- 无标题文档
查看论文信息

论文中文题名:

 钻锚机器人定位及两臂协同 控制方法研究    

姓名:

 王恒    

学号:

 19205016008    

保密级别:

 内部    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 智能检测与控制    

第一导师姓名:

 张旭辉    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on Positioning and Two-arm Cooperative Control Method of Drilling Anchor Robot    

论文中文关键词:

 钻锚机器人 ; 运动学分析 ; 视觉位姿测量 ; 锚钻孔定位 ; 协同控制策略    

论文外文关键词:

 Drill-anchor robot ; Kinetic analysis ; Visual pose measurement ; Anchor drilling positioning ; Cooperative control strategy    

论文中文摘要:

综掘工作面设备智能化程度是制约煤矿智能化发展的主要原因,而巷道锚固支护效率低是其中的关键因素,巷道锚固支护自动化控制是实现煤矿巷道掘进智能化、无人化的主要环节。钻锚机器人一定程度上可以自主完成钻孔与锚固作业,降低工人劳动强度,可有效提高巷道支护效率,为综掘工作面的智能化、少人化甚至无人化掘进奠定基础。针对煤矿井下高粉尘、低照度的复杂工况,论文提出一种粉尘浓度相关的位姿视觉测量方法与两机械臂协同控制策略,利用单目视觉测量技术得到巷道坐标系下设备位姿,基于双目视觉测量模型获得钻孔相对于机身坐标的位姿,在此基础上研究钻锚机器人协同控制策略,实现钻锚机器人机身精确定位、钻孔精确定位及钻锚机器人自动化控制。

针对钻锚机器人运动学求解问题,根据多自由度钻锚机器人系统结构,论文利用D-H法建立钻锚机器人机械臂连杆坐标系,得到相邻关节之间的坐标转换关系,通过钻锚机器人运动学分析得到其运动学正解和运动学逆解。在此基础上,利用蒙特卡洛法对钻锚机器人机械臂的工作空间进行分析,并采用三次样条插值算法对机械臂的运动轨迹进行规划。

针对煤矿井下复杂工况环境中设备定位难的问题,提出一种自适应粉尘浓度的钻锚机器人机身位姿测量方法。通过研究掘进工作面粉尘扩散机理,建立粉尘浓度与激光光斑灰度值的关系模型,采用单目视觉测量技术,建立其机身测量坐标系,以红外激光指向仪的点-线为特征,构建基于“门型三线”的机身位姿解算模型,通过防爆相机采集图像并经过一系列图像处理算法,获得巷道坐标系下设备的位姿信息。

针对煤矿井下钻孔定位难的问题,提出一种基于双目立体视觉的钻孔定位方法。采用双目立体视觉测量技术,以钢带孔作为目标特征,利用安装在钻臂上的双目相机采集钢带孔图像并对图像进行边缘检测与椭圆拟合处理,得到钻孔相对于双目相机坐标系的位姿信息。最后,根据系统测量坐标系之间的关系,获取钻孔相对于机身的位姿信息。

针对综掘工作面支护与锚固效率不高导致智能化程度低、采掘失衡问题,提出一种钻锚机器人多机械臂协同控制方法。通过研究钻孔与锚固工艺流程、作业质量要求以及各系统之间的关系,提出钻锚机器人多臂协同控制策略,并针对该策略建立钻锚机器人协同控制系统模型。构建了钻锚机器人末端执行器与钢带孔之间的位姿误差模型,并设计了基于滑模变结构的控制器,完成钻锚机器人自动钻孔、找孔,最终实现钻锚机器人协同控制。

最后,设计钻锚机器人上位机软件,实现数据采集、图像处理、位姿解算以及协同控制等功能,在实验室针对各模块搭建实验平台进行功能验证以及性能测试。实验结果表明论文提出的钻锚机器人视觉定位方法及多臂协同控制策略均达到了设计要求,粉尘浓度相关的钻锚机器人机身位姿测量方法和基于双目视觉的钻孔位姿测量方法可以保障协同控制系统的控制精度,并有效提升钻孔与锚固效率,实现了钻锚机器人自动化控制。

论文外文摘要:

The intelligent degree of equipment in fully mechanized mining face is the main reason for restricting the development of intelligent coal mine, and the low efficiency of roadway anchorage support is one of the key factors. The automatic control of roadway anchorage support is the main link to realize the intelligent and unmanned coal mine roadway excavation. To a certain extent, the drilling and anchoring robot can independently complete the drilling and anchoring operation, reduce the labor intensity of workers, effectively improve the efficiency of roadway support, and lay the foundation for the intelligent, unmanned and even unmanned tunneling of fully mechanized mining face. In view of the complex working conditions of high dust and low illumination in underground coal mines, this paper proposes a visual measurement method of dust concentration-related pose and a cooperative control strategy of two manipulators. The monocular vision measurement technology is used to obtain the pose of the equipment in the roadway coordinate system. Based on the binocular vision measurement model, the pose of the borehole relative to the fuselage coordinate is obtained. On this basis, the cooperative control strategy of the drilling and anchor robot is studied to achieve the precise positioning of the fuselage, the precise positioning of the borehole and the automatic control of the drilling and anchor robot.

