- 无标题文档
查看论文信息

论文中文题名:

 基于WRF-RF模型的关中城市群热岛效应分析    

姓名:

 杨可    

学号:

 19210210072    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 地理空间建模    

第一导师姓名:

 周自翔    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Analysis of heat island effect of Guanzhong Plain urban agglomeration based on WRF-RF model    

论文中文关键词:

 城市热岛效应 ; WRF模式 ; 随机森林 ; 地理加权回归 ; 关中平原城市群    

论文外文关键词:

 Urban heat island effect ; WRF mode ; Random forest ; Geographically weighted regression ; the Guanzhong Plain Urban Agglomeration    

论文中文摘要:

       热岛效应时空特征及影响因素对认识和改善城市热污染意义重大,但针对关中平原城市群热岛效应的相关研究尚需加强。本文将中尺度天气预报模式(WRF)与随机森林算法(RF)相结合,构建WRF-RF模型并模拟城市近地面气温,计算并分析关中平原城市群热岛效应时空特征,再基于地理加权回归模型,探究自然和人为因素对热岛效应的贡献量。主要结论为:

     (1)WRF-RF模型模拟关中平原城市群近地面气温和能量收支状况的精确度更高。与WRF模式、随机森林算法和监测站点内插法等相比较,WRF-RF模型更加高效、准确,模拟近地面(2米)气温的空间相关系数可以达到0.9以上,并能反应出地形等下垫面条件对气温影响的效果。

     (2)关中平原城市群热岛效应存在明显的空间异质性和季节性变化。其中西安市热岛效应最强、范围最大。春夏季强热岛范围在西安、咸阳等大城市中心地区明显增加,而秋冬季热岛效应逐渐减弱。

     (3)关中平原城市群热岛效应受自然和人为因素共同影响,而自然因素起主导作用。首先,地形是城市热岛效应变化的主控因子,海拔越低,城市热岛效应越明显,在地势平坦的区域热岛效应增强最为显著。在季度和月份变化上,主要是湿度和太阳辐射起着主导作用,且太阳辐射为增强作用,湿度为减缓作用,太阳辐射的贡献量高于湿度。

     (4)在新冠肺炎疫情期间关中平原城市群热岛效应有所减弱。2020年年初新冠肺炎疫情发生后,在人为活动大幅减弱后,关中平原城市群强热岛范围减小比例为31.5%,但强热岛区域依旧自西向东出现在“咸阳-西安-渭南-运城”城市带的主城区,热岛效应总体态势也未发生根本变化。

论文外文摘要:

       The temporal and spatial characteristics and influencing factors of the heat island effect are of great significance to understand and improve urban heat pollution, but the relevant research on the heat island effect of the Guanzhong Plain Urban Agglomeration needs to be strengthened. In this paper, the mesoscale weather forecast model (WRF) is combined with the random forest algorithm (RF) to construct the WRF-RF model and simulate the urban near-surface temperature,with calculating and analyzing the spatial and temporal characteristics of the heat island effect of the Guanzhong Plain Urban Agglomeration, and then explore the contribution of natural and human factors to the heat island effect based on the geographically weighted regression model. The main conclusions are as follows:

       (1) WRF-RF model is more accurate in simulating the near-surface air temperature and energy budget of the Guanzhong Plain Urban Agglomeration. Compared with the WRF model, random forest algorithm, and monitoring station interpolation, the WRF-RF model is more efficient and accurate. The spatial correlation coefficient of simulated near-surface (2m) air temperature can reach more than 0.9, and can reflect the effect on air temperature of underlying surface conditions such as terrain.

       (2) The heat island effect of the Guanzhong Plain Urban Agglomeration has obvious spatial heterogeneity and seasonal variation. Xi'an has the strongest and the largest range of heat island effect. In spring and summer, the range of strong heat island increases obviously in the central areas of big cities such as Xi'an and Xianyang, while the heat island effect weakens gradually in autumn and winter.

