- 无标题文档
查看论文信息

论文中文题名:

 平战结合式矿用新型网络应用研究及装备开发    

姓名:

 路建通    

学号:

 18207205054    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 应急通信    

第一导师姓名:

 李文峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-19    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Application Research and Equipment Development of New Type of Mine-used Network Combined With Peacetime and Wartime    

论文中文关键词:

 矿井通信 ; 树形网络 ; 平战结合 ; 网络技术装备 ; 本质安全    

论文外文关键词:

 Mine communication ; Tree network ; Combination of peace and warfare ; Network technology and equipment ; Intrinsically safe    

论文中文摘要:

现阶段,我国煤矿井下通信网络多为工业以太环网,而该通信网络只可应用于日常通信中,这是由于当工业环网的骨干网和通信设备遭到瓦斯、顶板以及机电等煤矿事故破坏后,网络基本瘫痪,无法使其快速恢复,从而导致地面救援中心不能及时获取事故区域信息。且现有的通信设备体积较大,不方便携带和移动,增大了救援难度,因此研究一种平战结合式矿用新型网络以及开发便携通信设备具有重要意义。

论文针对矿下平战结合式的应用需求,在通信网络方面,通过对比总线形、环形及网状形等传统拓扑结构后,选择平时与战时可相结合的树形网络作为骨干网,并且进一步研究了井下应用模型以及“截枝”方案,相比于传统的通信网络,本文采用的树形网络在功能性、可靠性以及扩展性方面均有提高。

在通信设备方面,开发了一款支持树形组网的技术装备,用于井上与井下信息交互。其硬件按照本质安全技术原理设计,满足矿用电气设备的防爆要求,且装备的硬件分单元进行设计,由核心处理单元、以太网传输接口单元、复位单元及供电单元等构成硬件系统。其中,核心处理单元采用“微控制器LPC1788+网络芯片BCM53101”方案,提高了硬件系统的集成度,减小了装备体积和功耗;供电单元采用双重保护电路和两级降压电路为各单元进行供电,提高了硬件系统可靠性;复位单元采用专用芯片使微控制器和网络芯片同时复位,提高了系统上电的稳定性。装备软件采用分层设计方法,系统层采用稳定性高和实时性强的嵌入式操作系统µC/OS-II,并在协议栈LwIP的基础上实现网络设备驱动,应用层实现了DHCP客户端、SNMP Agent、VLAN及LLDP功能。

完成开发的装备体积为162mm×121mm×33mm,对其进行功能、性能以及组网测试,测试结果表明,吞吐率为100%,帧丢失率为0%,时延小于15us,装备满负载功耗小于3W,存储转发速率为100%,光纤传输距离大于10km。装备应用层功能均能正常工作,并支持树形组网和网络拓扑发现,符合论文的预期指标。

论文外文摘要:

At this stage, most of the underground communication network in coal mines in my country is an industrial Ethernet ring network, and this communication network can only be used in daily communications. This is because the backbone network and communication equipment of the industrial ring network suffer from coal mine accidents such as gas, roof, and electromechanical After the destruction, the network was basically paralyzed and unable to recover quickly, which caused the ground rescue center to be unable to obtain information about the accident area in time. In addition, the existing communication equipment is large in size and inconvenient to carry and move, which increases the difficulty of rescue. Therefore, it is of great significance to study a new type of mine-use network combined with peacetime and warfare and to develop portable communication equipment.

Aiming at the application requirements of combined peace and war in the mine, in terms of communication network, after comparing traditional topological structures such as bus, ring and mesh, the thesis adopts a tree network that can be combined in peacetime and wartime as the backbone network, and further study the downhole application model and the "pruning" scheme. Compared with the traditional communication network, the tree network used in this thesis has improved functionality, reliability and scalability.

In terms of communication equipment, a technical equipment supporting tree-shaped networking was developed for information interaction between uphole and downhole. The hardware is designed in accordance with the principle of intrinsic safety technology to meet the explosion-proof requirements of mining electrical equipment, and the hardware sub-units of the equipment are designed. The core processing unit, Ethernet transmission interface unit, reset unit and power supply unit constitute the overall hardware system. Among them, the core processing unit adopts the "microcontroller LPC1788 + network chip BCM53101" solution, which improves the integration of the hardware system and reduces the volume and power consumption of the equipment; the power supply unit uses a dual protection circuit and a two-stage step-down circuit to supply power to each unit to ensure the reliability of the hardware circuit; the reset unit uses a dedicated chip to reset the microcontroller and the network chip at the same time, which improves the stability of the system when it is powered on. The equipment software adopts a layered design method, and the system layer adopts the embedded operating system µC/OS-II with high stability and strong real-time performance, and realizes network device driver based on the protocol stack LwIP. The application layer implements the functions of DHCP client, SNMP Agent, VLAN and LLDP.

