- 无标题文档
查看论文信息

论文中文题名:

 冻融环境下伊犁黄土工程性质劣化规律研究    

姓名:

 李敬娜    

学号:

 20204228099    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 土木工程防灾减灾理论与技术    

第一导师姓名:

 叶万军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on the deterioration law of engineering properties of Ili loess under freeze-thaw environment    

论文中文关键词:

 冻融循环 ; 黄土性质 ; 强度劣化 ; 渗透特性    

论文外文关键词:

 Freeze-thaw cycle ; Nature of loess ; Strength degradation ; Permeability characteristics    

论文中文摘要:

伊犁谷地黄土分布广泛,人类经济活动在黄土分布区较为频繁,伊犁谷地地质灾害多发生在黄土分布区,严重危及了当地人民的生命财产安全。研究区内以滑坡为主的地质灾害主要发生在春夏季节,时值融雪期,该阶段冻融环境下黄土性质的劣化是造成滑坡等灾害发生的主要因素。因此,研究冻融作用下伊犁谷地黄土的性质劣化规律十分重要。论文依托“南疆兵团师市规划设计区资源环境综合地质调查”二级委托项目“伊犁谷地黄土工程地质性质测试与对比分析”项目,对冻融环境下伊犁黄土工程性质劣化规律开展研究,得到如下成果:

(1)研究得到了伊犁谷地黄土的物理性质、水理性质和力学性质及黄土工程性质区域分布规律。研究区西部地区黄土的砂含量较大,而东部地区黄土的细粒含量较大,东部地区黄土天然含水率明显高于西部地区;自西北至东南方向上,黄土液限和塑性指数逐渐增加,湿陷性系数逐渐增加而渗透系数逐渐减小,黄土的抗剪强度和无侧限抗压强度逐渐增加。土体的c值逐渐增大,而值逐渐减小。

(2)揭示了冻融循环作用下原状黄土的强度劣化规律及不同区域内伊犁黄土强度损伤率的差异性。随着冻融循环次数的增加,土样的峰值破坏强度呈现降低的规律。研究区内东部地区黄土含水率更高,其受到冻融循环作用的影响更大,强度损伤率更高。

(3)揭示了冻融循环作用下原状黄土的渗透特性劣化规律及不同区域内伊犁黄土渗透特性劣化程度的差异性。随着冻融循环次数的增加,试样在相同重力下的自重变形量增大,累计变形量增加,渗透系数增加,这是由于冻融作用破坏了原状土的结构性,使得土体内部孔隙比增加,裂缝扩大。研究区内东部地区黄土含水率更高,在相同的冻融作用下,其渗透系数劣化的程度更大。

本文研究可进一步丰富伊犁黄土的工程性质数据,为区域性黄土的分布规律研究提供有益参考。

论文外文摘要:

The loess in the Ili Valley is widely distributed, and human economic activities are more frequent in the loess distribution area. Geological disasters in the Ili Valley mostly occur in the loess distribution area, which seriously endangers the safety of local people 's lives and property. The geological disasters dominated by landslides in the study area mainly occur in spring and summer, during the snowmelt period. The deterioration of loess properties in the freeze-thaw environment at this stage is the main factor causing landslides and other disasters. Therefore, it is very important to study the deterioration law of loess properties in Ili Valley under freeze-thaw action. Based on the second-level commission project of ' Comprehensive Geological Survey of Resources and Environment in Planning and Design Area of Southern Xinjiang Corps Division City ' ' Test and Comparative Analysis of Engineering Geological Properties of Loess in Ili Valley ', this paper studies the deterioration law of engineering properties of loess in Ili under freeze-thaw environment, and obtains the following results.

( 1 ) The physical properties, water physical properties and mechanical properties of loess in Ili Valley and the regional distribution of loess engineering properties were obtained. The sand content of loess in the western region of the study area is larger, while the fine grain content of loess in the eastern region is larger, and the natural water content of loess in the eastern region is significantly higher than that in the western region. From northwest to southeast, the liquid limit and plasticity index of loess gradually increase, the collapsibility coefficient gradually increases, the permeability coefficient gradually decreases, and the shear strength and unconfined compressive strength of loess gradually increase. The c value of the soil gradually increases and the value gradually decreases.

