- 无标题文档
查看论文信息

题名:

 本安Buck变换器电感分断放电特性及内部本安判据研究    

作者:

 沈一君    

学号:

 20206029003    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 080804    

学科:

 工学 - 电气工程 - 电力电子与电力传动    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 本质安全开关变换器    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2023-06-26    

答辩日期:

 2023-06-01    

外文题名:

 Research on Inductor-disconnected Discharge Characteristic and Internal Intrinsic Safety Criterion of Intrinsically Safe Buck Converter    

关键词:

 开关变换器 ; 本质安全 ; 电感分断放电 ; 非爆炸本安判据    

外文关键词:

 switching converter ; intrinsic safety ; inductor-disconnected discharge ; non-explosive intrinsic safety criterion    

摘要:

Buck变换器被应用于爆炸性环境前,必须对其本安性能进行评价。针对现有本安理论还未明晰Buck变换器输出电容对电感分断放电特性的影响,从而影响其内部本安性能的评价问题,本文对Buck变换器的电感分断放电特性及其内部本安判据进行了深入研究,对本安开关电源的研制和推广应用具有重要指导意义。

考虑到Buck变换器的电感出现分断放电时,其占空比将在闭环控制作用下增大,且最大占空比可达0.5或1,因此,得出了Buck变换器对应这两种情形的最危险电感分断放电等效电路。通过对Buck变换器进行电感分断放电试验,得出放电期间的电感电流波形在最大占空比为1时呈线性下降,而在其为0.5时呈锯齿状下降。通过分析Buck变换器输出电容对其电感分断放电特性的影响,指出电感分断放电持续时间随电容容量的增大而减小。依据Buck变换器的电感分断放电特性及对应等效电路,推导得出了变换器工作于最危险工况时的电感分断放电能量解析表达式。通过分析Buck变换器输出电容对电感分断放电能量的影响,指出增大电容容量可减少放电期间变换器输入端转移至分断间隙的能量,从而降低放电产生的总能量,因此增大输出电容取值有利于提升变换器的内部本安性能。结合能量等效原理及简单电感电路的临界引燃曲线,综合得出了Buck变换器的非爆炸性内部本安判据。以所得判据及变换器的电气性能指标要求为依据,得出了本安Buck变换器的元件参数设计方法。

根据所得出的参数设计方法研制了本安Buck变换器试验样机,测试了其电气性能,并在基于IEC标准的安全火花试验平台上进行了爆炸性试验,实验结果验证了所提判据的可靠性及参数设计方法的可行性。

外文摘要:

The intrinsic safety performance of the Buck converter must be evaluated before it is used in the explosive environment. In view of the problem that the influence of the output capacitance on the inductor-disconnected discharge energy of the Buck converter is unclear in the existing intrinsic safety theory, which leads to the evaluation problem of its internal intrinsic safety performance, the inductor-disconnected discharge characteristics and the internal intrinsic safety criterion of the Buck converter is deeply analyzed in this paper, which has important guiding significance for the development, popularization and application of intrinsically safe switching power supply.

Considering that the duty cycle of the Buck converter will increase under the closed-loop control, and the maximum duty cycle can reach 0.5 or 1, the equivalent circuit of the most dangerous inductor-disconnected discharge of the Buck converter corresponding to these two cases is obtained. Through the inductor-disconnected discharge experiments of the Buck converter, it is obtained that the inductor-disconnected current waveform decreases linearly during the discharge when the maximum duty cycle is 1, while it decreases in a zigzag shape when it is 0.5. Through analyzing the influence of the output capacitance of Buck converter on the inductor-disconnected discharge characteristics, it is pointed out that the duration of the discharging decreases with the increase of the capacitance. According to the inductor-disconnected discharge characteristics of the converter and the corresponding equivalent circuit, the mathematical expressions of the discharging energy under the most dangerous operating condition is derived. Through analyzing the influence of the output capacitance of the Buck converter on the discharge energy, it is concluded that increasing the capacitance can reduce the energy transferred from the input side during the discharge, thus the total energy generated by the discharge can be reduced, therefore, increasing the output capacitance value is conducive to improving the internal intrinsic safety performance of the converter. Based on the principle of energy equivalence and the critical ignition curve of simple inductor circuit, the non-explosive internal intrinsic safety criterion of the Buck converter is obtained.

