- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 韩楚寰    

学号:

 22205224154    

保密级别:

     

论文语种:

 chi    

学科代码:

 085500    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2025    

培养单位:

 西    

院系:

 机械工程学院    

专业:

 机械    

研究方向:

     

第一导师姓名:

 寇发荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-18    

论文答辩日期:

 2025-05-28    

论文外文题名:

 Research on Characteristics and Backstepping Control of Electro-Hydrostatic Interconnected Suspension    

论文中文关键词:

 电液互联 ; 馈能悬架 ; 参数优化 ; 自适应反步控制    

论文外文关键词:

 Electro-hydraulic interconnection ; Energy-feeding suspension ; Parameter optimization ; Adaptive backstepping control    

论文中文摘要:
<p>Electro-Hydrostatic Interconnected Suspension ,EHA-HISEHA-HIS</p> <p>1EHA-HIS仿</p> <p>2EHA-HIS仿IsightAmesim仿仿</p> <p>3</p> <p>4EHA-HISEHA-HISAMESim-Simulink-Carsim仿仿线仿仿仿</p>
论文外文摘要:
<p>With the rapid development of the automotive industry and the accelerating trends of intelligence and electrification, vehicle performance optimization and energy efficiency improvement have become key research focuses. Although traditional suspension systems can improve ride comfort and handling stability, their passive structures are inadequate for adapting to complex and variable road conditions and are incapable of recovering vibration energy from the road, resulting in energy waste and reduced fuel economy. Therefore, the development of a novel suspension system that integrates both dynamic performance enhancement and energy recovery functions has become an urgent demand in the industry. The Electro-Hydrostatic Interconnected Suspension (EHA-HIS), utilizing hydraulic interconnection technology and energy recovery mechanisms, not only enhances ride comfort, anti-roll, and anti-pitch performance, but also converts vibration energy into electrical energy for storage, providing an innovative solution for vehicle energy saving and performance optimization. This paper focuses on the EHA-HIS system, aiming to improve its vehicle performance and energy recovery efficiency under various operating conditions through system <font color='red'>modeling</font>, characteristic analysis, control strategy design, and performance validation. The main research contents of this study are as follows:</p> <p>(1) Based on the analysis of the EHA-HIS structure and working principles, a mathematical model of the electro-hydrostatic energy-feeding interconnected suspension was developed. Furthermore, a fourteen-degree-of-freedom full-vehicle dynamic model incorporating yaw, pitch, and roll dynamics was established. In addition, a random road excitation model was constructed using the filtered white noise method, providing realistic input conditions for simulation analysis and laying a theoretical foundation for the design and validation of subsequent control strategies.</p> <p>(2) Under four typical operating conditions, the multi-condition adaptability and energy recovery stability of the EHA-HIS were investigated. Simulation analyses were conducted to examine the effects of the high-pressure accumulator, low-pressure accumulator, hydraulic cylinder, hydraulic motor displacement, and energy-feeding circuit resistance on suspension characteristics, providing a basis for system parameter optimization. An orthogonal experimental analysis and optimization of system parameters were carried out using the Isight and Amesim co-simulation platform. In addition, characteristic tests were conducted to verify the consistency between the simulation model and the experimental results.</p> <p>(3) In response to the uncertainty of certain vehicle parameters, an adaptive backstepping control strategy was developed by integrating adaptive control theory with the backstepping method. Taking the sprung mass displacement, roll angle, pitch angle, and unsprung mass displacement of the wheels as control objectives, the compensation force calculation formulas were derived, and the control laws for the output variables were determined. Ultimately, by computing and applying the compensation forces to the suspension system in real time, stable control of pitch and roll motions was achieved, thereby enhancing vehicle handling stability and ride comfort.</p> <p>(4) To evaluate the performance of a vehicle equipped with EHA-HIS, a co-simulation model for full-vehicle control was established using AMESim, Simulink, and CarSim. For ride comfort assessment, simulation analyses were conducted under random road conditions at various vehicle speeds. For roll resistance performance, simulations were carried out under double lane-change and slalom conditions; for pitch resistance performance, simulations were conducted under braking and pulse excitation conditions. The simulation results were analyzed to evaluate system performance and verify the effectiveness of the proposed control strategy.</p>
参考文献:

[1] National Highway Traffic Safety Administration (NHTSA). National automotive sampling system [EB/OL]. Crash Injury Research,2024-10-22.