( 2 ) The strength degradation law of undisturbed loess under freeze-thaw cycles and the difference of strength damage rate of Ili loess in different regions are revealed. With the increase of freeze-thaw cycles, the peak failure strength of soil samples decreases. The moisture content of loess in the eastern part of the study area is higher, which is more affected by the freeze-thaw cycle, and the strength damage rate is higher.

( 3 ) The deterioration law of permeability characteristics of undisturbed loess under the action of freeze-thaw cycles and the difference of the deterioration degree of permeability characteristics of Ili loess in different regions are revealed. With the increase of the number of freeze-thaw cycles, the self-weight deformation of the sample under the same gravity increases, the cumulative deformation increases, and the permeability coefficient increases. This is because the freeze-thaw action destroys the structure of the undisturbed soil, so that the internal pore ratio of the soil increases and the cracks expand. The water content of loess in the eastern part of the study area is higher, and the degree of deterioration of its permeability coefficient is greater under the same freeze-thaw action.

The research in this paper can further enrich the engineering property data of Ili loess and provide a useful reference for the study of the distribution law of regional loess.

参考文献:

[1]杨奉广, 木合塔尔.扎日, 等.新疆伊犁地区地质灾害的形成与防治对策[J]. 新疆师范大学学报(自然科学版). 2005, 03:117-120.

[2]杨博, 赵建军. “一带一路”战略与伊犁跨越式发展[J]. 中共伊犁州委党校学报[J]. 2016 (04):71-75.

[3]曹小红, 尚彦军, 古丽波斯坦·吐逊江, 等.霍城县滑坡灾害发育特征及诱发因素相关性分析[J].新疆地质.2021,39(03):487-492.

[4]刘祥, 弓小平, 李晓光, 等.新疆伊犁谷地典型黄土滑坡灾害发育特征与形成机理[J].西部探矿工程. 2018, 30(04):23-24.

[5]庄茂国, 魏云杰, 邵海, 等. 新疆伊犁皮里青河黄土滑坡类型及其发育特征[J].中国地质灾害与防治学报.2018, 29(01):54-59.

[6]安海堂, 刘平. 新疆伊犁地区黄土滑坡成因及影响因素分析[J]. 地质灾害与环境保护. 2010, 21(03): 22-25.

[7]Hydrology; Findings in Hydrology Reported from Northwest A&F University (StudyOn the Soil Water Characteristic Curve and Its Fitting Model of Ili Loess With High Level of Soluble Salts)[J]. Science Letter,2019:

[8]Yue Li. Yougui Song.Kathryn E. Fitzsimmons,Xiuling Chen.Qiansuo Wang.Huanyu Sun.Zhiping Zhang. New evidence for the provenance and formation of loess deposits in the Ili River Basin, Arid Central Asia[J]. Aeolian Research, 2018, 35:

[9]叶玮. 新疆伊犁地区黄土与黄土状土粒度对比[J]. 干旱区地理, 2000(04): 310-314.

[10]尹光华, 王兰民, 袁中夏, 等. 新疆伊犁黄土的物性指标、动力学特性与滑坡[J]. 干旱区地理, 2009, 32(06): 899-905.

[11]张爱军, 邢义川, 胡新丽, 等. 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报, 2016, 38(S2): 117-122.

[12]Wang Yuguo. Zhang Aijun.Ren Wenyuan.Niu Lisi. Study on the soil water characteristic curve and its fitting model of Ili loess with high level of soluble salts[J]. Journal of Hydrology,2019,578(C):

[13]Lisi Niu. Wenyuan Ren.Aijun Zhang.Yuguo Wang.Zhichao Liang.Jingwen Han. Experimental study on the influence of soluble salt content on unsaturated mechanical characteristics of undisturbed Ili loess[J]. Bulletin of Engineering Geology and the Environment, 2021(prepublish):

[14]安鹏, 张爱军, 邢义川, 等. 伊犁深厚湿陷性黄土浸水入渗及沉降变形特征分析[J]. 岩土力学, 2017, 38(02): 557-564.