According to the proposed parameter design method, the experimental prototype of the intrinsically safe Buck converter is developed. The electrical performance of the prototype is tested, and the explosive tests are carried out on the safety spark test platform based on IEC standard. Experimental results verify the reliability of the proposed criterion and the feasibility of the proposed parameter design method.

参考文献:

[1]康骞.矿用大功率本安电源的开发[D].太原理工大学,2021.

[2]T.Adrikowski,D.Buła and M.Pasko.“Application of numerical methods for automatic intrinsic safety analysis according to IEC 60079-11,” 2020 Progress in Applied Electrical Engineering (PAEE),Koscielisko,Poland,2020,pp.1-4.

[3]康骞,许春雨,田慕琴,宋建成.基于故障电流变化率的大功率本安电源设计[J].工矿自动化,2021,47(02):6-12.

[4]T.Adrikowski,D.Buła and M.Pasko.Application of numerical methods for automatic intrinsic safety analysis according to IEC 60079-11[C].2020 Progress in Applied Electrical Engineering (PAEE),2020,1-4.

[5]袁港,庄小豫,李家磊.本质安全电路中的电火花[J].电气开关,2023,61(01):4.6+16.

[6]周国华,唐熹,李杨龙,赖鹭.直流变换器广义对偶与相通性探讨[J].中国电机工程学报,2023,1-14.

[7]伍孟涛,王海生,闫小宇,刘彬,葛芦生.改进型预测函数在并联DC-DC中的应用[J].重庆工商大学学报(自然科学版),2023,40(01):78-84.

[8]张梦壕,王久和,张玲,张雅静,李建国.基于Brayton-Moser模型的直流微电网Buck变换器控制策略[J].燕山大学学报,2023,47(01):35-42.

[9]刘树林,郝雨蒙,李艳,游梦然.基于最大功率的本安Buck变换器设计方法[J].电工技术学报,2021,36(03):542-551.

[10]刘建华.爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D].中国矿业大学,2008.

[11]赵永秀,王骑,王瑶,李明庚.爆炸性环境电感分断放电引燃能力及本安性能评价方法[J].煤炭学报,2020,45(S2):867-874.

[12]孟庆海,文晶.本质安全电感电路非自然电弧放电能量分析[J].电气防爆,2020,No.223(03):1-5.

[13]刘树林.本质安全开关变换器基础理论及关键技术研究[D].西安科技大学,2007.

[14]文晶.现场总线本质安全系统残余能量的研究[D].北方工业大学,2021.

[15]Rui-jin.Design of intrinsically safe power supply[J].Journal of international coal science and Technology,2012,18(4):443-448.

[16]A. A.卡伊马科夫.矿用电气设备防爆原理[M].北京:机械工业出版社,1987.

[17]Leng,Yang et al.OFDM-Based Intrinsically Safe Power and Signal Synchronous Transmission for CC-PT-Controlled Buck Converters[J].IEEE Transactions on Power Electronics,2022,37:10319-10331.

[18]Naveed Ahmad,Yang Huijun,Shao Yuyan.A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries[J].Advanced Materials,2019,31(36):11-12.

[19]Nguyen,Hoai Van T.High-voltage and intrinsically safe supercapacitors based on a trimethyl phosphate electrolyte[J].Journal of Materials Chemistry,2021,09(36):20725-20736.

[20]Singh Jitendra Kumar,Banerjee Gautam,Singh,Arvind Kumar.Modelling of design parameters of intrinsically safe instruments for the safety of oil,gas and coal industries[J].International Journal of Oil,2019,22(03):417-431.

[21]Li,Yan et al.A Simplified Output Voltage Ripple Calculation Method of Intrinsically Safe Buck Converter with LC Low Pass Filter[C].2019 14th IEEE Conference on Industrial Electronics and Applications(ICIEA),2019,1536-1539.

[22]H. Llord,M.Eg.The use of break-flash apparatus No.3 for intrinsic safety testing[J].SMRE.2021,26(33):26.

