- 无标题文档
查看论文信息

论文中文题名:

 超声预处理对煤气化细渣浮选的影响机制研究    

姓名:

 赵富强    

学号:

 21213077001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081902    

学科名称:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 煤基固废分选    

第一导师姓名:

 张宁宁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-05-28    

论文外文题名:

 Study on the influence mechanism of ultrasonic pretreatment on the flotation of coal gasification fine slag    

论文中文关键词:

 煤气化细渣 ; 浮选 ; 超声波预处理 ; 炭灰解离 ; 捕收剂乳化    

论文外文关键词:

 Coal gasification fine slag ; Flotation ; Ultrasonic pretreatment ; Carbon ash dissociation ; Collector emulsification    

论文中文摘要:

煤气化细渣是煤气化过程中产生的富含残炭和多种无机组分的固体废弃物,其目前主流的处理方法为堆存和填埋,这不仅对生态环境和人类健康构成威胁,同时也造成了资源的浪费。煤气化细渣的炭灰组分分离是其资源化利用和无害化处置的前提,因其含水量高且粒度细,目前常用的炭灰组分分离方法为浮选法。然而,因炭灰组分黏连、捕收剂不易分散等,使得煤气化细渣浮选存在捕收剂用量大、残炭回收率低等问题。超声预处理在改善物料的物化性质及药剂的粒径分布方面具有显著优势,有望提高煤气化细渣的浮选分离效率。本文以陕西煤业化工集团公司某典型水煤浆气化工艺副产物的煤气化细渣为研究对象,分别研究了煤气化细渣样品的超声预处理、捕收剂的超声预处理、样品与捕收剂的同步/分步超声预处理对煤气化细渣浮选效果的影响,并探讨了各超声预处理方式强化气化细渣浮选的作用机理。

首先,探究了灰渣样品的超声预处理对煤气化细渣浮选的影响。最佳超声预处理时间和功率分别为9 min和540 W;最佳浮选参数为矿浆浓度60 g/L、搅拌转速1800 r/min及充气量0.18 m3/h。与未超声预处理时相比,样品经超声预处理后精矿产率增加了8.39%,可燃体回收率提高了13.40%,灰分降低了4.72%。通过粒度组成、FTIR、XPS、SEM、BET等分析超声预处理前后物化性质变化,阐明超声波在煤气化细渣浮选中的作用机制。粒度组成分析发现样品经超声预处理后粗颗粒减少,细颗粒增多且灰分降低,表明煤气化细渣在一定程度上实现破碎解离;SEM、BET分析发现样品经超声预处理后残炭颗粒孔隙结构完整、表面光滑、黏附于残炭表面或孔隙内的高灰杂质减少,使其残炭颗粒暴露出新鲜表面;XPS分析发现,经超声预处理后残碳表面的极性含氧官能团含量减少,从而增强残炭表面的疏水性及其可浮性;经超声预处理后矿浆中水分子解离产生的.OH自由基得电子生成OH  -,导致矿浆pH值增大,弱碱环境有利于煤气化细渣炭灰分离。

其次,探究了捕收剂的超声预处理对煤气化细渣浮选的影响。超声乳化捕收剂中水:柴油:Span80:Tween80最佳质量比为60:24:14.4:1.6;最佳超声预处理功率和时间分别为540 W和6 min。与未超声预处理时相比,捕收剂经超声预处理后精矿产率增加了19.98%,可燃体回收率增加了27.15%,灰分降低了3.24%。FTIR分析发现捕收剂与煤气化细渣作用前后对比,未出现新的吸收峰,表明捕收剂在煤气化细渣表面的吸附为物理吸附。激光粒度分析表明,超声预处理后乳化捕收剂在水中粒径及分散性显著优于柴油;诱导时间及浮选动力学分析表明,超声乳化捕收剂可缩短残炭颗粒与气泡之间的粘附矿化时间,使其可浮性更好。