[2] 龚雪蕾, 方菁, 谭晓萍, 等. 中国31个省市道路交通事故现状分析及实现SDGs死伤减半目标趋势预测[J]. 中华疾病控制杂志, 2020, 24(01): 4-8+36.

[3] 寇发荣. 汽车振动主动控制理论与技术[M]. 武汉: 华中科技大学出版社, 2021: 2-5

[4] 张农. 车辆动力学: 液压互联悬架理论与应用[M]. 北京: 机械工业出版社, 2020: 31+93.

[5] 倪涛, 吕博, 张泮虹, 等. 基于严格反馈模型的电液伺服作动器控制策略研究[J/OL]. 中国机械工程, 2023, 51(10): 1-11.

[6] 刘秀梅, 李永涛. 车辆油气悬架技术研究综述[J/OL]. 西南交通大学学报, 2023, 71(10): 1-20.

[7] Shi X, Qing Y , Zhi W , et al. Active control for vehicle suspension using a self-powered dual-function active electromagnetic damper[J]. Journal of Sound and Vibration, 2024, 61(04): 569-589.

[8] A L . Finite Frequency Controller of Vehicle Active Suspension System[J]. Journal of Research in Science and Engineering, 2023, 58(05): 9-17.

[9] 国家发展改革委.《工业领域碳达峰实施方案的通知》, 国务院公报, 2022.

[10] Lin D Z , Yang F, Li R H . Experimental modelling and analysis of compact hydro-pneumatic interconnected suspension strut considering pneumatic thermodynamics and hydraulic inertial properties[J]. Mechanical Systems and Signal Processing, 2022, 36(07): 172-186.

[11] 张农, 王少华, 张邦基, 等. 液压互联悬架参数全局灵敏度分析与多目标优化[J]. 湖南大学学报(自然科学版), 2020, 47(10): 1-9.

[12] Sathishkumar P, Wang R, Yang L, et al. Trajectory control for tire burst vehicle using the standalone and roll interconnected active suspensions with safety-comfort control strategy[J]. Mechanical Systems and Signal Processing, 2020, 34(10): 67-76.

[13] 方艺勇, 郑敏毅, 陈桐, 等. 基于模糊控制的主动抗侧倾液压互联悬架研究[J].农业安装与车辆工程, 2024, 62(01): 90-95.

[14] Wang B , Zheng M Y, Zhang N, et al. A comfort performance improved anti-pitch hydraulically interconnected suspension system with switchable dual accumulators[J]. Proceedings of the Institution of Mechanical Engineers, 2023, 35(08): 2022-2035.

[15] Song H X , Dong M M, Wang X . Research on Inertial Force Attenuation Structure and Semi-Active Control of Regenerative Suspension[J]. Applied Sciences,2024, 29(06): 2314-2334.

[16] Liu P T, Kou F R, Chen Y X, et al. Dynamic analysis of an electro-hydraulic interconnected actuator energy regeneration suspension[J]. Proceedings of the Institution of Mechanical Engineers, 2024, 42(11): 3267-3283.

[17] 寇发荣, 张海亮, 许家楠, 等. 电动静液压主动悬架自适应Smith反馈时滞控制[J].振动. 测试与诊断, 2022, 42(05): 864-870+1030.

[18] Wei J Z , Guo S W , Yong G . Research on damping and energy recovery characteristics of a novel mechanical-electrical-hydraulic regenerative suspension system[J]. Energy, 2023, 48(47): 127-141.

[19] 于树友, 曹瑞丽, 刘清宇, 等. 具有双层控制结构的馈能悬架输出反馈控制策略[J].吉林大学学报(工学版), 2020, 50(04): 1191-1200.

[20] Sun Y H, Zeng Z B, Huang M L. Stochastic response and stability analysis of nonlinear vehicle energy-regenerative suspension system with time delay[J]. Engineering Structures, 2024, 47(11): 312-325.

[21] 宋慧新, 刘冰轶, 顾亮, 等. 增加缓冲器的馈能式悬架性能研究[J].汽车工程,2023, 45(01): 77-85.

[22] 李以农, 朱哲葳, 郑玲, 等. 基于路面识别的主动馈能悬架多目标控制与优化[J].交通运输工程学报, 2021, 21(02): 129-137.

[23] Huang D, Zhang J, Liu Y. Performance of active control and energy harvesting of a novel suspension system[C]. IOP Publishing, 2020, 146(01): 784-802.