       (3) The heat island effect of the Guanzhong Plain Urban Agglomeration is affected by both natural and human factors, and the natural factors play a leading role. Firstly, the terrain is the main controlling factor of the urban heat island effect. The lower the altitude is, the more obvious the urban heat island effect is. The enhancement of the heat island effect is most significant in the flat area. In terms of seasonal and monthly changes, humidity and solar radiation play a leading role, and the solar radiation is enhanced and humidity is slowed down. The contribution of solar radiation is higher than that of humidity.

       (4) The heat island effect of Guanzhong Plain Urban Agglomeration was weakened during the COVID-19 epidemic. After the outbreak of COVID-19 at the beginning of 2020, the range of strong heat island in the Guanzhong Plain Urban Agglomeration has been reduced by 31.5% after human activities have been greatly weakened. However, the strong heat island region still appears in the main urban area of the "Xianyang-Xi'an-Weinan-Yuncheng" urban belt from west to east, and the overall situation of the heat island effect has not changed fundamentally.

参考文献:

[1] 乔治, 田光进. 基于MODIS的2001年—2012年北京热岛足迹及容量动态监测[J]. 遥感学报, 2015, 19(3):476-484.

[2] 郭飞. 基于WRF的城市热岛效应高分辨率评估方法[J]. 土木建筑与环境工程, 2017. 39(01):13-19.

[3] Rizwan, A M, L Y C Dennis, C Liu. A review on the generation, determination and mitigation of Urban Heat Island[J]. Journal of Environmental Sciences, 2008, 20(1):120-128.

[4] Yang, J, L Hu, C Wang. Population dynamics modify urban residents’ exposure to extreme temperatures across the United States[J]. Science Advances, 5(12):1-7.

[5] Wang C, Z H Wang, K E Kaloush, et al. Cool pavements for urban heat island mitigation: A synthetic review[J]. Renewable and Sustainable Energy Reviews, 2021, 146:1-16.

[6] Li, X, Y Zhou, S Yu, et al. Urban heat island impacts on building energy consumption: A review of approaches and findings[J]. Energy, 2019. 174:407-419.

[7] Mills, G. Luke Howard and The Climate of London[J]. Weather, 2008. 63(6):153-157.

[8] Mohajerani A, J, Bakaric T. Jeffrey-Bailey The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete[J]. Journal of Environmental Management, 2017, 197:522-538.

[9] 沈中健, 曾坚. 厦门市热岛强度与相关地表因素的空间关系研究[J]. 地理科学, 2020. 40(5):842-852.

[10] 李杨. 城市热岛效应评价方法的研究[D]. 重庆: 重庆大学, 2014:1-83.

[11] 彭少麟, 周凯, 叶有华, 等. 城市热岛效应研究进展[J]. 生态环境, 2005, 14(4):574-579.

[12] Baklanov A, L T Molina, M Gauss. Megacities, air quality and climate[J]. Atmospheric Environment, 2016. 126:235-249.

[13] Sokhi R S A, Baklanov M. Piringer Special Issue of Journal of Urban Climate: Modelling of urban air pollution and climate interactions[J]. Urban Climate, 2017, 100(22):1-1.

[14] Li H, F Meier, X Lee, et al. Interaction between urban heat island and urban pollution island during summer in Berlin[J]. Science of The Total Environment, 2018, 636:818-828.

[15] Li H, S Sodoudi, J Liu, et al. Temporal variation of urban aerosol pollution island and its relationship with urban heat island[J]. Atmospheric Research, 2020, 241:1-8.

[16] Jin M, J M Shepherd, W Zheng. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study[J]. Advances in Meteorology, 2010, 2010:1-15.

[17] Wang L, Z Gao, S Miao, et al. Contrasting characteristics of the surface energy balance between the urban and rural areas of Beijing[J]. Advances in Atmospheric Sciences, 2015, 32(4):505-514.

[18] Howard L. The climate of London, deduced from meteorological observations[M]. 2012.

[19] 荆大为. 杭州湾地区城市热岛效应研究[D]. 南京: 南京信息工程大学, 2009:1-56.

[20] Peterson T C. Assessment of Urban Versus Rural In Situ Surface Temperatures in the Contiguous United States: No Difference Found[J]. Journal of Climate, 2003, 16(18):2941-2959.