最后,探究了灰渣样品与捕收剂的同步/分步超声预处理对煤气化细渣浮选效果的影响。同步超声预处理功率和时间分别为540 W和9 min时效果最佳,与常规浮选相比精矿产率增加了3.06%,可燃体回收率增加了6.00%,灰分降低了4.70%;分步超声预处理功率和时间分别为540 W和11 min时效果最佳,与常规浮选相比精矿产率增加了10.14%,可燃体回收率增加了16.87%,灰分降低了6.88%。同步超声预处理时的浮选可燃体回收率低分步超声预处理,这是由于同步超声虽然增加了颗粒与药剂的碰撞概率,但是超声预处理时间过长会使其结构稳定性变差;分步超声预处理时矿浆与药剂性能均达到了最佳,乳化捕收剂能够更好的吸附于暴露出的新鲜解离面。

论文外文摘要:

Coal gasification fine slag is a solid waste rich in carbon residues and inorganic components produced in the process of coal gasification. At present, the main treatment methods are stacking and landfilling, which not only poses a threat to the ecological environment and human health, but also causes a waste of resources. The separation of carbon ash components from coal gasification fine slag is the premise of its resource utilization and harmless disposal. Flotation method is commonly used for the separation of carbon ash components because of its high water content and fine particle size. However, due to the adhesion of the carbon ash components and the difficulty of dispersing the collector, there are many problems such as large amount of collector and low recovery rate of carbon residue in coal gasification fine slag flotation. Ultrasonic pretreatment has significant advantages in improving the physicochemical properties of materials and the particle size distribution of chemicals, and is expected to improve the flotation separation efficiency of coal gasification fine slag. In this paper, the effects of ultrasonic pretreatment of coal gasification fine slag samples, ultrasonic pretreatment of collector, and synchronous/stepby-step ultrasonic pretreatment of sample and collector on the flotation effect of coal gasification fine slag were studied in Shaanxi Coal Industry Chemical Group Company. The mechanism of each ultrasonic pretreatment method to enhance the flotation of gasification fine slag was also discussed.

Firstly, the effect of ultrasonic pretreatment of ash and slag samples on the flotation of coal gasification fine slag was investigated. The optimal pretreatment time and power were 9 min and 540 W, respectively. The optimum flotation parameters are slurry concentration of 60 g/L, stirring speed of 1800 r/min and aeration rate of 0.18 m3/h. Compared with the samples without ultrasonic pretreatment, the refined mineral yield increased by 8.39%, the recovery rate of combustible material increased by 13.40%, and the ash content decreased by 4.72%. Particle size composition, FTIR, XPS, SEM and BET were used to analyze the changes of physicochemical properties before and after ultrasonic pretreatment, and the mechanism of ultrasonic in coal gasification fine slag flotation was clarified. The particle size composition analysis showed that the coarse particles decreased, the fine particles increased and the ash content decreased after ultrasonic pretreatment, indicating that the fine slag of coal gasification was broken and dissociated to a certain extent. SEM and BET analysis showed that after ultrasonic pretreatment, the pore structure of the residual carbon particles was complete, the surface was smooth, and the high ash impurities attached to the surface or pores of the residual carbon particles were reduced, which exposed the fresh surface of the residual carbon particles. XPS analysis showed that the content of polar oxygen-containing functional groups on the residual carbon surface decreased after ultrasonic pretreatment, which enhanced the hydrophobicity and floatability of the residual carbon surface. It is produced by dissociation of water molecules in pulp after ultrasonic pretreatment. OH free radical electrons form OH -, resulting in the increase of pulp pH value, weak alkali environment is conducive to coal gasification fine slag carbon ash separation.

Secondly, the influence of ultrasonic pretreatment of collector on the flotation of fine slag of coal gasification was investigated. The optimal ratio of water: diesel :Span80:Tween80 in phacoemulsification collector is 60:24:14.4:1.6; The optimal ultrasonic pretreatment power and time were 540 W and 6 min, respectively. Compared with the condition without ultrasonic pretreatment, the fine mineral yield increased by 19.98%, the recovery rate of combustible material increased by 27.15%, and the ash content decreased by 3.24%. FTIR analysis showed that no new absorption peak appeared before and after the action of the collector on the coal gasification fine slag, indicating that the adsorption of the collector on the surface of the coal gasification fine slag was physical adsorption. Laser particle size analysis showed that the particle size and dispersibility of the emulsified collector in water after ultrasonic pretreatment were significantly better than that of diesel oil. The analysis of induction time and flotation kinetics showed that the phacoemulsification collector could shorten the adhesion mineralization time between carbon residue particles and bubbles, and improve its floatability.