Aiming at the kinematics problem of the drilling and anchoring robot, according to the structure of the multi-degree-of-freedom drilling and anchoring robot system, this paper uses the D-H method to establish the connecting rod coordinate system of the manipulator of the drilling and anchoring robot, and obtains the coordinate transformation relationship between adjacent joints. Through the kinematics analysis of the drilling and anchoring robot, the positive and inverse kinematics solutions are obtained. On this basis, the workspace of the drilling and anchoring robot manipulator is analyzed by Monte Carlo method, and the cubic spline interpolation algorithm is used to plan the trajectory of the manipulator.

Aiming at the problem of difficult equipment positioning in complex working conditions of coal mine, an adaptive dust concentration measurement method of drilling and anchoring robot body posture is proposed. By studying the dust diffusion mechanism of heading face, the relationship model between dust concentration and the gray value of laser spot was established. The monocular vision measurement technology was used to establish the fuselage measurement coordinate system. Taking the point-line of infrared laser pointer as the feature, the fuselage pose calculation model based on the “ gate type three lines ” was constructed. The image was collected by the explosion-proof camera and the pose information of the equipment in the roadway coordinate system was obtained through a series of image processing algorithms.

Aiming at the problem of difficult drilling positioning in coal mine, a drilling positioning method based on binocular stereo vision is proposed. Using binocular stereo vision measurement technology, the steel strip hole is taken as the target feature, and the binocular camera installed on the drilling arm is used to collect the steel strip hole image. The edge detection and ellipse fitting of the image are carried out to obtain the pose information of the borehole relative to the binocular camera coordinate system. Finally, according to the relationship between the measurement coordinate system of the system, the pose information of the borehole relative to the fuselage is obtained.

Aiming at the problems of low intelligence and unbalanced mining caused by low support and anchoring efficiency of fully mechanized working face, a cooperative control method of multi-arms of drilling and anchoring robot is proposed. By studying the process flow of drilling and anchoring, operation quality requirements and the relationship between each system, the multi-arm cooperative control strategy of drilling and anchoring robot is proposed, and the cooperative control system model of drilling and anchoring robot is established for this strategy. The pose error model between the end actuator of the drilling and anchoring robot and the steel strip hole is constructed, and the controller based on the sliding film variable structure is designed to complete the automatic drilling and hole finding of the drilling and anchoring robot, and finally realize the cooperative control of the drilling and anchoring robot.

Finally, the host computer software of the drilling and anchor robot is designed to realize the functions of data acquisition, image processing, pose calculation and collaborative control. The experimental platform for each module is built in the laboratory for functional verification and performance test. The experimental results show that the visual positioning method and multi-arm cooperative control strategy of the drilling and anchoring robot proposed in this paper meet the design requirements. The pose measurement method of the drilling and anchoring robot body related to dust concentration and the borehole pose measurement method based on binocular vision can ensure the control accuracy of the cooperative control system, effectively improve the efficiency of drilling and anchoring, and realize the automatic control of the drilling and anchoring robot.

参考文献:

[1] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(06): 1625-1636.

[2] 闫魏锋, 石亮. 我国煤巷掘进技术与装备发展现状[J]. 煤矿机械, 2018, 39(12): 1-3.

[3] 王国法, 刘峰, 孟祥军, 等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术, 2019, 47(08): 1-36.

[4] 毛善君. “高科技煤矿”信息化建设的战略思考及关键技术[J]. 煤炭学报, 2014, 39(08): 1572-1583.

[5] 王晓旭. 煤矿高效掘进技术现状与发展趋势研究[J]. 石化技术, 2019, 26(11): 383-384.

[6] 王虹. 我国煤矿巷道掘进技术和装备的现状与发展[J]. 煤炭科学技术, 2010, 38(01):57-62.

[7] 张科学. 综掘工作面智能化开采技术研究[J]. 煤炭科学技术, 2017, 45(07): 106-111.

[8] 张旭辉, 刘永伟, 毛清华, 等. 煤矿悬臂式掘进机智能控制技术研究及进展[J]. 重型机械, 2018(02): 22-27.

[9] 梁小康, 梁明, 袁超峰. ABM20型掘锚一体机在冯家塔矿的应用现状[J]. 煤矿机械,2019, 40(05): 149-151.

[10] 王童. MB670掘锚一体机煤巷快速掘进的实践[J]. 山东煤炭科技, 2021, 39(03): 131-132.