[21] Chow W, M Roth. Temporal dynamics of the urban heat island of Singapore[J]. International Journal of Climatology, 2010. 26(15):2243-2260.

[22] Katsoulis B D, G A Theoharatos. Indications of the Urban Heat Island in Athens, Greece[J]. Journal of Applied Meteorology, 1985, 24(12):1296-1302.

[23] Ackerman B. Temporal March of the Chicago Heat Island[J]. J climate Appl meteor, 2010, 24(6):547-554.

[24] SD Gedzelman, S Austin, R Cermak, et al. Mesoscale aspects of the Urban Heat Island around New York City[J]. Theoretical & Applied Climatology, 2003, 75(1):29-42.

[25] 季崇萍, 刘伟东, 轩春怡. 北京城市化进程对城市热岛的影响研究[J]. 地球物理学报, 2006, (01):69-77.

[26] 徐伟, 杨涵洧, 张仕鹏, 等. 上海城市热岛的变化特征[J]. 热带气象学报, 2018, 34(02):228-238.

[27] 王喜全, 王自发, 郭虎. 北京“城市热岛”效应现状及特征[J]. 气候与环境研究, 2006, (05):627-636.

[28] 高红燕, 蔡新玲, 贺皓, 等. 西安城市化对气温变化趋势的影响[J]. 地理学报, 2009, 64(09):1093-1102.

[29] 李丽光, 王宏博, 赵梓淇, 等. 站点选择对城市热岛效应的影响分析[J]. 气象与环境学报, 2013. 29(2):54-60.

[30] Kolokotroni M, X Ren, M Davies, et al. London's urban heat island: Impact on current and future energy consumption in office buildings[J]. Energy and Buildings, 2012, 47:302-311.

[31] Tayyebi A, H Shafizadeh-Moghadam, A Tayyebi. Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran[J]. Land Use Policy the International Journal Covering All Aspects of Land Use, 2018, 71:459-469.

[32] Weng Q, U Rajasekar, X Hu. Modeling Urban Heat Islands and Their Relationship With Impervious Surface and Vegetation Abundance by Using ASTER Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(10):4080-4089.

[33] Jinyeu T, Z Jing, L Yu, et al. Urban Heat Island Assessment Using the Landsat 8 Data: A Case Study in Shenzhen and Hong Kong[J]. Urban Science, 2017, 1(1):1-22.

[34] Krishna R. Remote sensing of urban heat islands from an environmental satellite[J]. 1972.

[35] 寿亦萱, 张大林. 城市热岛效应的研究进展与展望[J]. 气象学报, 2012, 70(3):338-358.

[36] Roth M, T R OKE, W J EMERY. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology[J]. International Journal of Remote Sensing, 1989, 10(11):1699-1720

[37] Weng Q, D Lu, J Schubring. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment, 2004. 89(4):467-483.

[38] Fu P, Q Weng. Variability in annual temperature cycle in the urban areas of the United States as revealed by MODIS imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146:65-73.

[39] Ying, Zhang, Li xin, et al. Spatial-temporal impacts of urban land use land cover on land surface temperature Case studies of two Canadian urban areas[J]. Int J Appl Earth Obs Geoinformation, 2019, 75:171-181.

[40] Weng Q, D Lu. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States[J]. International Journal of Applied Earth Observation & Geoinformation, 2008, 10(1):68-83.

[41] 高黎, 张路路, 叶脉, 等.基于遥感分析的2013-2018年广州市热岛效应研究[J]. 环境生态学, 2021, 3(06):14-20.

[42] 周红妹, 丁金才, 徐一鸣, 等. 城市热岛效应与绿地分布的关系监测和评估[J]. 上海农业学报, 2002, 18(2):83-88.

[43] Oke T R. The energetic basis of the urban heat island[J]. Quarterly Journal of the Royal Meteorological Society, 1982, 108(455):1-24.

[44] Magee N, J Curtis G. Wendler The Urban Heat Island Effect at Fairbanks, Alaska[J]. Theoretical & Applied Climatology, 1999, 64(1-2):39-47.