Finally, the influence of synchronous/step ultrasonic pretreatment of ash and slag samples and collector on the flotation effect of coal gasification fine slag was investigated. The best results were obtained when the power and time of synchronous ultrasonic pretreatment were 540 W and 9 min, respectively. Compared with conventional flotation, the fine mineral yield increased by 3.06%, the combustible recovery increased by 6.00%, and the ash content decreased by 4.70%. The best results were obtained when the power and time of stepwise ultrasonic pretreatment were 540 W and 11 min, respectively. Compared with conventional flotation, the fine mineral yield increased by 10.14%, the recovery rate of combustible material increased by 16.87%, and the ash content decreased by 6.88%. The recovery rate of flotation combustible in synchronous ultrasonic pretreatment is low. This is because the collision probability of particle and reagent is increased by synchronous ultrasonic pretreatment, but the structural stability will be deteriorated if the ultrasonic pretreatment time is too long. The properties of slurry and reagent reached the best during stepwise ultrasonic pretreatment, and the emulsified collector could better adsorb on the exposed fresh dissociation surface.

参考文献:

[1] Meng Z, Yang Z, Yin Z, et al. Effects of coal slime on the slurry ability of a semi-coke water slurry [J]. Powder technology, 2020, 359: 261-267.

[2] 冯向港, 王海燕, 葛奋飞, 等. 煤气化渣高值化利用的研究进展及应用展望 [J]. 洁净煤技术, 2023, 29(11): 122-132.

[3] Guo F, Liu H, Zhao X, et al. Insights on water temporal-spatial migration laws of coal gasification fine slag filter cake during water removal process and its enlightenment for efficient dewatering [J]. Fuel, 2021, 292.

[4] Wang S. Development and application of modern coal gasification technology [J]. Chemical Industry and Engineering Progress, 2016, 35(3): 653-664.

[5] 张宁宁, 赵富强, 韩瑞, 等. 煤气化细渣炭灰分离研究进展 [J]. 洁净煤技术, 2023, 29(12): 11-18.

[6] Lv B, Deng X, Jiao F, et al. Enrichment and utilization of residual carbon from coal gasification slag: A review [J]. Process Safety and Environmental Protection, 2023, 171: 859-873.

[7] 袁傲, 杨靖, 张庆, 等. 煤气化细渣资源化利用途径及发展趋势 [J]. 应用化工, 2022, 51(03): 891-896+9.

[8] 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展 [J]. 洁净煤技术, 2020, 26(1): 184-193.

[9] Xu S, Zhou Z, Gao X, et al. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier [J]. Fuel Processing Technology, 2009, 90(9): 1062-1070.

[10] 王学斌, 于伟, 张韬, 等. 基于粒度分级的煤气化细渣特性分析及利用研究 [J]. 洁净煤技术, 2021, 27(3): 61-69.

[11] Guo F, Zhao X, Guo Y, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon [J]. Colloids and Surfaces, A Physicochemical and Engineering Aspects, 2020, (585-): 585.

[12] Miao Z, Wu J, Zhang Y, et al. Chemical characterizations of different sized mineral-rich particles in fine slag from Entrained-flow gasification [J]. Advanced Powder Technology, 2020, 31(9): 3715-3723.

[13] 李文峰. 气化灰渣浮选复配药剂作用机理及其分子模拟研究 [D].徐州:中国矿业大学, 2021.

[14] 李恒, 赵丽丽, 龚岩, 等. 表面活性剂复配对气化细渣浮选影响的试验研究 [J]. 中国电机工程学报, 2022, 42(13): 4924-4933.

