- 无标题文档
查看论文信息

论文中文题名:

 短路及火烧条件下铜导线痕迹特征研究    

姓名:

 刘强    

学号:

 19220089040    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 王伟峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Research on the Characteristics of Copper Wire under Short Circuited and Fire Burning    

论文中文关键词:

 一次短路熔痕 ; 二次短路熔痕 ; 火烧熔痕 ; 金相分析 ; 形貌分析    

论文外文关键词:

 Primary short circuited melted mark ; Secondary short circuited melted mark ; Melted mark due to fire burning ; Metallographic analysis ; Morphology analysis    

论文中文摘要:

  近年来,我国电气火灾形势严峻,电气故障仍是引发火灾的首要原因。火灾物证鉴定是火灾调查工作中一种重要的技术手段和方法,对查明火灾原因,预防火灾再发生有至关重要的作用。本文立足当前电气火灾物证鉴定存在的不足,针对部分电气火灾物证仍难以给定准确原因,利用电气故障模拟实验装置模拟短路故障,汽油喷灯模拟高温火烧条件,开展短路及火烧实验,重点研究了短路与火烧熔痕痕迹典型特征,主要集中在绝缘层、熔痕、线芯等方面,补充火灾物证鉴定证据链,总结短路与火烧熔痕鉴定依据,进一步提高火灾调查的准确性和科学性。
  利用红外热像仪和高速摄像机记录实验过程,逐帧分析导线发生短路故障时变化情况。研究结果表明,2.5 mm2 ZR-BV单芯铜导线短路条件下依次发生绝缘层发烟、熔化、鼓包、炭化、弯曲、燃弧、金属喷溅、明火燃烧、滴落变化;绝缘导线熔断电流为130 A,熔断时间93 s,电流大于140 A均能熔断,绝缘熔融滴落起始电流157.5 A,裸导线起始熔断电流和时间均小于绝缘导线。
  采用体视显微镜和扫描电镜-能谱仪,对短路及火烧条件下绝缘层与熔痕痕迹微观形貌和元素分析,结果发现,不同条件下绝缘层表面析出晶粒结构位置不同;一次短路熔痕表面有金属光泽,分布细小火山口状孔洞或缩孔,线芯有结疤痕和球形凸起,二次短路熔痕表面光泽度差,孔洞和缩孔较多,线芯凸起以球形为主,火烧熔痕表面有大量多边形固溶体和碳颗粒,线芯上有熔化变细区,无孔洞;不同条件下熔痕元素种类相似,可根据元素含量差异鉴定熔痕成因。
  使用金相显微镜,采用Image-Pro-Plus软件对短路及火烧熔痕微观组织分析,结果表明,一次短路熔痕晶粒细小,平均直径13.14~17.87 μm,以枝晶为主,晶界较细,枝晶方向明显,有激冷层结构;气孔较少,体积较小,形状较规则。二次短路熔痕晶粒以胞状晶、柱状晶为主,平均直径15.72~22.30 μm,晶粒稀疏,晶界粗大,晶界偏析明显;气孔较多,体积较大,形状不规则。火烧熔痕晶粒类型粗大等轴晶为主,熔痕仅在表层分布有细小气孔或缩孔,内部几乎没有气孔与缩孔。
 

论文外文摘要:

  In recent years, the form of electrical fires in China has been severe, and electrical faults are still the primary cause of fires. Fire material evidence identification is an important technical means and method in fire investigation, which plays a vital role in identifying the cause of fire and preventing the recurrence of fire. Based on the shortcomings of the current electrical fire evidence identification, this paper uses the electrical fault simulation experimental device to simulate the short circuit fault, the gasoline burner simulates the high temperature fire condition, and carries out the short circuit and fire experiments, focusing on the short circuit. The typical characteristics of fire and fusion marks are mainly concentrated in the insulation layer, fusion marks, wire cores, etc., supplement the evidence chain of fire physical evidence identification, summarize the identification basis of short circuit and fire fusion marks, and further improve the accuracy and scientificity of fire investigation.
  An infrared thermal imager and a high-speed camera were used to record the experimental process, and the changes in the short-circuit fault of the wire were analyzed frame by frame. The research results show that under the short-circuit condition of the 2.5 mm2ZR-BV single-core copper wire, the insulation layer smokes, melts, bulges, carbonization, bending, arcing, metal splashing, open flame burning, and dripping changes; the fuse current of the insulated wire is 130 A, the fusing time is 93 s, and the current is greater than 140 A. The initial current of insulation melting and dripping is 157.5 A. The initial fusing current and time of the bare wire are smaller than that of the insulated wire.
  Stereo microscope and scanning electron microscope-energy dispersive spectrometer were used to analyze the micro-morphology and elemental analysis of the insulating layer and the melting marks under short-circuit and fire conditions. The results showed that the grain structure of the insulating layer appeared at different positions under different conditions; The surface has metallic luster, with small crater-like holes or shrinkage holes, the core has knot scars and spherical protrusions, the surface gloss of the secondary short-circuit melting marks is poor, there are many holes and shrinkage holes, and the core protrusions are mainly spherical. , there are a large number of polygonal solid solutions and carbon particles on the surface of the burnt melt mark, and there is a melting and thinning area on the wire core without holes; the types of melt mark elements are similar under different conditions, and the cause of the melt mark can be identified according to the difference in element content.
  Microstructure analysis of short-circuit and fire-melt traces using a metallographic microscope and Image-Pro-Plus software, and the results showed that the grains of the primary short-circuit marks were fine, with an average diameter of 13.14~17.87 μm, mainly dendrites, fine grain boundaries, and obvious dendrite directions. Chilled layer structure; fewer pores, smaller volume and more regular shape. The grains of the secondary short-circuit melting marks are mainly cellular and columnar, with an average diameter of 15.72~22.30 μm. The grains are sparse, the grain boundaries are coarse, and the grain boundary segregation is obvious. The grain type of the burnt melt marks is mainly coarse and equiaxed grains. The melt marks are only distributed with small pores or shrinkage holes on the surface, and there are almost no pores and shrinkage holes inside.

 

参考文献:

[1] Whiteside R M, Wilson A, Blackburn S, et al. Major Companies of Europe 1991/1992[M]. Springer Netherlands, 1991: 2-5.

[2] 公安部消防局.中国消防年鉴[M].北京:中国人事出版社,2017.

[3] 向熠堃,李阳,徐学岩.铝合金导线过电流发热过程及痕迹特征[J].消防科学与技术,2019,38(05):734-738.

[4] 廖俊华.电气火灾原因调查与防范技术[J].低碳世界,2020,10(04):223-224.

[5] 王莉,方仕童,余圣辉,等.电气火灾中的电弧熔痕特征与外热关系[J].中山大学学报自然科学版,2015,54(2):1-7.

[6] Wright S A, Loud J D, Blanchard R A. Globules and Beads: What Do They Indicate About Small-Diameter Copper Conductors that Have Been Through a Fire?[J]. Fire Technology, 2015, 51(5): 1051-1070.

[7] 陈晓坤,陈言,王伟峰,等.单芯铜线过电流故障电弧熔痕的微观特征研究[J].中国安全生产科学技术,2020,16(12):136-142.

[8] 王朴真,吴凡,李若铭,等.过电流倍数对多股铜导线故障的影响研究[J].武警学院学报,2020,36(06):48-52.

[9] 刘义祥,李阳,刘彬.铜导线短路熔痕中共晶体的定量金相研究[J].消防科学与技术,2022,41(02):279-281.

[10] GB/T 16840.1-2008. 电气火灾痕迹物证技术鉴定方法第1部分:宏观法[S].北京:中国标准出版社,2008.

[11] GB/T 16840.2-2021. 电气火灾痕迹物证技术鉴定方法第2部分:剩磁检测法[S].北京:中国标准出版社,2021.

[12] GB/T 16840.3-2021. 电气火灾痕迹物证技术鉴定方法第3部分:俄歇分析法[S].北京:中国标准出版社,2021.