[15]蔺广花, 刘百来, 张爱军. 易溶盐对伊犁黄土湿陷性的影响[J]. 西安工业大学学报, 2019, 39(02): 167-171.

[16]米文静, 张爱军, 郭敏霞. 伊犁黄土湿陷变形特性研究[J]. 江西农业学报, 2019, 31(12): 49-53.

[17]郭江涛. 新疆伊犁非饱和黄土的直剪性能试验研究[J]. 水利与建筑工程学报, 2014, 12(04): 129-132+142.

[18]莫腾飞, 郭敏霞, 娄宗科, 等. 含水率变化对伊犁黄土变形和剪切特性的影响[J]. 中国农村水利水电, 2018(04): 87-90+94.

[19]朱赛楠, 殷跃平, 王文沛, 等. 新疆伊犁河谷黄土滑坡冻融失稳机理研究[J]. 地球学报, 2019, 40(02): 339-349.

[20]赵庆玉, 张爱军, 王毓国, 等. 易溶盐含量对原状非饱和伊犁黄土强度的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(04): 146-154.

[21]黄维, 陶亚坤, 刘清秉, 等. 新疆伊犁谷地重塑黄土抗拉强度试验研究[J]. 华中科技大学学报(自然科学版), 2021, 49(05): 92-97.

[22]Chamberlain E J. Physical changes in clays due to frost action and their effect on engineering structures[C]// Proceedings of the International Symposium on Frost in Geotechnical Engineering. Rotterdam, the Netherlands: A.A. Balkema, 1989: 863-893.

[23]Chuvilin Y M,Yazynin O M. Frozen soil macro- and microstructure formation.In:Kaare S eds.Proceedings of 5th International Conference on Permafrost.Trondheim,Norway:Tapir Publishers, 1988: 320~323.

[24]Leroueil S,Tardif J,Roy M,et al.Effects of frost on the mechanical behavior of Champlain Sea clays.Canadian Geotechnical Journal,1991,28(5):690~697

[25]Ferrick M G,Gatto L W. Quantifying the effect of a freeze-thaw cycle on soil erosion:laboratory experiments.Earth Surface Processes and Landforms,2005,30(10): 1305~1326

[26]Firoozi A A Taha M R,Firoozi A A,et al.The Influence of freeze-thaw cycles on unconfined compressive strength of clay soils treated with lime.Jurnal Teknologi,2015, 76(1): 107~113

[27]Peter Viklander.Permeability and volume changes in till due to cyclic freeze/thaw[J]. Canadian Geotechnical Journal,1998,35(3).

[28]Chamberlain Edwin J.,Gow Anthony J.Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology,1979,13(1-4).

[29]李丽, 张坤, 张青龙, 等. 干湿和冻融循环作用下黄土强度劣化特性试验研究[J]. 冰川冻土, 2016, 38(04): 1142-1149.

[30]周有禄, 武小鹏, 李奋 ,等. 冻融循环和干湿交替对黄土力学性质影响的试验研究[J]. 铁道建筑, 2018, 58(04): 98-100+105.

[31]周有禄, 武小鹏, 李奋, 等. 冻融循环作用下重塑黄土强度劣化试验研究[J]. 铁道建筑. 2018, 58(10): 78-80.

[32]许健, 王掌权, 任建威, 等. 原状与重塑黄土冻融劣化机理对比试验研究[J]. 地下空间与工程学报, 2018, 14(03): 643-649.

[33]魏尧, 杨更社, 叶万军. 冻结温度对冻融黄土力学特性的影响规律研究[J]. 长江科学院院报. 2018, 35(08): 61-66.

[34]张玲玲, 龙建辉, 邢鲜丽, 等. 冻融循环作用下吕梁地区马兰黄土性质研究[J]. 太原理工大学学报. 2021, 52(04): 557-563.