[23]张燕美.本质安全电路最小点燃能量的一种测试方法.煤矿机电,1985(3):47-49.

[24]王岩,郭余庆.本质安全电路的能量检验理论研究,煤炭学报.1986(12):47-52.

[25]谢晓春.增大本安电源容量方法的探讨.电气防爆技术,1998(2):7.

[26]钟久明,刘树林,段江龙,王玉婷.短间隙短路放电的场增强因子研究[J].真空科学与技术学报,2015,35(09):1035-1040.

[27]钟久明,刘树林,刘健.本安防爆型Boost开关变换器的改进电路研究[C]//2019年海南机械科技与发展学术论坛论文集,2019.

[28]龙波.本质安全型有源箝位反激变换器的研究[D].中国矿业大学,2020.

[29]陈曦.准谐振反激式矿用隔爆兼本质安全型开关电源的设计[D].山东科技大学,2019.

[30]H Hui,S Liu,H Wu.Minimum Operating Frequency and Optimal Design Method of Output Intrinsically Safe Buck Converter[C].2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC).IEEE,2020,9:236-242.

[31]李林鸿.考虑滤波电容ESR的本质安全型Buck-Boost变换器分析与设计[D].陕西理工大学,2020.

[32]李 艳,刘树林,吴 浩,等.基于基波纹波比的大功率本安Buck变换器的设计[J].科学技术与工程,2020,20(20):8218-8223.

[33]Y Li,S Liu,Z Liang,Y Zhang,Y Shen.Temperature Characteristic Analysis of the Output Intrinsically Safe Buck Converter and Its Design Consideration[J].Energies,2022,15(19),7308.

[34]王其平.电器电弧理论[M].机械工业出版社,1991.

[35]Hyosung Kim.Arcing characteristics on low-voltage DC circuit breakers[C].European Conference on Power Electronics and Application,Lille,2017,1-7.

[36]孟庆海,胡天禄,牟龙华.低能电弧放电时间与电路参数间的关系[J].电工技术学报,2000(4):19-21.

[37]于海洋.电感性本质安全电路放电电流多项式抛物线模型研究[J].自动化应用,2021(02):104-106.

[38]赵永秀,刘树林,马一博.爆炸性试验电感电路分断放电特性分析与建模[J].煤炭学报,2015,40(7):1698-1704.

[39]Y Zhao,Y Li,Y Fu.Modeling of Arc Resistance and Glow Discharge for Inductor-Disconnected-Discharge Circuit Based on Explosive Test[C]//2016 International Symposium on Computer, Consumer and Control (IS3C).IEEE,2016:821-824.

[40]陈锐.基于本质安全电感电路的电弧放电理论研究[D].北方工业大学,2022.

[41]于月森.本质安全型开关电源基础理论与应用研究[D].中国矿业大学,2012.

[42]Y Zhao,M Li,Q Wang.Optimal Design Method for Inner-Intrinsically Safe Buck-Boost Converters Based on Ignition Capability[J].Mathematical Problems in Engineering,2021.

[43]寇蕾.基于等效电阻法的本质安全型Buck DC-DC变换器的新研究[J].科学技术与工程,2010,10 (11) :2632-2635.

[44]LIU Shu-lin,LIU Jian,LI Yan.Equivalent-resistance based on the analysis of inductor-disconnected discharge behavior for intrinsic safety Buck converters[J].Journal of Coal Science & Engineering,2008,14(3) :485-488.

[45]S Liu,H Wu,C Wang,et al.Inner Intrinsically Safe Criterion and Design Considerations of Buck Converter Based on Equivalent Inductance[J].Electric Power Components and Systems,2019,47(3):248-260.

[46]佟为明,王进己,金显吉.Buck变换器内部本质安全性能评价判别式研究[J].强激光与粒子束,2019,31(4):20-24.

[47]黄贤群. RC串联电路暂态过程时间常数的测量[J].实验室科学,2012,15(03):83-85+90.

[48]刘树林,祁俐俐.Buck变换器的等效简单电感电路及内部本安判据[J].西安科技大学学报,2016,36(03):434-439.

中图分类号:

 TM46    

开放日期:

 2026-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式