[13] GB/T 16840.4-2021. 电气火灾痕迹物证技术鉴定方法第4部分:金相分析法[S].北京:中国标准出版社,2021.

[14] GB/T 16840.5-2012. 电气火灾痕迹物证技术鉴定方法第5部分:电气火灾物证识别和提取方法[S].北京:中国标准出版社,2012.

[15] GB/T 16840.6-2012. 电气火灾痕迹物证技术鉴定方法第6部分:SEM微观形貌分析法[S].北京:中国标准出版社,2012.

[16] GB/T 16840.7-2021. 电气火灾痕迹物证技术鉴定方法第7部分:EDS成分分析法[S].北京:中国标准出版社,2021.

[17] GB/T 16840.8-2021. 电气火灾痕迹物证技术鉴定方法第8部分:热分析法[S].北京:中国标准出版社,2021.

[18] Babrauskas V. Electric arc explosions-A review[J]. Fire Safety Journal, 2017, 89: 7-15.

[19] Marongiu A, Faravelli T, Bozzano G, et al. Thermal degradation of poly[J]. Journal of Analytical & Applied Pyrolysis, 2003, 70(2): 519-553.

[20] Matala A. Methods and applications of pyrolysis modelling for polymeric materials[D]. Finland: Aalto University, 2013.

[21] Yu J, Sun L, Ma C, et al. Thermal degradation of PVC: A review[J]. Waste Manage, 2016, 48: 300-314.

[22] Babrauskas V. Mechanisms and modes for ignition of low‐voltage, PVC‐insulated electrotechnical products[J]. Fire & Materials, 2010, 30(2): 151-174.

[23] 杨秉轩.导线绝缘层火灾痕迹研究[J].武警学院学报,2010,26(10):87-89

[24] Wang X, He H, Zhao L, et al. Ignition and Flame Propagation of Externally Heated Electrical Wires with Electric Currents[J]. Fire Technology, 2016, 52(2): 533-546.

[25] He H, Zhang Q, Tu R, et al. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents[J]. Journal of Hazardous Materials, 2016, 320(15): 628-634.

[26] 何豪.通电聚乙烯导线火蔓延伴随的熔融滴落行为研究[D].合肥:中国科学技术大学,2017.

[27] 薛岩,方俊,王静舞.低压下聚乙烯绝缘层导线火蔓延熔融滴落实验分析[J].火灾科学,2017,26(04):191-197.

[28] 李培祥,程一鸣.聚氯乙烯导线绝缘层的引燃特性研究[J].消防科学与技术,2018,37(02):174-176.

[29] 黄超,黄洪澜.导线绝缘层灰烬断面SEM鉴定火灾痕迹研究[J].消防科学与技术,2021,40(04):598-601.

[30] Takaki A. On the Effect of Thermal Histories upon the Metallographic Structure of Electric Wire[J]. Research on Forensic Science, 1971, 24(2): 48-56.

[31] Erlandsson R, Strand G. An Investigation of physical characteristics indicating primary or secondary electrical damage[J]. Fire Safety Journal, 1984, 5(8): 97-103.

[32] Tokyo Fire Department, Research on First and Second Fused Mark Discrimination of Electric Wires[J]. Fire Science and Engrg. 1992, 42(02): 15–20.

[33] 高伟,吴莹,刘术军,等.采用AES深度刻蚀研究不同氧气含量下短路熔痕的成分[J].光谱学与光谱分析,2010,30(7):2003-2005.

[34] 吴莹,孟庆山,王新明,等.铜导线短路熔痕的XPS研究[J].光谱学与光谱分析,2010,30(05):1408-1412.

[35] 李阳,何江涛.基于Bayes判别模型的火场中铜导线短路熔痕定量金相鉴定方法研究[J].火灾科学,2015,24(4):201-208.

[36] 周广英,李阳.单股铜导线过电流故障痕迹形成规律研究[J].武警学院学报,2017,33(12):90-93.

[37] 王博,李阳,司永轩,等.ZR-BV单芯铜线过电流熔断痕迹形成过程[J].消防科学与技术,2020,39(04):561-565.