[45] Takahashi K, H Yoshida, Y Tanaka, et al. Measurement of thermal environment in Kyoto city and its prediction by CFD simulation[J]. Energy and Buildings, 2004, 36(8):771-779.

[46] Takebayashi H, M. Senoo Analysis of the relationship between urban size and heat island intensity using WRF model[J]. Urban Climate, 2018, 24:287-298.

[47] Salvati A, M Palme, G Chiesa, et al. Built form, urban climate and building energy modelling: case-studies in Rome and Antofagasta[J]. Journal of Building Performance Simulation, 2020, 13(2):209-225.

[48] 宋迅殊, 陈燕, 张宁. 城市发展对区域气象环境影响的数值模拟:以苏州为例[J]. 南京大学学报:自然科学版, 2015, 47(1):51-59.

[49] 南鹏飞. 基于WRF的未来(2050s)城市气候预测及适应性规划策略[D]. 大连: 大连理工大学, 2021:1-124.

[50] 朱浩楠, 刘晓冉, 孙佳, 等. 基于遥感和数值模拟的重庆海绵城市热岛效应分析[J]. 高原气象, 2021, 40(05):1202-1212.

[51] Heinl M, A Hammerle, U Tappeiner, et al. Determinants of urban–rural land surface temperature differences – A landscape scale perspective[J]. Landscape and Urban Planning, 2015, 134:33-42.

[52] Pal S, S Ziaul. Detection of land use and land cover change and land surface temperature in English Bazar urban centre[J]. The Egyptian Journal of Remote Sensing and Space Science, 2017, 20(1):125-145.

[53] Singh P, N Kikon P. Verma Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate[J]. Sustainable Cities and Society, 2017, 32:100-114.

[54] 何炳伟, 赵伟, 李爱农. 基于Landsat 8遥感影像的新旧城区热环境特征对比研究——以成都市为例[J]. 遥感技术与应用, 2017. 32(6):1141-1150.

[55] 付盈, 国巧真, 吴晓旭. 基于Landsat8遥感数据的天津市地表温度反演[J]. 中国环境监测, 2018, 34(5):165-172.

[56] Berger C, J Rosentreter, M Voltersen, et al. Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature[J]. Remote Sensing of Environment, 2017, 193:225-243.

[57] Cheval S, A Dumitrescu. The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images[J]. Theoretical&Applied Climatology, 2015, 121(3):631-640.

[58] Gu Y, D Li. A modeling study of the sensitivity of urban heat islands to precipitation at climate scales[J]. Urban Climate, 2018, 24:982-993.

[59] Sirous H, W Qi hao, D Ali, et al. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City[J]. Remote Sensing, 2016, 8(4):352-352.

[60] Cole K, H. Geoffrey A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest[J]. Remote Sensing, 2016, 8(4):297-297.

[61] Yasuyo, Makido, Vivek, et al. Daytime Variation of Urban Heat Islands: The Case Study of Doha, Qatar[J]. Climate, 2016. 4(2):1-14.

[62] 陈晨, 阿木拉堵, 李翠琳, 等. 基于多源数据的大气细颗粒物对北京市城市热岛的影响研究[J]. 地球环境学报, 2020, 11(2):143-150.

[63] 赵淑雨. 关中地区黑碳的时空变化及其成因—外场观测与数值模拟[D]. 北京: 中国科学院研究生院(地球环境研究所), 2015:1-104.

[64] 胡李发, 谢元礼, 崔思颖, 等. 关中平原城市群夏季城市热岛特征及驱动力[J]. 中国环境科学, 2021, 41(08):3842-3852.

[65] Wang L, X Jiang, W Sun, et al. Impact of urban built environment on respiratory health and its planning strategy: a case study of a district in shanghai[J]. City Planning Review, 2018, 42(6):15-22.

[66] Wei J, Z Li, A Lyapustin, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications[J]. Remote Sensing of Environment, 2021, 252:112-136.

[67] Wei J, Z Li, M Cribb, et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees[J]. Atmospheric Chemistry and Physics, 2020, 20(6):3273-3289.