[15] Chen Y, Truong V N, Bu X, et al. A review of effects and applications of ultrasound in mineral flotation [J]. Ultrasonics sonochemistry, 2020, 60: 104739.

[16] 任盼力. 煤气化细渣磨矿浮选法脱灰试验研究 [D],西安:西安科技大学, 2021.

[17] Wang L, Li C J H L. A Brief Review of Pulp and Froth Rheology in Mineral Flotation [J]. Hindawi Limited, 2020.

[18] Mariano R, Evans C J M E. The effect of breakage energies on the mineral liberation properties of ores [J]. Minerals Engineering, 2018, 126: 184-193.

[19] 何国锋, 柳金秋, 徐彤, 等. 水煤浆气化细灰碳灰分布特性及其分离试验研究 [J]. 煤炭科学技术, 2021, 49(4): 82-89.

[20] 叶军建, 高占彬, 吕超, 等. 某干粉煤气化细渣特征及浮选回收残炭研究 [J]. 矿业研究与开发, 2021, 41(10): 138-141.

[21] Liu D, Wang W, Tu Y, et al. Flotation specificity of coal gasification fine slag based on release analysis [J]. Journal of Cleaner Production, 2022, 363.

[22] Guo F, Miao Z, Guo Z, et al. Properties of flotation residual carbon from gasification fine slag [J]. Fuel, 2020, 267: 117043.

[23] Fan G, Zhang M, Peng W, et al. Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes [J]. Journal of Cleaner Production, 2020.124943

[24] Xue Z H, Dong L P, Li H P, et al. Study on the mechanism of flotation of coal gasification fine slag reinforced with naphthenic acids [J]. Fuel, 2022, 324.

[25] Xue Z A, Dong L A, Fan M A, et al. Enhanced flotation mechanism of coal gasification fine slag with composite collectors [J]. 2022, 641: 128593

[26] Zhang R, Guo F, Xia Y, et al. Recovering unburned carbon from gasification fly ash using saline water [J]. Waste Management, 2019, 98(Oct.): 29-36.

[27] Xu M, Zhang H, Liu C, et al. A comparison of removal of unburned carbon from coal fly ash using a traditional flotation cell and a new flotation column [J]. Physicochem Probl Miner Process, 2017, 53(1): 628-643.

[28] 吴阳. 煤气化灰渣的分选加工利用研究 [D],西安:西安科技大学, 2017.

[29] 王晓波, 符剑刚, 赵迪, 等. 煤气化细渣载体浮选提质研究 [J]. 煤炭工程, 2021, 53 (01):155-159.

[30] 任振玚, 井云环, 樊盼盼, 等. 气化渣水介重选及其分离炭制备脱硫脱硝活性焦试验研究 [J]. 煤炭学报, 2021,46 (04):1164-1172.

[31] 李慧泽, 董连平, 鲍卫仁, 等. 基于视密度的煤气化渣水介质旋流炭-灰分离 [J]. 化工进展, 2021, 40(3): 1344-1353.

[32] Yu W, Zhang H, Wang X, et al. Enrichment of residual carbon from coal gasification fine slag by spiral separator [J]. Journal of environmental management, 2022, 315: 115149.

[33] 王治帅, 李学娟, 沈阳, 等. 煤基气化渣螺旋分选机回收工艺的应用研究 [J]. 煤炭加工与综合利用, 2022, (03):47-50.

[34] 王磊, 王建, 孔令斌. 采用FBS分选机分选煤气化渣的可行性研究 [J]. 煤炭加工与综合利用, 2020, (9):6-8+13+4.

[35] Vassilev S V, Vassileva C G J F. A new approach for the combined chemical and mineral classification of the inorganic matter in coal. 1. Chemical and mineral classification systems [J]. Fuel, 2009, 88(2): 235-245.

[36] Youjun, Tao, Ling, et al. Effects of key factors of rotary triboelectrostatic separator on efficiency of fly ash decarbonization [J]. International Journal of Mining Science & Technology, 2017.

