- 无标题文档
查看论文信息

论文中文题名:

 Mg(OH)2-NH4H2PO4复合粉体对煤粉燃烧的抑制机理研究    

姓名:

 路晓宇    

学号:

 20220089005    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体粉尘爆炸与控制    

第一导师姓名:

 王秋红    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on the inhibition mechanism of Mg(OH)2-NH4H2PO4 compound powder on coal combustion    

论文中文关键词:

 煤粉 ; 复合抑制剂 ; 氧化动力学 ; 活性基团    

论文外文关键词:

 Coal ; Compound inhibitor ; Oxidation kinetic ; Active groups    

论文中文摘要:

煤炭作为我国主要的能源,在社会经济发展中具有非常重要的地位,但煤炭在开采过程中,煤燃烧灾害频发,常造成人员伤亡、经济损失、生态破坏等重大问题,严重影响国民经济发展。基于此,众多抑制煤燃烧的手段应运而生,其中,复合抑制剂有着较单一抑制剂更多的优点,是国内外研究抑制煤燃烧的热点方向。本文选取三种变质程度不同的褐煤、气煤和无烟煤作为研究对象,以不同配比的Mg(OH)2-NH4H2PO4复合粉体作为抑制剂,主要开展以下研究:

系统研究了样品的微观表征,发现褐煤的孔隙与裂隙比较明显,最容易与氧分子接触并充分燃烧。通过TG-DSC实验,分析对比了褐煤、气煤和无烟煤的氧化行为,其特征温度点和氧化过程阶段被划分,并基于Coats-Redfern方法,分别计算了褐煤、气煤和无烟煤在150-300 ℃阶段和300-500 ℃阶段的活化能,其中在150-300 ℃阶段的活化能依次为31.58、63.39和75.92 kJ/mol;在300-500 ℃阶段的活化能依次为23.13、27.18和30.19 kJ/mol,可见褐煤的活化能最低,因此褐煤最容易燃烧。同时,分析了添加6种抑制剂的煤粉氧化过程和氧化动力学参数,得到Mg(OH)2-NH4H2PO4复合粉体对煤燃烧过程有明显抑制作用,主要表现为:随着Mg(OH)2-NH4H2PO4复合粉体中Mg(OH)2的增加,三种煤的表观活化能均呈先增大后减小的趋势,在Mg(OH)2-NH4H2PO4复合粉体配比为1:4时达到了最大,说明1:4是Mg(OH)2-NH4H2PO4复合粉体的最佳抑制配比。

通过傅里叶红外变换光谱实验,对原煤样和添加了最佳配比抑制剂煤样的官能团分布特征进行了微观抑制特性研究。发现添加Mg(OH)2-NH4H2PO4复合粉体会降低煤中的羟基、甲基以及亚甲基等活性基团,增加较为稳定的醚键官能团。煤氧化前期,由于NH4H2PO4的主要热分解吸热抑制了煤中羟基的产生,且P2O5能够覆盖在煤粉颗粒表面,使得热源向煤粉颗粒的热辐射或热传递受阻;煤氧化后期,由于Mg(OH)2反应吸收了热量分解,生成的MgO和H2O使得醚键无法继续被氧化,起到抑制作用,并且MgO为多孔层的氧化膜,具有吸附烟气的作用。另外,在煤粉中加入Mg(OH)2-NH4H2PO4复合粉体,会扰乱煤粉颗粒的均匀分布,使得单位体积内煤粉的质量浓度降低,加之抑制剂研磨较小,受热面积增大,分解速度加快,最终致使反应终止。由于低变质程度的褐煤反应活性最低,且含有最多的活性基团,Mg(OH)2-NH4H2PO4(1:4)复合粉体对褐煤的抑制效果最好,气煤次之,最后是无烟煤。

本研究揭示了Mg(OH)2-NH4H2PO4复合粉体对三种不同变质程度煤燃烧的影响,将为预防矿井火灾提供基础数据。

论文外文摘要:

As the main energy source in China, coal plays a crucial role in the country's socio-economic development. However, during the process of coal mining and combustion, frequent coal combustion disasters often result in significant problems such as casualties, economic losses, and ecological damage, seriously affecting national economic development. In light of this, numerous methods to inhibit coal combustion have emerged, among which compound inhibitors have more advantages than single inhibitors and have become a hot research direction both domestically and internationally. In this article, three types of coal with different degrees of metamorphism, namely lignite coal, gas coal, and anthracite, were selected as research objects, and using Mg(OH)2-NH4H2PO4 compound powders with different ratios as inhibitors. The main research was as follows:

Microscopic characterization of the samples was systematically studied, and it was found that the pores and cracks of lignite coal were more obvious, making it easier for oxygen molecules to come into contact and fully combust. By conducting TG-DSC experiments, the oxidation behaviors of lignite coal, gas coal, and anthracite were analyzed and compared. Their characteristic temperature points and oxidation process stages were identified, and based on the Coats-Redfern method, the activation energies of the three types of coal were calculated in the temperature ranges of 150-300 ℃ and 300-500 ℃, respectively. The activation energies of lignite coal in the temperature ranges of 150-300 ℃ and 300-500 ℃ were 31.58, 63.39, 75.92 kJ/mol, and 23.13, 27.18, 30.19 kJ/mol, respectively. It can be seen that the activation energy of lignite coal was the lowest, indicating that it was the easiest to combust. Furthermore, the oxidation process and kinetic parameters of coal powder with six inhibitors were analyzed. It was found that the Mg(OH)2-NH4H2PO4 compound powder has a significant inhibitory effect on the coal combustion process. Specifically, with the increase of Mg(OH)2 content in the compound powder, the apparent activation energies of the three types of coal first increased and then decreased. The maximum inhibition effect was achieved at a ratio of 1:4, indicating that this is the optimal ratio for the Mg(OH)2-NH4H2PO4 compound powder.

Microscopic inhibition characteristics of the functional group distribution of raw coal samples and coal samples with the optimal ratio of inhibitor were studied through Fourier transform infrared spectroscopy experiments. It was found that adding Mg(OH)2-NH4H2PO4 compound powder can decrease the active groups such as hydroxyl, methyl, and methylene in coal, and increase relatively stable ether functional groups. In the early stage of coal oxidation, the main exothermic decomposition of NH4H2PO4 suppressed the production of hydroxyl groups in coal, and P2O5 can cover the surface of coal particles, obstructing thermal radiation or heat transfer to coal particles. In the later stage of coal oxidation, the exothermic reaction of Mg(OH)2 absorbed heat and generates MgO and H2O, which prevented further oxidation of ether bonds, and MgO formed a porous oxide film with adsorption of smoke gas. Additionally, adding Mg(OH)2-NH4H2PO4 compound powder to coal powder disturbed the even distribution of coal particles, resulting in a decrease in the mass concentration of coal powder per unit volume. Furthermore, due to the smaller size of the inhibitor particles, the heat transfer area increased, and the decomposition rate accelerated, ultimately leading to the termination of the reaction. Due to the low reactivity and the highest content of active groups in low-grade metamorphic lignite coal, the Mg(OH)2-NH4H2PO4(1:4) compound powder had the best inhibitory effect on lignite coal, followed by gas coal and then anthracite.

This study revealed the influence of Mg(OH)2-NH4H2PO4 compound powder on the combustion of three different degrees of metamorphic coal, and would provide fundamental data for preventing mine fires.

参考文献:

[1] 王小洋, 李先国. 能源革命背景下我国煤炭运输通道的发展趋势及对策[J]. 2019, 33(10), 67-75.

[2] 王师节. 我国煤炭安全形势与国外发达国家的差距分析[J].中国煤炭工业,2018(05):68-70.

[3] 李胜利,焦博朋. 如何做好煤矿矿井防灭火[J]. 内蒙古煤炭经济. 2020, 306(13):120-121.

[4] 曹心愚. 基于煤矿矿井火灾的预防与治理技术的研究[J]. 2013, 35-98.

[5] 张世龙, 张民波, 朱仁豪, 等. 近5年我国煤矿事故特征分析及防治对策[J]. 煤炭与化工, 2021, 44(08), 101-106+109.

[6] 陈娟, 赵耀江. 近十年来我国煤矿事故统计分析及启示[J]. 煤炭工程. 2012(03), 3, 137-139.

[7] Wang L, Cheng Y P, Liu H Y. An analysis of fatal gas accidents in Chinese coal mines[J]. Safety Science. 2014, 62, 107-113.

[8] 蒋新生, 杜扬, 高建丰, 等. 受限空间可燃气体爆炸抑爆实验系统研究[J]. 后勤工程学院学报. 2007(02), 97-100+104.

[9] 白子明. 防治煤自燃的微胶囊化复合阻化剂研究[D]. 中国矿业大学, 2019.

[10] Wen H, Liu Y, Guo J, et al. A multi-index-classified early warning method for spontaneous combustion of coal under air leakage blocking. Int J Oil, Gas Coal Technol. 2021, 27, 208–26.