[68] Zhang X, L Liu, X Chen, et al. GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6):2753-2776.

[69] Center E M. National centers for environmental prediction[J]. National Weather Service/NOAA/US Department of Commerce, NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, 1979:1-47.

[70] 宋倩, 毛健, 马振兴, 等. WRF模式气象要素模拟精度的验证及订正——以南疆区域为例[J]. 天津师范大学学报:自然科学版, 2020, 40(1):53-59.

[71] 杨涛. 新疆塔里木盆地灌溉对区域气候影响的数值模拟研究[D]. 西安: 西北农林科技大学, 2020:1-57.

[72] 张明月, 彭定志, 胡林涓. 统计降尺度方法研究进展综述[J]. 南水北调与水利科技, 2013, 11(3):118-122.

[73] Wilby R L, Dawson C W, Barrow E M. sdsm — a decision support tool for the assessment of regional climate change impacts[J]. Environmental Modelling & Software, 2002, 17(2):145-157.

[74] Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1):5-32.

[75] 李建明, 马燕飞, 李仁杰, 等. 基于随机森林的海河流域地表温度降尺度[J]. 遥感信息, 2021, 36(4):151-158.

[76] 李婉, 牛陆, 陈虹, 等. 基于随机森林算法的地表温度鲁棒降尺度方法[J]. 地球信息科学学报, 2020, 22(08):1666-1678.

[77] 任梅芳, 庞博, 徐宗学, 等. 基于随机森林模型的雅鲁藏布江流域气温降尺度研究[J]. 高原气象, 2018, 37(5):1241-1253.

[78] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.

[79] 王茵茵, 齐雁冰, 陈洋, 等. 基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究[J]. 土壤学报, 2016, 2016(2):342-354.

[80] Silva R, Carvalho A C, Carvalho D, et al. Study of Urban Heat Islands Using Different Urban Canopy Models and Identification Methods[J]. Atmosphere, 2021, 12(4): 521.

[81] 刘勇洪, 房小怡, 张硕, 等. 京津冀城市群热岛定量评估[J]. 生态学报, 2017, 37(17):5818-5835.

[82] Douglas I, T Munn. Encyclopedia of Global Environmental Change, Volume 3, Causes and Consequences of Global Environmental Change[M]. Wiley, Encyclopedia of Global Environmental Change, 2003(2).

[83] A M L I, P Z A B, R E W A, et al. Remote sensing of the urban heat island effect across biomes in the continental USA - ScienceDirect[J]. Remote Sensing of Environment, 2010, 114(3):504-513.

[84] 叶彩华, 刘勇洪, 刘伟东, 等. 城市地表热环境遥感监测指标研究及应用[J]. 气象科技, 2011, 39(1):95-101.

[85] 杜尧东. 粤港澳大湾区城市热岛时空特征及驱动因素[J]. 生态学杂志, 2020, 39(8):2671-2677.

[86] 余俞寒, 张文婷, 王加波, 等. 武汉城市群热岛效应对土地利用响应及其预测[J]. 环境科学与技术, 2018, 41(12):158-168.

[87] 陈彬辉, 冯瑶, 袁建国, 等. 基于MODIS地表温度的京津冀地区城市热岛时空差异研究[J]. 北京大学学报:自然科学版, 2016, 52(6):1134-1140.

[88] 李德仁. 对空间数据不确定性研究的思考[J]. 测绘科学技术学报, 2006, (06):1-9.

[89] Clinton N, P Gong. MODIS detected surface urban heat islands and sinks: Global locations and controls[J]. Remote Sensing of Environment, 2013, 134:294-304.

[90] Du H, D Wang, Y Wang, et al. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration[J]. Science of the Total Environment, 2016, 571(15):461-470.

[91] Peng S, S Piao, P Ciais, et al. Surface urban heat island across 419 global big cities[J]. Environmental Science & Technology, 2012, 46(2):696-703.

[92] Li K, Y Chen, M Wang, et al. Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China[J]. Science of The Total Environment, 2019, 669(15):229-247.

