特性分析与仿真[J].矿业工程研究,2020,35(02):73-78.

[18]杨维,李滢,孙继平.类矩形矿井巷道中UHF宽带电磁波统计信道建模[J].煤炭学报,2008,33(04):467-453.

[19]姚善化,吴先良.矿井巷道的MIMO无线信道建模及性能仿真电[J].系统仿真学报,2010,(22):2432-2434.

[20]高则海.矿井MIMO信道模型容量分析[J].科技视界,2015,11:62-63.

[21]姚善化.基于镜像法的矿并隧道电磁波多径信道模型[J].工矿自动化,2017,43(04):46-49.

[22]崔丽珍,李丹阳,王巧利,史明泉.煤矿井下基于射线跟踪法的信道建模研究[J].中国矿业,2019,28(08):94-98.

[23]李丹阳.模型关系有向图辅助下的KL-VSIMM目标跟踪算法[J].计算机应用与软件,2019.

[24]刘留,张建华,樊圆圆.机器学习在信道建模中的应用综述[J].通信学报,2021,42(02):134-149.

[25]Zaarour N,Kandil N,Hakem N,Despins C.Comparative experimental study on modeling the path loss of an UWB channel in a mine environment using MLP and RBF neural networks[C]//IEEE International Conference on Wireless Communications in Unusual and Confined Areas,2013.

[26]Zaarour N, Affes S, Kandil N, et al.Comparative Study on a 60 GHz Path Loss Channel Modeling in a Mine Environment Using Neural Networks[C]//IEEE International Conference on Ubiquitous Wireless Broadband. I,2015.

[27]T.S.Rappaport,G.R. Maccartney,M.K. Samimi, and S. Sun.Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design[J].IEEE Trans. Communvol,2015,63(09):3029-3056.

[28]G. Maccartney,T. Rappaport,S. Sun, et al.Indoor Office Wideband Milimeter-Wave Propagation Measurements and Channel Models at 28 and 73GHz for UItra-Dense 5G Wireless Networks[J].IEEE Access,2015:2388-2424.

[29]Akyildiz,G.P.Hancke.Capacity and Outage Analysis of MIMO and Cooperative Communication Systems in Underground Tunnels[J].Wireless Communications IEEE Transactions,2013.10(11):3793-3803.

[30]赵雄文,孙宁姚,耿绥燕等.基于最小二乘支持向量机的时变信道建模[J].北京邮电大学学报,2019,42(05):30-35.

[31]孙宁姚.39GHz室外毫米波信道测量与建模研究[J].电波科学学报,2017,32:361-366.

[32]祁恩召.沙漠边缘无线信道测量与建模研究[D].宁夏大学,2019.

[33]Sun Yuhang,Tang Shoufeng,Tong Ziyuan,Tong Minming,Xu Chaoliang.Application of trend surface analysis in early waming m odel of coal mine gas exploion[C]//IOP Conference Series Earth and Environmental Science.2019:1755-1307.

[34]Li, XH, Wang Q. Prediction of Sunounding Rock Classification of Highway Tunnel Based on PSO-SVM[C]//2019 Intemational Conference on Robots & Inteligent System ICRIS), IEEE,2019:443-446.

[35]姜雯.基于改进粒子群算法的SVM遥感影像分类[J].江苏科技大学学报,2020,6.

[36]Wen Yang.Millimetre wave channel modeling based on grey genetic optimization model[J].IETCommunications,2021,5:1-3.

[37]李晓记,杜卫海,李燕龙等.基于SVM的水下LED可见光通信信号检测方法[J].光通信技术,2021,45(05):50-54.

[38]Shuangde Li,Yuanjian Liu,Leke Lin,Zhipeng Chen,Xiangchen Sun.Measurements and Modelling of Millimeter-Wave Channel at 28 GHz in the Indoor Complex Environments for 5G Radio Systems[C]//IEEE 9th Intermational Conference on Wireless Communications and Signal Processing.2017:1-4.

[39]Simeon Olumide Ajose,Rasheed Alade Bakare,Agbotiname Lucky Imoize.BER comparison of different modulation schemes over AWGN and Rayleigh fading channels for MIMO-OFDM system[J].International Journal of communication networks and distributed systems,2017,18(02):129-147.

[40]梅蓉,张友能.基于MIMO-OFDM的无线通信系统在煤炭矿井中的应用[J].绵阳师范学院学报,2021,40(02):22-27.

[41]孟庆辉.矿井隧道无线通信时抗多径衰落方案的研究[J].佳木斯大学学报,2020,38(02):143-145.

[42]刘赛男,李晖,张蕊.矿井MIMO -OFDM通信系统信道的建模与仿真[J].大连民族大学学报,2018,20(03):227-233.

[43]徐岩.隧道协作通信中继选择与功率分配方法[D].中国矿业大学,2015.

[44]林静然,陈英,杨金泰等.面向OFDM无线中继系统的功率分配算法[J].系统工程与电子技术,2021,43(02):537-545.

[45]X.Huang,J.He,Q.Li.Optimal power allocation for multicarrier secure communications in fullduplex decode and forward relay network[J]. IEEE Communications Letters,2014,18(12):2169-2172.

[46]C.Xue,Q. Zhang.Joint power allocation and relay beamforming in nonorthogonal multiple access amplify and forward relay networks[J]. IEEE Trans. on Vehicular Technology,2017,66(8):7558-7562.

[47]E.Erdongan,T.Gucluolu.Dual-hop amplify-and-forward multi-relay maximum ratio tran smission[J]. Journal of Communications and Networks,2016,18(1):19-26.

[48]Z.Bai,R.Li,H. Zhang. Relay power allocation schemes for multiuser cooperative communication[C]. Proc. Of the IEEE WCNC,2012:1612-1616.

[49]孙继平,徐卿.矿井无线中继应急通信系统实现方法[J].工矿自动化,2021,47(5):1-8.

[50]刘希嘉,杨凯,马云霞等.无线通信信道仿真及预测[J].吉林大报,2021,39(06):758-767.

中图分类号:

 TP391.413    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式