[37] 叶世旺, 陶东平, 陶有俊, 等. 粒度对粉煤灰旋转摩擦电选效果的影响研究 [J]. 煤炭技术, 2022, 41(2): 219-222.

[38] 陈玉坤, 李海生, 靳文献, 等. 粉煤灰的静电分选研究 [J]. 煤炭技术, 2018 37(05): 298-300.

[39] Gao Y, Zhao W, Zhou A N, et al. Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag [J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 954-965.

[40] 杨玉芬, 陈清如, 骆振福. 流态化技术干法脱炭的理论分析与试验研究 [J]. 中国矿业大学学报, 2003, 32(6): 4.

[41] 薛中华, 董连平, 刘安, 等. 气化细渣疏水-亲水双液分离可行性与机理分析 [J]. 煤炭学报, 2022, 47(6): 2472-2482.

[42] Malayoglu U, Ozkan S G J M. Effects of ultrasound on desliming prior to feldspar flotation [J]. Minerals, 2019, 9(12): 784.

[43] Videla A, Morales R, Saint-Jean T, et al. Ultrasound treatment on tailings to enhance copper flotation recovery [J]. Minerals Engineering, 2016, 99: 89-95.

[44] 桂夏辉, 邢耀文, 李臣威, 等. 煤泥浮选过程中黏土矿物罩盖及其行为调控 [J]. 煤炭科学技术, 2016, 44(6): 175-181.

[45] Bandini P, Prestidge C, Ralston J J M E. Colloidal iron oxide slime coatings and galena particle flotation [J]. Minerals Engineering, 2001, 14(5): 487-497.

[46] 李政勇, 余悦发. 超声波处理对高灰氧化炼焦煤泥浮选的影响 [J]. 煤炭技术, 2017, 36(12): 288-291.

[47] Li C, Dong L,Zhang H. Recovery of clean coal from tailings by flotation with aid of ultrasonic [J]. Energy Sources Part A Recovery Utilization & Environmental Effects, 2018, 40(3): 373-379.

[48] Xu M, Xing Y, Gui X, et al. Effect of ultrasonic pretreatment on oxidized coal flotation [J]. Energy & fuels, 2017, 31(12): 14367-14373.

[49] Ozkan S G, Kuyumcu H Z J U S. Design of a flotation cell equipped with ultrasound transducers to enhance coal flotation [J]. Ultrasonics Sonochemistry, 2007, 14(5): 639-645.

[50] Vargas, Morales, Gaete, et al. Ultrasound treatment on tailings to enhance copper flotation recovery [J]. Minerals Engineering.

[51] Cao Q, Cheng J, Feng Q, et al. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite [J]. Powder technology, 2017, 311: 390-397.

[52] Malayoglu U, Ozkan S G J M. Effects of ultrasound on desliming prior to feldspar flotation [J]. Minerals, 2019, 9(12): 784.

[53] Mao Y, Xia W, Peng Y, et al. Ultrasonic-assisted flotation of fine coal: A review [J]. Fuel Processing Technology, 2019, 195: 106150.

[54] Fang S, Xu L, Wu H, et al. Influence of surface dissolution on sodium oleate adsorption on ilmenite and its gangue minerals by ultrasonic treatment [J]. Applied Surface Science, 2020, 500: 144038.

[55] 吕青川. 超声波预处理加强浮选性能研究 [J]. 煤矿现代化, 2021, 30(04): 191-193+196.

[56] Xue Z, Gao F, Dong L, et al. Promotion of hydrophobic-hydrophilic separation of coal gasification fine slag through ultrasonic pre-treatment [J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110653.

[57] Mao Y, Xie G, Qi X, et al. Effects of ultrasonic pretreatment on particle size and surface topography of lignite and its relationship to flotation response [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(10): 1274-1282.

[58] 左康苗, 李刚. 煤泥浮选药剂现状与发展分析 [J]. 化工管理, 2019, (35): 109-110.

[59] 冯若. 超声手册 [Z]. 南京: 南京大学出版社. 1999

[60] 黄波, 李旭林, 赵剑, 等. 微乳液组分对微乳化捕收剂性质影响的试验研究 [J]. 煤炭技术, 2014, (8): 206-208.