[24] Zhang M , Hu C ,Gao J W, et al. Modelling, validation and parameter sensitivity of regenerative hydraulic-electric shock absorber[J]. Engineering Computations, 2022, 39(04): 1348-1373.

[25] Liu J, Liu J, Zhang X, et al. Transmission and energy-harvesting study for a novel active suspension with simplified 2-DOF multi-link mechanism[J]. Mechanism and Machine Theory, 2021, 51(12): 160-179.

[26] Lin D, Yang F, Li R, et al. Novel hydro-pneumatic interconnected suspension integrating pipe-connected magnetorheological valve designed based on magnetic gradient pinch mode—experimental study and modelling[J]. Experimental Techniques, 2025, 49(02): 203-217.

[27] 郑敏毅, 吴之刚, 钟伟民, 等. 变构型液压互联悬架设计与仿真研究[J].农业安装与车辆工程, 2024, 62(09): 39-45+58.

[28] 王刚锋, 王万汀, 索雪峰, 等. 矿用自卸车液压互联悬架参数灵敏度分析与优化[J]. 振动与冲击, 2024, 43(19): 232-241.

[29] Enes F N , Matteo C ,Francesco R . Hydraulic interconnected suspension for rail vehicles: a preliminary analysis[J]. Vibroengineering Procedia, 2023, 11(50): 91-97.

[30] 秦博男, 杨珏, 罗维东, 等. 一种新型液电式互联馈能悬架的特性分析[J]. 工程科学学报, 2022, 44(12): 2154-2163.

[31] 关鸿栩. 乘用车辆半主动悬架系统控制策略研究[D]. 成都: 西华大学, 2023.

[32] 江治东. 连续阻尼可调式液压互联悬架系统设计及控制研究[D]. 合肥: 合肥工业大学, 2021.

[33] 吴洋. 基于封闭回路结构的馈能式协同控制悬架系统研究[D]. 长沙: 湖南大学, 2022.

[34] 高驰. 天纳克蒙诺创新智能悬架技术,为进阶驾乘体验赋能[J]. 汽车与配件,2024, 74(06): 39.

[35] Li H, Li S, Sun W, et al. The optimum matching control and dynamic analysis for air suspension of multi-axle vehicles with anti-roll hydraulically interconnected system[J]. Mechanical Systems and Signal Processing, 2020, 34(22): 139-154.

[36] 寇发荣, 杨旭东, 李盛霖. 复合式空气悬架多模式切换终端滑模控制[J]. 振动与冲击, 2024, 43(11): 83-93.

[37] 余一凡, 陈双. 互联空气悬架整车平顺性智能控制方法研究[J/OL]. 机械科学与技术, 2025, 45(06): 1-13.

[38] Chen T ,Zheng M ,Zhang N , et al. Backstepping sliding mode control for an active hydraulically interconnected suspension[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024, 41(07): 1830-1843.

[39] Zhou Y, Li Z, Yu W, et al. Cooperative Control of Interconnected Air Suspension Based on Model Predictive Control[J]. Applied Sciences, 2022, 12(19): 9886-9901.

[40] 吴晓建, 邹亮, 张铭浩, 等. 结合粒子滤波状态观测的滑模自适应主动悬架控制[J]. 湖南大学学报(自然科学版), 2024, 51(12): 19-29.

[41] Lu Y K, Zhen R , Liu Y G, et al. Practical solution for attenuating industrial heavy vehicle vibration: A new gain-adaptive coordinated suspension control system[J].Control Engineering Practice, 2025, 33(15): 106-125.

[42] 寇发荣, 李盛霖, 杨旭东, 等. 电磁阀半主动悬架线性变参数μ综合鲁棒控制[J]. 振动与冲击, 2024, 43(08): 221-231+286.

[43] 寇发荣, 武大鹏, 许家楠, 等. 电磁混合主动悬架多模式协调切换控制[J]. 振动.测试与诊断, 2023, 43(03): 467-475+617-618.

[44] 綦衡敏, 张农, 王东, 等. 安装ECAS和液压互联悬架的客车动态性能研究[J]. 汽车工程, 2020, 42(03): 330-338.

[45] 赵贺雪, 张邦基, 张农, 等. 高度可调式抗侧倾液压互联悬架建模及控制策略研究[J]. 振动与冲击, 2018, 37(03): 202-209.

[46] 陈潇凯, 刘宏宇, 刘向. 基于IUDE算法的主动悬架H2/H∞控制[J]. 汽车工程, 2025, 47(01): 137-148.