[35]杨更社, 魏尧, 田俊峰, 等. 冻融循环对结构性黄土构度指标影响研究[J]. 西安科技大学学报. 2015, 35(06): 675-681.

[36]许健, 李诚钰, 王掌权, 等. 原状黄土冻融过程抗剪强度劣化机理试验分析[J]. 土木建筑与环境工程. 2016, 38(05): 90-98.

[37]刘乐青, 张吾渝, 张丙印, 等. 冻融循环作用下黄土无侧限抗压强度和微观规律的试验研究[J]. 水文地质工程地质, 2021, 48(04): 109-115.

[38]叶万军, 刘宽, 杨更社. 等. 冻融循环作用下黄土抗剪强度劣化试验研究[J]. 科学技术与工程, 2018, 18(03): 313-318.

[39]王治军, 潘俊义, 周鹏, 等. 冻融作用对黄土湿陷性的影响[J]. 地下空间与工程学报. 2016, 12(06): 1710-1716.

[40]丑亚玲, 郏书胜, 张庆海, 等. 考虑结构性的冻融作用对黄土湿陷系数的影响[J]. 岩土力学. 2018, 39(08): 2715-2722+2731.

[41]肖东辉, 冯文杰, 张泽, 等. 冻融循环对兰州黄土渗透性变化的影响[J]. 冰川冻土. 2014, 36(05): 1192-1198.

[42]肖东辉, 冯文杰, 张泽, 等. 冻融循环作用下黄土渗透性与其结构特征关系研究[J]. 水文地质工程地质. 2015, 42(04): 43-49.

[43]许健, 王掌权, 任建威, 等. 原状黄土冻融过程渗透特性试验研究[J]. 水利学报. 2016, 47(09): 1208-1217.

[44]许健, 王掌权, 任建威, 等. 原状与重塑黄土冻融过程渗透特性对比试验研究[J]. 工程地质学报. 2017, 25(02): 292-299.

[45]穆彦虎, 马巍, 李国玉, 等. 冻融作用对压实黄土结构影响的微观定量研究[J]. 岩土工程学报. 2011, 33(12): 1919-1925.

[46]倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土. 2014, 36(04): 922-927.

[47]肖东辉, 冯文杰, 张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土. 2014, 36(04): 907-912.

[48]张泽, 周泓, 秦琦, 等. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版). 2017, 47(03): 839-847.

[49]赵鲁庆, 杨更社, 吴迪, 等. 冻融黄土微观结构变化规律及分形特性研究[J]. 地下空间与工程学报. 2019, 15(06): 1680-1690.

[50]徐殿利. 冻融滑坡的形成及其整治[J]. 铁道建筑, 1996(02): 31-33.

[51]缪海波, 殷坤龙, 邢林啸, 等. 极端冰雪灾害条件下松散堆积体边坡演化分析[J]. 岩土力学. 2012, 33(01): 147-153+161.

[52]叶万军, 杨更社, 彭建兵, 等. 冻融循环导致洛川黄土边坡剥落病害产生机制的试验研究[J]. 岩石力学与工程学报, 2012, 31(01): 199-205.

[53]程鹏, 杨军海, 张亚卿. 黄土地区季节性冻融触发滑坡的机理分析[J]. 中外公路, 2017, 37(01):6-9.

[54]黄文强. 冻融循环作用下黄土边坡的浅层滑动探讨[J]. 科学技术与工程.2022,22 (04):1558-1565.

[55]Charles Harris,Antoni G Lewkowicz. An analysis of the stability of thawing slopes, Ellesmere Island, Nunavut, Canada[J]. Canadian Geotechnical Journal,2000,37(2).

[56]吴玮江. 季节性冻结滞水促滑效应——滑坡发育的一种新因素[J]. 冰川冻土, 1997(04): 71-77.

[57]李远耀, 柴波, 缪海波. 南方极端冰雪气候与地质灾害的关系分析[J]. 安全与环境工程. 2012, 19(06): 22-27+33.