[93] Yao R, L Wang, X Huang, et al. The influence of different data and method on estimating the surface urban heat island intensity[J]. Ecological Indicators, 2018, 89:45-55.

[94] Wang S, C Shi, C Fang, et al. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model[J]. Applied Energy, 2019, 235:95-105.

[95] Brunsdon C, A S Fotheringham, M E Charlton. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 2010, 28(4):281-298.

[96] Fotheringham A S, M E Charlton, C Brunsdon. Geographically Weighted Regression: A Natural Evolution Of The Expansion Method for Spatial Data Analysis[J]. Environment and Planning A, 1998, 30(11):1905-1927.

[97] 薛瑞晖, 于晓平, 李东群, 等. 基于地理加权回归模型探究环境异质性对秦岭大熊猫空间利用的影响[J]. 生态学报, 2020, 40(08):2647-2654.

[98]邵彦川, 王江浩, 葛咏. 基于地理加权回归克里金的中国PM2.5浓度空间制图方法[J]. 遥感技术与应用, 2018, 33(06):1103-1111.

[99] Gongbo, Chen, Shanshan, et al. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information[J]. Science of the Total Environment, 2018, 636:52-60.

[100] Feng H, B Zou, Y Tang. Scale-and region-dependence in landscape-PM2.5 correlation: Implications for urban planning[J]. Remote Sensing, 2017, 9(9):1-20.

[101] Guo B, X Wang, L Pei, et al. Identifying the spatiotemporal dynamic of PM2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018[J]. Science of The Total Environment, 2020, 751:1-15.

[102] Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geography, 1970, 46:234-240.

[103] Hu M, Z Li, J Wang, et al. Determinants of the Incidence of Hand, Foot and Mouth Disease in China Using Geographically Weighted Regression Models[J]. Plos One, 2012, 7(6):1-8.

[104] Li L, W Li, J Jin. Contribution of the North Atlantic subtropical high to regional climate model (RCM) skill in simulating southeastern United States summer precipitation[J]. Climate Dynamics, 2015, 45(1):477-491.

[105] 田磊. 变化环境下黄土高原水文气候要素数值模拟及未来预测[D]. 西安: 西北农林科技大学, 2019:1-150.

[106] Peng, S. (2019). 1-km monthly mean temperature dataset for china (1901-2020). National Tibetan Plateau Data Center, DOI: 10.11888/Meteoro.tpdc.270961. CSTR: 18406.11. Meteoro.tpdc.270961.

[107] Yang, K., He, J. (2019). China meteorological forcing dataset (1979-2018). National Tibetan Plateau Data Center, DOI: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file.

[108] 王建凯, 王开存, 王普才. 基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J]. 遥感学报, 2007, 11(3):330-339.

[109] 蓝玉良. 基于时空特征的城市热环境优化研究[D]. 武汉: 武汉大学, 2018:1-89.

[110] 汪光焘, 李芬. 推动新型智慧城市建设——新冠肺炎疫情对城市发展的影响和思考[J]. 中国科学院院刊, 2020, 35(08):1024-1031.

[111] 杨雅薇, 陈丽娟, 沈秉璐. 长江流域年降水预测动力-统计降尺度方法及其应用[J]. 大气科学学报, 2021. 44(6):835-848.

[112] Maraun D, M Widmann. Statistical Downscaling and Bias Correction for Climate Research[M]. Cambridge University Press, 2018.

[113] Cheng R, L Novak, T Schneider. Predicting the Interannual Variability of California's Total Annual Precipitation[J]. Geophysical Research Letters, 2021, 48(7):1-13.

[114] Choudhury D, R Mehrotra, A Sharma, et al. Effectiveness of CMIP5 Decadal Experiments for Interannual Rainfall Prediction Over Australia[J]. Water Resources Research, 2019, 55(8):7400-7418.

[115] Fang Y, H Chen, Z Gong, et al. Multi-Scheme Corrected Dynamic-Analogue Prediction of Summer Precipitation in Northeastern China Based on BCC_CSM[J]. Journal of Meteorological Research, 2017, 31(6):1085-1095.

中图分类号:

 X171    

开放日期:

 2022-07-01    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式