The finished equipment has a volume of 162mm×121mm×33mm. test its function, performance and networking, the test results show that the throughput rate is 100%, the frame loss rate is 0, the delay is less than 15us, and the power consumption of the equipment is less than full load. 3W, the storage and forwarding rate is 100%, and the optical fiber transmission distance is greater than 10km. The equipment application layer functions can work normally, and support tree networking and network topology discovery, which meets the expected indicators of the thesis.

参考文献:

[1] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(06):1625-1636.

[2] 宁小亮. 2013—2018年全国煤矿事故规律分析及对策研究[J]. 工矿自动化, 2020, 46(07):34-41.

[3] 本刊编辑部. 借鉴煤矿安全监察经验 提升非煤矿山安全水平[J]. 中国应急管理, 2020(11):44-45.

[4] 徐竞昭. 煤矿安全生产标准化信息系统构建[J]. 陕西煤炭, 2020, 39(06):160-163.

[5] Qi H. Model of Computer Network Topology Optimization Based on Pattern Recognition Technology[J].International Journal of Technology, Management, 2017, 00(06):16-18.

[6] 吕志强. 煤矿井下通信系统的现状及趋势[J]. 中国煤炭, 2014, 40(05):89-92.

[7] 何年春. 煤矿生产调度用的通讯系统[J].煤炭科学技术, 1980(08):34-40+64.

[8] Zientkiewicz J K, Lach Z T. Fiber optics network for the adverse coal mining environment[J]. Proc Spie, 1991, 1366:45-56.

[9] 余少华, 何炜. 光纤通信技术发展综述[J]. 中国科学:信息科学, 2020, 50(09):1361-1376.

[10] 谈仲纬, 吕超. 光纤通信技术发展现状与展望[J]. 中国工程科学, 2020, 22(03):100-107.

[11] Su Y Q, Liang Y, Xu Z. Design of Multi-Functional Gateway in Mine Internet of Things[J]. Advanced Materials Research, 2014, 989-994:4581-4584.

[12] Bistouni F, Jahanshahi M. Reliability-aware ring protection link selection in Ethernet ring mesh networks[J]. Reliability Engineering & System Safety, 2019, 191(11):1-20.

[13] TP Corrêa, Almeida L. Hardware Support to Minimize the End-to-End Delay in Ethernet-Based Ring Networks[J]. Electronics, 2019, 8(10):1097-1112.

[14] 张耀, 周海坤. STP协议原理及其在煤矿网络中的应用[J]. 煤矿安全, 2013, 44(08):102-104.

[15] 吕金泉. 工业以太网分布式环网的设计与实现[D]. 中国科学院大学(工程管理与信息技术学院), 2016.

[16] Kwang-koog, Lee. Faultless Protection Methods in Self-Healing Ethernet Ring Networks[J]. ETRI Journal, 2012, 34(6):816-826.

[17] Tien N X, Rhee J M. RPE: A Seamless Redundancy Protocol for Ethernet Networks[J]. Ieice Transactions on Communications, 2017, 100(05):711-727.

[18] 国家安全监管总局 国家煤矿安监局关于印发《煤矿井下安全避险“六大系统”建设完善基本规范(试行)》的通知[J]. 国家安全生产监督管理总局国家煤矿安全监察局公告, 2011(04):27-34.

[19] 杜达文, 王保民, 张瑾. 模糊综合评价法在煤矿“六大系统”中的应用[J]. 工矿自动化, 2014, 40(04):42-45.

[20] 谭章禄, 马营营, 郝旭光, 等. 智慧矿山标准发展现状及路径分析[J]. 煤炭科学技术, 2019, 47(03):27-34.

[21] Ge X S, Su S, Yu H Y, et al. Smart mine construction based on knowledge engineering and internet of things [J]. International Journal of Performability Engineering, 2018, 14(05):1060-1068.

[22] 吴群英, 蒋林, 王国法, 等. 智慧矿山顶层架构设计及其关键技术[J]. 煤炭科学技术, 2020, 48(07):80-91.

[23] Lars B,Bernd G. Lottermoser.Identification of digital technologies and digitalisation trends in the mining industry[J].International Journal of Mining Science and Technology,2020,30(06):747-757.

[24] 李小四, 马建民, 王莹莹. 智慧矿山建设的演进及发展趋势[J]. 工矿自动化, 2019, 45(09):65-69.

[25] 崔柳, 王占飞, 熊鹰. 神东矿区井下万兆以太环网的设计与应用研究[J]. 中国煤炭, 2017, 43(03):78-83+119.

[26] 张帆, 闫秀秀, 李栋, 等. 矿井EPON生存性与冗余可靠性研究[J]. 煤炭学报, 2016, 41(11):2907-2912.

[27] 孙继平, 钱晓红. 煤矿重特大事故应急救援技术及装备[J]. 煤炭科学技术, 2017, 45(01):112-116+153.