[58]程秀娟, 张茂省, 朱立峰, 等. 季节性冻融作用及其对斜坡土体强度的影响——以甘肃永靖黑方台地区为例[J]. 地质通报, 2013, 32(06): 904-909.

[59]朱赛楠, 殷跃平, 王文沛, 等. 新疆伊犁河谷黄土滑坡冻融失稳机理研究[J]. 地球学报. 2019, 40(02): 339-349.

[60]曾磊, 赵贵章. 季节性冻融过程黄土斜坡地下水响应[J]. 地质通报. 2022, 41(07): 1300-1307.

[61]曾磊, 贾俊. 季节性冻融过程黄土斜坡失稳机制及稳定性趋势[J]. 地质通报. 2022, 41(08): 1494-1503.

[62]胡再强, 刘寅, 李宏儒. 冻融循环作用对黄土强度影响的试验研究[J]. 水利学报. 2014, 45 (S2):14-18.

[63]Mcroberts E C, Morgenstern N R. The stability of thawing slopes[J].Canadian Geotechnical Journal.1974, 11(4): 447-469.

[64]于新, 辛维成, 巩中友. 日本国新泻县滑坡特征分析[J]. 黑龙江水利科技. 2000(02): 6-7.

[65]Kimura T, Hatada K, Maruyama K, Noro T, et al. Long-runout landslide occurred in snowmelt period at the Higashi-kubiki Hill, Niigata, Japan: effects of snowpack on behavior of landslide movements[M]. 2013.

[66]Martelloni G S S C F. Snowmelt Modelling for Improving the Forecasts of Rainfall Threshold-Based Landslide Triggering[J]. Landslide Science and Practice,2013: 249-255.

[67]A Foriero,B Ladanyi,S R Dallimore,P A Egginton,F M Nixon. Modelling of deep seated hill slope creep in permafrost[J]. Canadian Geotechnical Journal.1998,35(4).

[68]Conforti, M.,Pascale, S.,Robustelli, G.,Sdao, F. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy).[J]. 2014,113.

[69]Wu C , Qiao J , Wang M . Landslides and slope aspect in the Three Gorges Reservoir area based on GIS and information value model[J]. Wuhan University Journal of Natural Sciences. 2006, 11(4):773-779.

[70]Eeckhaut M , Moeyersons J , Nyssen J , et al. Spatial patterns of old, deep-seated landslides: A case-study in the northern Ethiopian highlands[J]. Geomorphology.2009, 105(3-4):239-252.

[71]宋响军. 石忠高速公路K7—K45段滑坡的分布与形成原因分析[J]. 岩土工程学报, 2011, 33(S1): 361-364.

[72]邱海军, 曹明明, 刘闻, 等. 区域滑坡空间分布的变维分形特征研究[J]. 现代地质. 2014, 28(02): 443-448.

[73]邱海军, 崔鹏, 王彦民, 等. 基于关联维数的黄土滑坡空间分布结构及其成因分析[J]. 岩石力学与工程学报. 2015, 34(03): 546-555.

[74]黎志恒, 文宝萍, 贾贵义, 等. 甘肃省白龙江流域滑坡分布规律及其主控因素[J]. 兰州大学学报(自然科学版). 2015, 51(06): 768-776.

[75]刘星洪, 姚鑫, 杨波, 等. 川西高原活动性滑坡识别与空间分布特征研究[J]. 地质力学学报. 2023, 29(01): 111-126.

[76]杨校辉, 强远文, 王宏睿, 等. 甘肃舟曲滑坡成因机制与发育分布规律[J/OL]. 现代地质. 1-9[2023-04-22].

[77]GB/T 50123-2019, 土工试验方法标准[S].

[78]GB 50021-2001(2009), 岩土工程勘察规范[S].

[79]吴子龙.淡水溶脱过程中连云港海相沉积软黏土工程性质演化与本构行为表征[D].东南大学.2020.

中图分类号:

 TU411    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式