[38] DENG J, LI Y, Lü H-F, et al. Metallurgical analysis of the ‘cause’ arc beads pattern characteristics under different short-circuit currents[J]. Journal of Loss Prevention in the Process Industries, 2020, 68(104339).

[39] Lü H-F, DENG J, LI Y, et al. Influence of thermal environment on metallographic structure characteristics of the electric arc bead pattern[J]. Journal of Loss Prevention in the Process Industries, 2021, 70(104426).

[40] 郑自泉.电气火灾痕迹物证鉴定的研究综述[J].科技信息, 2010(04):362-363.

[41] Wang S, Huang X, Chen H, et al. Ignition of low-density expandable polystyrene foam by a hot particle[J]. Combustion & Flame, 2015, 162(11): 4112-4118.

[42] 李阳,何江涛.基于Bayes判别模型的火场中铜导线短路熔痕定量金相鉴定方法研究[J].火灾科学,2015,24(04):201-208.

[43] 王莉,盛虎,梁栋.电弧熔痕的表面特征演变[J].消防科学与技术,2017, 36(12):1774-1777.

[44] Urban J L, Zak C D, Song J, et al. Smoldering spot ignition of natural fuels by a hot metal particle[J]. Proceedings of the Combustion Institute, 2017, 36(2): 3211-3218.

[45] 李国辉.火灾现场铜导体短路熔痕特征稳定性研究[J].消防科学与技术,2018,37(08):1100.

[46] 郭伟军.物证鉴定与用电信息数据分析在电气火灾原因认定中的应用[J].武警学院学报,2018,34(02):85-88.

[47] Levinson D W. Copper metallurgy as a diagnostic tool for analysis of the origin of building fires[J]. Fire Technology, 1977, 13(2): 211-222.

[48] Ettling B V. Electrical wiring in building fires[J]. Fire Technology, 1978, 14(4): 317-325.

[49] Babrauskas V. Fire due to electric arcing: can cause beadsbe distinguished from‘victim’beads by physical or chemical testing?[J]. Journal of Fire Protection Engineering, 2004, 14(2): 125-147.

[50] Kuanheng L, Yunghui S, Guoju C, et al. Microstructural Study on Molten Marks of Fire-Causing, Copper Wires[J]. Materials, 2015, 8(6): 3776-3790.

[51] National Fire Protection Association. NFPA 921: Guide for fire and explosion investigations 2017 Edition [M]. National Fire Protection Association, 2017.

[52] Babrauskas V. Arc Mapping: A Critical Review[J]. Fire Technology, 2018, 54(3): 749-780.

[53] 牛会永.基于物证分析的煤矿火灾事故调查技术研究[D].北京:中国矿业大学,2010.

[54] 庚嵩.数字图像处理在金相分析中的应用[D].南京:南京航空航天大学,2018.

[55] 田原宇,吕永康,谢克昌.PVC热解/红外(Py/FTIR)研究[J].燃料化学学报,2002,30(6):569-572.

[56] Barber K, Alexander G. Insulation of electrical cables over the past 50 years[J]. IEEE Electrical Insulation Magazine, 2013, 29(3): 27-32.

[57] 雷鸣.依据表皮温度准确计算单芯高压电缆线芯温度的理论及实验研究[D].广州:华南理工大学,2011.

[58] 郝海斌.红外热成像预测电气线路火灾实验研究[D].北京:中国地质大学,2014.

[59] 梁任.架空导线运行温度及载流量的数值模拟分析[D].郑州:郑州大学,2017.

[60] 莫善军.电气火灾痕迹物证鉴定分析与应用案例[M].暨南大学出版社,2014.

[61] 马幼平,崔春娟.金属凝固理论及应用技术[M].冶金工业出版社,2015.

[62] 陈丹,赵岩,刘天佑.金属学与热处理[M].北京理工大学出版社,2017.

[63] 李阳,刘义祥,范超毅,等.AA8030型铝合金导线火灾前短路熔化痕迹鉴别技术研究[J].武警学院学报,2019,35(10):52-56.

中图分类号:

 X934    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式