[61] Leong T S H, Zhou M, Kukan N, et al. Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil [J]. Food Hydrocolloids, 2017, 63(feb.): 685-695.

[62] Ruan J Z, Feng L, Song J H, et al. Preparation and application of ultrasonic emulsified diesel collector [J]. Meitan Jishu/ Coal Technology, 2011, 30(6): 147-149.

[63] Saleh A. Effect of collector emulsification on coal flotation kinetics and on recovery of different particle sizes [M]. Mineral Processing on the Verge of the 21st Century. Routledge. 2017: 391-396.

[64] Sun S, Tu L, Ackerman E. Mineral flotation with ultrasonically emulsified collecting reagents [J]. TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1955, 202(7): 656-660.

[65] M J S S Celik, Technology. Effect of ultrasonic treatment on the floatability of coal and galena [J]. Separation Science and Technology, 1989, 24(14): 1159-1166.

[66] Cheng G, Li Z, Ma Z, et al. Optimization of collector and its action mechanism in lignite flotation [J]. Powder technology, 2019, 345: 182-189.

[67] 何双杰. 超声乳化与化学改性协同作用对起泡剂性能的影响 [D],太原:太原理工大学, 2015.

[68] 周绍奇, 伏少鹏, 卜祥宁, 等. 超声乳化煤油乳滴尺寸对泡沫性质及隐晶质石墨浮选的影响 [J]. 矿产综合利用, 2020, (2): 182-187.

[69] K Zhen, Li X, Zhang C, et al. The flotation intensifying of low-rank coal based on the ultrasonic field [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(14): 1762-1771.

[70] Guo F, Zhao X, Guo Y, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124148.

[71] Hong L, Wang W, Gao D, et al. Critical pore size for micropore filling in coal samples with different rank coals [J]. PloS one, 2022, 17(3): e0264225.

[72] 郭凡辉. 气流床煤气化细渣水分赋存及脱水能量作用机制研究 [D],徐州:中国矿业大学, 2021.

[73] Xie W, Zhang Z, Wang Y, et al. Research on grinding and flotation decarbonization of coal gasification fine slag [J]. Fuel, 2024, 365: 131136.

[74] Wu F, Li H, Yang K. Effects of mechanical activation on physical and chemical characteristics of coal-gasification slag [J]. Coatings, 2021, 11(8): 902.

[75] Wang W, Liu D, Tu Y, et al. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation [J]. Fuel, 2020, 278: 118195.

[76] S Deb Barma, Baskey P K, Biswal S K J E, et al. Chemical beneficiation of high-ash indian noncoking coal by alkali leaching under low-frequency ultrasonication [J]. Energy & fuels, 2018, 32(2): 1309-1319.

[77] B K Saikia, Dutta A M, Saikia L, et al. Ultrasonic assisted cleaning of high sulphur Indian coals in water and mixed alkali [J]. Fuel Processing Technology, 2014, 123: 107-113.

[78] Tang J, Feng L, Li Y, et al. Fractal and pore structure analysis of Shengli lignite during drying process [J]. Powder Technology, 2016, 303: 251-259.

[79] Nie C C, Jiang S Q, Shi S X, et al. Energy recovery from concentrate in waste gasification fine slag by clean flotation assisted by waste oil collector [J]. Energy, 2023, 273: 127285.

[80] 张宁宁, 武美圻, 李朋玉, 等. 基于柴油微乳液的铝电解阳极炭渣浮选分离优化 [J]. 金属矿山, 2023, (08): 137-145.

[81] Leong T, Wooster T, Kentish S, et al. Minimising oil droplet size using ultrasonic emulsification [J]. Ultrasonics sonochemistry, 2009, 16(6): 721-727.

[82] Chen Y, Xia W, Xie G J F. Contact angle and induction time of air bubble on flat coal surface of different roughness [J]. Fuel, 2018, 222: 35-41.

中图分类号:

 TD94    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式