[28] 霍振龙, 张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化, 2020, 46(03):1-5.

[29] 孙继平, 陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化, 2019, 45(10):1-4.

[30] 殷鹏, 肖开泰, 肖长亮, 等.煤矿安全监控系统数据采集方式[J]. 煤矿安全, 2019, 50(08):104-106.

[31] 孙继平. 煤矿井下有线宽带信息传输研究[J]. 工矿自动化, 2013, 39(01):1-5.

[32] 孙继平, 张高敏. 矿井应急通信系统[J]. 工矿自动化, 2019, 45(08):1-5.

[33] 胡青松, 杨维, 丁恩杰, 等. 煤矿应急救援通信技术的现状与趋势[J]. 通信学报, 2019, 40(05):163-179.

[34] 朱世安. 煤矿防爆电器技术发展与探讨[J]. 煤矿安全, 2020,51(10):164-167+172.

[35] 顾义东. 无线Mesh技术在煤矿工作面通信系统中的应用[J]. 工矿自动化, 2014, 40(12):96-98.

[36] 郑学召, 郭行, 郭军, 等. 矿井广播系统及其在煤矿应急通信中的应用探讨[J]. 工矿自动化, 2020, 46(01):32-37.

[37] 黄金鹏, 尚俊娜, 岳克强. 基于ARM与MPU6050的测姿系统设计[J]. 传感器与微系统, 2018, 37(04):101-103+107.

[38] 闫明, 王然风. 基于ARM的矿用带式输送机控制器优化设计[J]. 矿业研究与开发, 2017, 37(09):93-96.

[39] Zeng C Z. Key Matrix Design Based on OLED Display Technology[C]//2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Shenyang, 2020:474-479.

[40] Abbasinezhad-Mood D, Ostad-Sharif A, Nikooghadam M, et al. A Secure and Efficient Key Establishment Scheme for Communications of Smart Meters and Service Providers in Smart Grid[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3):1495-1502.

[41] 朱伟, 王虹, 李首滨, 等. 煤矿采掘装备核心控制技术现状和发展趋势[J]. 煤炭科学技术, 2020, 48(12):153-160.

[42] 杨芳, 焦守荣. 基于TCP/IP协议的除草机器人远程监测系统设计[J]. 农机化研究, 2021, 43(05):240-244.

[43] 赵晓君, 崔建涛. 基于实时的嵌入式TCP/IP协议栈平台设计与实现[J]. 计算机测量与控制, 2014, 22(10):3368-3371.

[44] Yu-tan Li, Hua Zhu, Meng-gang Li, et al. A novel explosion-proof walking system: Twin dual-motor drive tracked units for coal mine rescue robots[J]. Journal of Central South University, 2016, 23(10):2570-2577.

[45] 郑学召, 闫兴, 郭军, 等. 煤矿救灾机器人防爆技术研究[J]. 工矿自动化, 2019, 45(09):13-17.

[46] 刘见中, 王运鹏, 谢斌, 等. 矿用锂离子电池电源防爆保护技术及标准分析[J]. 煤炭科学技术, 2020, 48(09):203-208.

[47] Zhang H, Wang Y, Xu Z, et al. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor[J]. Sensors, 2016, 16(6):867-883.

[48] Liu S, Wu H, Wang C, et al. Inner Intrinsically Safe Criterion and Design Considerations of Buck Converter Based on Equivalent Inductance[J]. Electric Power Components & Systems, 2019, 47(03):1-13.

[49] 张天兴, 夏春华, 刘艺平, 等. 基于单片机控制的矿用大电流高稳定数字本安电源[J]. 煤矿安全, 2018,49(09):144-147.

[50] 牛晓明. 薄煤层液压支架电液控制系统的研究与设计[D].河北工程大学,2014.

[51] 周鑫, 田晔非. 基于DM9161EP的嵌入式光纤以太网传输系统设计[J]. 仪表技术与传感器, 2019(06):42-46.

[52] 张恒. 小保当矿井企业管理网络设计[J]. 煤炭工程, 2021, 53(01):28-32.

[53] 李勇, 范全润, 张顺吉, 等. 动态主机配置协议分析及其在模拟器中的实验设计与仿真[J]. 实验室研究与探索, 2020, 39(03):128-131.

[54] Wang H, Hui W, Wang J, et al. Squeezing the Gap: An Empirical Study on DHCP Performance in a Large-Scale Wireless Network[J]. IEEE/ACM Transactions on Networking, 2020, 28(02):832-845.

[55] Yu G, Zhou L, Zhang S. The technical studies of network fault monitoring based on SNMP[J]. Boletin Tecnico/Technical Bulletin, 2017, 55(16):310-317.

[56] Wang H. Improvement and implementation of Wireless Network Topology System based on SNMP protocol for router equipment[J]. Computer Communications, 2020, 151(01):10-18.

中图分类号:

 TN871    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式