[11] 杨小军, 韩丰. MB670掘锚机在大柳塔煤矿的应用实践[J]. 煤矿现代化, 2016(05): 9-10.

[12] 张小峰. 久益12CM系列与山特维克MB系列掘锚一体机比较[J]. 煤矿机械, 2019, 40(03): 57-58.

[13] 朱信平, 李睿, 高娟, 等. 基于全站仪的掘进机机身位姿参数测量方法[J]. 煤炭工程,2011(06): 113-115.

[14] 陶云飞. 掘进机位姿激光自动测量方法及系统研究[D]. 北京:中国矿业大学(北京), 2017.

[15] 原世进. 基于iGPS的悬臂式掘进机位姿测定系统研究[J]. 煤矿现代化, 2018(02): 94-95.

[16] 陶云飞, 宗凯, 张敏骏, 等. 基于iGPS的掘进机单站多点分时机身位姿测量方法[J].煤炭学报, 2015, 40(11): 2611-2616.

[17] Mao J, Qi H. L, Xie M. Research on Measuring and Controlling of Pose and Position Parameters for RoadHeaders[J]. Advanced Materials Research, 2012, 430-432:1528-1531.

[18] 吴淼, 贾文浩, 华伟, 等. 基于空间交汇测量技术的悬臂式掘进机位姿自主测量方法[J]. 煤炭学报, 2015, 40(11): 2596-2602.

[19] 符世琛, 李一鸣, 杨健健, 等. 基于超宽带技术的掘进机自主定位定向方法研究[J].煤炭学报, 2015, 40(11): 2603-2610.

[20] Gugg C, Leary P.O. Robust machine vision based displacement analysis for tunnel boring [C]. 2015.

[21] 田原. 基于机器视觉的掘进机空间位姿检测技术研究[J]. 矿山机械, 2013, 41(02): 27-30.

[22] 田原. 基于四点式光靶的掘进机自动定位方法研究[J]. 煤炭科学技术, 2018, 46(12):35-40.

[23] 黄东, 杨凌辉, 罗文, 等. 基于视觉/惯导的掘进机实时位姿测量方法研究[J]. 激光技术, 2017, 41(01): 19-23.

[24] 杜雨馨, 刘停, 童敏明, 等. 基于机器视觉的悬臂式掘进机机身位姿检测系统[J]. 煤炭学报, 2016, 41(11): 2897-2906.

[25] 周玲玲, 董海波, 杜雨馨. 基于双激光标靶图像识别的掘进机位姿检测方法[J]. 激光与光电子学进展, 2017, 54(04): 186-192.

[26] 杜雨馨. 矿井悬臂式掘进机位姿感知及定位方法研究[D]. 北京:中国矿业大学(北京), 2019.

[27] 孙长库, 黄璐, 王鹏, 等. 运动平台双IMU与视觉组合姿态测量算法[J]. 传感技术学报, 2018, 31(09): 1365-1372+1376.

[28] Sun W, Cao J, Sun Z, et al. Head Posture Recognition Method Based on POSIT Algorithm[J]. Journal of Physics: Conference Series, 2020, 1642(1): 012017.

[29] 陈启军, 周自强, 刘成菊, 等. 基于视觉的六自由度机械臂运动学参数辨识[J]. 同济大学学报(自然科学版), 2020, 48(07): 1023-1029.

[30] Guo X, Tang J, Li J, et al. Attitude measurement based on imaging ray tracking model and orthographic projection with iteration algorithm[J]. ISA Transactions, 2019, 95: 379-391.

[31] Nebaba S G, Andreev S Y, Makarov M A. Preparation of the Face Images in a Video Stream for Recognition and Filtering of Non-Informative Images[J]. Applied Mechanics & Materials, 2015, 738-739: 648-655.

[32] Abdel-Aziz Y I, Dr H M K, Director M H D A E. Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry - ScienceDirect[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81( 2): 103-107.

[33] Vincent, Lepetit, Francesc, et al. EPnP: An Accurate O(n) Solution to the PnP Problem[J]. International Journal of Computer Vision, 2009.

[34] Zheng Y, Kuang, Sugimoto S, et al. Revisiting the pnp problem: A fast, general and optimal solution[C]//IEEE International Conference on Computer Vision. 2013: 2344-2351.

[35] Li S, Xu C, Xie M. A robust on solution to the perspective-n-point problem[J]. 2018.

[36] Kneip L, Li H, Seo Y. UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability[J]. Springer International Publishing, 2014.

[37] 杨文娟, 马宏伟, 张旭辉. 悬臂式掘进机截割头姿态视觉检测系统[J]. 煤炭学报, 2018, 43(S2): 581-590.

[38] 张旭辉, 刘永伟, 杨文娟, 等. 矿用悬臂式掘进机截割头姿态视觉测量系统[J]. 工矿自动化, 2018, 44(08): 63-67.