[47] 陈潇凯, 陈丰, 刘向, 等. 基于扰动观测器的主动悬架切换控制算法研究[J]. 汽车工程, 2024, 46(10): 1744-1754.

[48] Guo S J, Chen L, Pan Y , et al. Hydraulic Integrated Interconnected Regenerative Suspension: Sensitivity Analysis and Parameter Optimization[J]. Electronics, 2023, 12(04): 891-891.

[49] Tan B, Lin X, Zhang B, et al. Nonlinear modeling and experimental characterization of hydraulically interconnected suspension with shim pack and gas-oil emulsion[J]. Mechanical Systems and Signal Processing, 2023, 37(29): 182-200.

[50] 陈盛钊, 郑敏毅, 凌启辉, 等. 双气室液压互联悬架系统特性研究[J]. 汽车工程, 2022, 44(02): 272-279.

[51] Zou J, Guo S, Guo X, et al. Hydraulic integrated interconnected regenerative suspension: Modeling and mode-decoupling analysis[J]. Mechanical Systems and Signal Processing, 2022, 43(18): 172-194.

[52] 赵岩, 孟令卫. 基于Simulink的液压换向阀建模与仿真[J]. 科技通报, 2020, 36(09): 42-46.

[53] 谭博欢, 林祥, 张邦基, 等. 考虑气液混合流体时变特性的阀片式液压互联悬架建模[J]. 汽车工程, 2021, 43(02): 287-295.

[54] Liu Q, Song S, Hu H, et al. Extended model predictive control scheme for smooth path following of autonomous vehicles[J]. Frontiers of Mechanical Engineering, 2022, 17(01): 4-20.

[55] 邹俊逸. 基于液电馈能式互联悬架的整车动力学分析及控制研究[D]. 武汉理工大学, 2019.

[56] 邹波, 袁圆, 唐俊, 等. 基于整车驾乘评价的半主动悬置系统控制策略研究[J]. 小型内燃机与车辆技术, 2024, 53(06): 79-85+92.

[57] 刘建泽, 柳江, 李敏, 等. 基于最小二乘的车速解耦路面辨识方法[J]. 吉林大学学报(工学版), 2024, 54(07): 1821-1830.

[58] 蒋荣超, 刘大维, 王登峰. 基于熵权TOPSIS方法的整车动力学性能多目标优化[J]. 机械工程学报, 2018, 54(02): 150-158.

[59] 陈龙, 张承龙, 汪若尘, 等. 液压互联式馈能悬架建模与优化设计[J]. 农业机械学报, 2017, 48(01): 303-308.

[60] 秦博男. 新型液电式互联馈能悬架系统设计及特性分析研究[D]. 北京科技大学, 2022.

[61] Pang H, Zhang X, Chen J, et al. Design of a coordinated adaptive backstepping tracking control for nonlinear uncertain active suspension system[J]. Applied Mathematical Modelling, 2019, 44(76): 479-494.

[62] 王兴宸. 汽车空气悬架系统的智能自适应反步递推控制研究[D]. 江苏科技大学, 2022.

[63] Pang H ,Zhang X ,Yang J , et al. Adaptive backstepping‐based control design for uncertain nonlinear active suspension system with input delay[J].International Journal of Robust and Nonlinear Control, 2019, 29(16): 5781-5800.

[64] 张旭. 车辆非线性主动悬架系统自适应反推控制器设计[D]. 西安理工大学, 2019.

[65] 李永浩. 基于自适应反步法的非线性分数阶主动悬架系统控制研究[D]. 石家庄铁道大学, 2022.

[66] 王少奇. 基于电液伺服主动悬架的非线性建模及控制策略研究[D]. 燕山大学, 2021.

[67] 李洪雪. 液压互联悬架半挂汽车列车侧倾稳定性仿真与试验研究[D]. 吉林大学, 2021.

[68] 张耀洵, 石怀龙, 曾京, 等.高速列车主动垂向减振器多目标控制方法[J]. 力学学报, 2025, 57(01): 212-223.

[69] Zhang Y, Hou D, Zhou Y. Research on PCB layout optimization of vehicle controller based on electrothermal hybrid simulation[C] IOP Publishing, 2024, 151(01): 12-43.

[70] 甄昊. 可切换式交联悬架系统建模及整车性能分析[D]. 吉林大学, 2015.

[71] 郭建辉. 基于Carsim的整车半主动悬架控制策略仿真研究[D]. 长安大学, 2017.

中图分类号:

 U463.33    

开放日期:

 2025-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式