论文中文题名: | 复垦矿区农田土壤重金属高光谱遥感反演研究 |
姓名: | |
学号: | 18210210056 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 高光谱遥感 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-17 |
论文答辩日期: | 2021-06-06 |
论文外文题名: | Hyperspectral remote sensing inversion of soil heavy metal in Farmland of reclaimed Mining Area |
论文中文关键词: | |
论文外文关键词: | Hyperspectral remote sensing inversion ; Soil spectral ; Feature band ; Heavy metal |
论文中文摘要: |
准确掌握土壤重金属浓度的空间分布信息是开展土壤修复与治理工作的前提。传统方法费时、费力、代价高且极易造成对环境的二次污染,如何迅速高效获取土壤重金属含量信息已成为学术界研究热点与难点之一。高光谱遥感具有光谱分辨率高、代价低、不会对环境造成污染、波谱信息丰富且时空连续性强等特点,为高效开展土壤重金属监测提供了可能。本文以陕西省蒲白煤矿某复垦农田为研究区,基于实测光谱数据、原位土壤重金属含量数据、高分五号(GF-5)高光谱遥感影像,利用BP神经网络构建实测光谱数据和GF-5高光谱遥感影像反射率之间的光谱转换模型,得到校正后的GF-5反射率数据;采用连续小波变换(CWT)和分数阶导数(FOD)对校正后GF-5反射率进行光谱变换,引入Boruta算法提取两种超标重金属(Cr和Ni)的高光谱特征波段;在此基础上,引入偏最小二乘回归(PLSR)、极限学习机(ELM)和随机森林(RF)模型分别构建两种重金属含量(Cr和Ni)与特征波段之间的高光谱遥感反演模型,利用交叉验证方法和精度评价指标R2和RMSE评价反演模型精度以选取最优遥感反演模型;根据最优遥感反演模型,对GF-5高光谱影像进行波段运算得到研究区重金属Cr和Ni的空间分布图。全文主要研究结果如下: (1)研究区土样中5种重金属Cr、Ni、Zn、Cu和Mn的平均值浓度分别为76.42mg/kg、27.40mg/kg、67.37mg/kg、19.57mg/kg和580.34mg/kg。Cr(62.50mg/kg)和Mn(557.00mg/kg)超过了陕西省土壤背景值,Cr(61.00mg/kg)和Ni(26.00mg/kg)超过了全国土壤背景值,因Mn多属于自然来源,故本文选择Cr和Ni这两种重金属进行高光谱遥感反演研究;从变异系数(CV)来看,Cu元素属于高度变异(63.42%),除Cu以外,所有元素含量均符合正态分布。 (2)Cr元素特征波段大多数集中在可见光及近红外区域,主要包括连续小波变换的第2尺度(CWT_2)和0.75阶分数阶导数变换(FOD_0.75),其中CWT_2的特征波段分别为484、497、514、660和1528nm,FOD_0.75的特征波段分别为891、899、904、921和959nm;Ni元素在CWT_2选取的特征波段数量最多,分别是814、981、985、1291、1974和2193nm。 (3)基于所选特征波段,利用PLSR、ELM和RF模型构建两种重金属的遥感反演模型,通过交叉验证和精度评价指标(R2和RMSE)对不同遥感反演模型进行精度评价,Cr的最优反演模型为CWT_2变换下的RF模型,其中建模精度为R2c=0.97,RMSEc=1.80,验证精度为R2v=0.94,RMSEv=2.66;Ni的最优遥感反演模型为连续小波变换的第8尺度(CWT_8)的ELM模型,其中建模精度为R2c=0.83,RMSEc=1.07,验证精度为R2v=0.36,RMSEv=4.56。 (4)基于最优反演模型,对GF-5高光谱影像进行波段运算得到研究区重金属Cr和Ni的空间分布图。并与空间插值结果进行对比后发现,整体分布趋势基本一致,其中Cr含量较高的区域主要分布在研究区的东南部,东北部和中部偏西区域,Ni含量较高的区域主要分布在研究区的东南部,其余位置均为低值区域,研究区Ni含量由东南到北部呈现降低的趋势,由东南部到西北部呈现先降低后增加的趋势。 |
论文外文摘要: |
It is a precondition for soil pollution prevention and control work to grasp accurately spatial distribution information of soil heavy metal. The traditional methods are time-consuming, laborious and costly, and it is easy for the environment to produce secondary pollution. It is one of research hotspots and difficulties about how to acquire soil heavy metal content efficiently and quickly. Hyperspectral remote sensing technology provides the feasibility to monitor soil heavy metal pollution due to many advantages, including high spectral resolution, low price, more bands and a strong continuity. It will not pollute the environment. We selected an abandoned reclamation region of a Pubai coal mine in Shaanxi province as the study area in this study. Soil samples are collected in field and spectral reflectance data and heavy metal are measured and Gaofen5 (GF-5) hyperspectral remote sensing image. Spectral transformation models are established between measured spectral data and GF-5 hyperspectral remote sensing image using BP neural network model to get corrected GF-5 reflectance data. Spectrum is transformed using continue wavelet transform (CWT) and fractional derivative (FOD) for corrected GF-5 reflectance data. Feature bands are selected based on tow heavy metals content using Boruta algorithm. The inversion models are calibrated between Cr and Ni elements content and feature bands reflectance using PLSR, ELM and RF, respectively. The optimal inversion model was selected through using cross validation and accuracy evaluation index (R2 and RMSE) to evaluate model