[39] 张旭辉, 赵建勋, 杨文娟, 等. 悬臂式掘进机视觉导航与定向掘进控制技术[J]. 煤炭学报, 2021,46(07): 2186-2196.

[40] 杨文娟, 张旭辉, 马宏伟, 等. 悬臂式掘进机机身及截割头位姿视觉测量系统研究[J]. 煤炭科学技术, 2019, 47(06): 50-57.

[41] 蒋林, 方东君, 雷斌, 等. 单目视觉移动机器人导航算法研究现状及趋势[J]. 计算机工程与应用, 2021, 57(05): 1-9.

[42] 韩玉辉. 液压凿岩台车自动定位钻孔关键技术研究[D]. 北京:中国矿业大学(北京), 2019.

[43] 姚海峰, 刘伟, 郑晓雯, 等. 构型改进型凿岩机器人钻孔定位方法研究[J]. 中国机械工程, 2020, 31(18): 2254-2261.

[44] 刘阳, 刘超, 许宝卉. 视觉技术在圆孔识别定位中的应用[J]. 仪表技术与传感器, 2021(07): 108-111+116.

[45] 刘阳阳. 自动钻铆机床的孔位修正和二次高精度定位技术[D]. 南京:南京航空航天大学, 2020.

[46] 张晓阳. 面向圆孔测量的工业机器人视觉定位及其控制技术研究[D]. 长沙:湘潭大学, 2019.

[47] 邵天池. 基于机器视觉的箱体孔径及孔间中心距测量方法研究[D]. 吉林:吉林大学, 2020.

[48] Fan Y, Lv X, Lin J, et al. Autonomous Operation Method of Multi-DOF Robotic Arm Based on Binocular Vision[J]. Applied Sciences, 2019, 9(24): 5294.

[49] Gu F, Gao H, Liu J, et al. Research on Static Vision-Based Target Localization for Astronaut Assistant Robots[J]. IEEE access, 2019, 7: 128394-128407.

[50] Wang C, Zou X, Tang Y, et al. Localisation of litchi in an unstructured environment using binocular stereo vision[J]. Biosystems engineering, 2016, 145: 39-51.

[51] Zhao Y, Gong L, Huang Y, et al. A review of key techniques of vision-based control for harvesting robot[J]. Computers and electronics in agriculture, 2016, 127: 311-323.

[52] 刘钱源. 基于深度强化学习的双臂机器人物体抓取[D]. 济南:山东大学, 2019.

[53] Wang F, Chao Z Q, B H. L. Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode[J]. Cluster Computing, 2017: 1-11.

[54] Gokhan A A, Cansever G, A D. Trajectory tracking control of an industrial robot manipulator using fuzzy SMC with RBFNN[J]. Gazi University Journal of Science,2015, 1(28): 141-148.

[55] 丁国锋, 王孙安, 林廷圻, 等. 一种稳定的机器人神经网络控制器研究[J]. 控制与决策, 1997(01).

[56] 吴玉香, 王聪. 不确定机器人的自适应神经网络控制与学习[J]. 控制理论与应用, 2013, 30(08): 990-997.

[57] 胡慧, 刘国荣. 机械手的在线鲁棒自适应神经网络跟踪控制[J]. 控制理论与应用, 2009(03).

[58] Mirkin B, Gutman P O, Shtessel Y. Asymptotic sliding mode control approach to adaptive distributed tracking problem for multi-agent nonlinear delayed systems[J]. International Journal of Control, 2012, 85(11): 1-12.

[59] I. Maza, K. Kondak, M. Bernard, et al. Multi-uav cooperation and control for load transportation and deployment[J]. Journal of Intelligent and Robotic Systems, 2010, 57(1-4): 417–449.

[60] Chao H, M.Baumann, A.Jensen, et al. Band-recon figurable multi-uav-based cooperative remote sensing for real-time water management and distributed irrigation control[J]. IFAC Proceedings Volumes, 2008, 41(2): 11744–11749

[61] Zhang Q, Zhao X, L L. Adaptive Sliding Mode Neural Network Control and Flexible Vibration Suppression of a Flexible Spatial Parallel Robot[J]. Electronics, 2021, 2(10): 212.

[62] Wang Y Y, Zhu K W, Chen B. A new model-free trajectory tracking control for robot manipulators[J]. Mathematical Problems in Engineering, 2018: 1-13.

[63] Pane Y P, Nageshrao S P, J K. Reinforcement learning based compensation methods for robot manipulators[J]. Engineering Applications of Artificial Intelligence, 2019(78): 236-247.

[64] 卢兴国. 工业机器人模糊神经网络控制及最优运动规划方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018.

中图分类号:

 TP242    

开放日期:

 2023-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式