accuracy. According to the optimal inversion model, the spatial distribution of Cr and Ni content are mapped by band math of GF-5 hyperspectral remote sensing image. The main results in this study are as follows: (1) The average content of Cr, Ni, Zn, Cu and Mn are 76.42mg/kg, 27.40mg/kg, 67.37mg/kg, 19.57mg/kg and 580.34mg/kg in study area. Compared with Shaanxi soil background value, Cr (62.50mg/kg) and Mn (557.00mg/kg) exceed Shaanxi soil background value. Compared with China soil background value, Cr (61.00mg/kg) and Ni (26.00mg/kg) exceed China soil background value. This study selects Cr and Ni to achieve Hyperspectral inversion research due to Mn belongs to natural source. According to variable coefficient, Cu belong to highly variable (63.42%). All elements meet normal distribution except Cu. (2) A majority feature bands of Cr are located in visible and near-infrared light area, the most bands are selected in the second dimension of continue wavelet transform (CWT_2) and 0.75 order of fractional derivative (FOD_0.75). Feature bands of CWT_2 is 484, 497, 514, 660 and 1528nm, respectively, and FOD_0.75 is 891, 899, 904, 921 and 959nm. The most bands of Ni are selected in CWT_2, including 814, 981, 985, 1291, 1974 and 2193nm. (3) According to selected feature bands, the remoting sensing inversion models of Cr and Ni are calibrated using PLSR, ELM, and RF. The different models are evaluated through cross validation and accuracy evaluation index (R2 and RMSE). The optimal inversion model of Cr is RF of CWT_2 transformation, and the accuracy of calibration R2c=0.97 and RMSEc=1.80, the accuracy of verification R2v=0.94 and RMSEv=2.66. The optimal inversion model of Ni is ELM of CWT_8 transformation, R2c=0.83, RMSEc=1.07, R2v=0.36, RMSEv=4.56. (4) Based on the optimal inversion model, the spatial distribution of Cr and Ni content are mapped by band math of GF-5 hyperspectral remote sensing image, and compare with spatial interpolation result. The results indicate that the total trend is consistent. The high area of Cr is in the southeast, the northeast and west-central region. The high content area of Ni is located in lower right corner of study area, and the other area is low value. The trend of Ni content is reduced from southeast to north, and reduced and increased from southeast to northwest. |
参考文献: |
[4] N R, M M, D P. Soil pollution: a hidden reality. 2018: FAO. 142. [54] 胡玉玲. 基于HJ-1高光谱数据的矿区植被污染监测. 2011,山东科技大学. [57] 朱亚星,于雷,洪永胜,等. 土壤有机质高光谱特征与波长变量优选方法. 中国农业科学. 2017(22):4325-4337. [65] 夏芳,彭杰,王乾龙,等. 基于省域尺度的农田土壤重金属高光谱预测. 红外与毫米波学报. 2015,34(5):593-598+605. [66] 夏军. 准东煤田土壤重金属污染高光谱遥感监测研究. 2014,新疆大学. [68] Breiman L. Random forests. Machine learning. 2001, 45(1): 5-32. [85] 叶元元. 多金属矿区土壤重金属的高光谱定量估算研究[D]. 2014,中国矿业大学. [86] 李剑锋. 基于近红外光谱漫反射技术检测鸡蛋新鲜度的研究. 2009,华中农业大学. [87] Chen Y Q. Savitzky-Golay Smoothing Filter. 2010. [88] 戴彬,吕建树,战金成,等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价. 环境科学. 2015,36(02):507-515. [91] 程蓉. 基于小波的神经网络研究及其在信息处理中的应用. 2015,中山大学. [94] 于雷,洪永胜,周勇,等. 连续小波变换高光谱数据的土壤有机质含量反演模型构建. 光谱学与光谱分析. 2016,36(05):1428-1433. [95] 赵英时. 遥感应用分析原理与方法. 2003: 遥感应用分析原理与方法. [96] F V E, D T, L D J. 6S User Guide Version. Vol. 2. 1997. 1-54. [98] 张安定. 遥感原理与应用题解. 2016, 北京: 科学出版社. [103] 黄应丰,刘腾辉. 华南主要土壤类型的光谱特性与土壤分类. 土壤学报. 1995,032(001):58-68. [105] 江振蓝,杨玉盛,沙晋明. GWR模型在土壤重金属高光谱预测中的应用. 地理学报. 2017,72(3):533-544. [113] 徐彬彬,季耿善,朱永豪. 中国陆地背景和土壤光谱反射特性的地理分区的初步研究. 环境遥感. 1991(02):142-151. |
中图分类号: | P237 |
开放日期: | 2023-06-24 |