[11] Zhang Y T, Li Y Q, Huang Y, et al. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology. J Therm Anal Calorim. 2018, 131, 2963–74.

[12] Zhang Y T, Liu Y R, Shi X Q, et al. Risk evaluation of coal spontaneous combustion on the basis of autoignition temperature. Fuel. 2018, 233, 68–76.

[13] Zhang Y T, Yang C P, Li Y Q, et al. Ultrasonic extraction and oxidation characteristics of

functional groups during coal spontaneous combustion. Fuel. 2019, 242, 287–94.

[14] Guo J, Yan H, Liu Y, et al. Preventing spontaneous combustion of coal from damaging ecological environment based on thermogravimetric analysis. Appl Ecol Env Res. 2019, 17, 9051–64.

[15] Chen X K, Ma T, Zhai X W, et al. Spontaneous combustion characteristics of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. Combust Sci Technol. 2021, 193, 967–86.

[16] Biswas S, Choudhury N, Sarkar P, et al. Studies on the combustion behaviour of blends of Indian coals by TGA and Drop Tube Furnace[J]. Fuel Processing Technology. 2006, 87(3), 191-199.

[17] Mohalik N K. A study of the spontaneous heating if Indian coals[J]. University of Nottingham. 2013.

[18] Mohalik N K, Lester E, Lowndes I S. Application of TG technique to determine spontaneous heating propensity of coals[J]. Journal of Thermal Analysis and Calorimetry. 2020, 143(5), 185–201.

[19] Wang K, Deng J, Zhang Y N, et al. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG–FTIR and in situ IR analysis. Journal of Thermal Analysis and Calorimetry. 2018, 132, 591–598.

[20] Xu Q, Yang S Q, Yang W M, et al. Secondary oxidation of crushed coal based on free radicals and active groups, Fuel. 2021, 290, 120051.

[21] Wang C, Xiao Y, Li Q, et al. Free radicals, apparent activation energy, and functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi[J]. 矿业科学技术学报:英文版. 2018, 028(003), 469-475.

[22] Zhang Y, Yang C, Li Y, et al. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel. 2019, 242, 287–94.

[23] Mo W L, Wu Z F, He X Q, et al. Functional group characteristics and pyrolysis/combustion performance of fly ashes from Karamay oily sludge based on FT-IR and TG-DTG analyses. Fuel. 2021, 296, 120669.

[24] Fan H H, Wang K, Zhai X W, et al. Combustion kinetics and mechanism of pre-oxidized coal with different oxygen concentrations. ACS Omega. 2021, 6, 19170–82.

[25] Chen D D, Bu C S, Wang X Y, et al. Gasification and combustion kinetics of a high-ash-fusiontemperature coal using thermogravimetric analysis. J Therm Anal Calorim. 2021, 143, 3209–20.

[26] Liu Y H, Wang C, Che D. Ignition and kinetics analysis of coal combustion in low oxygen concentration[J]. Energy Sources Part A-recovery Utilization and Environmental Effects. 2012, 34, 810-819.

[27] Yi X, Xiao Y, Lü H F, et al. Thermokinetic behavior and microcharacterization during the spontaneous combustion of 1/3 coking coal. Combustion Science and Technology. 2019, 191:10, 1769-1788.

[28] 王秋红, 马超, 刘著, 等. 3种烟煤燃烧动力学特性对比分析[J]. 西安科技大学学报. 2022, 42(01), 22-32.

[29] 邓军, 赵婧昱, 张嬿妮, 等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报. 2016, 41(5), 1164-1172.

[30] 王萌. 煤样二次氧化过程中自燃特性规律研究[J]. 中州煤炭. 2014(1), 51-53.

[31] 谭波, 徐斌, 胡明明等. 不同变质程度煤在氧化过程中的表面官能团红外光谱定量分析[J]. 中南大学学报(自然科学版). 2019, 50(11), 2886-2895.

[32] 姬玉成, 张英华, 黄志安等. 褐煤低温氧化分子结构单元变化特性[J]. 中南大学学报(自然科学版). 2020, 51(09), 2614-2623.

[33] 梁昌鸿, 梁伟强, 李伍. 基于傅里叶红外光谱不同煤阶煤的官能团研究[J]. 煤炭科学技术. 2020, 48(S1), 182-186.

[34] 许起, 钟凯琪, 韩文智.褐煤氧化过程官能团变化特性研究[J]. 煤炭工程. 2022, 54(05), 152-158.

[35] Zhou S H, Fu B, Jian L. Experimental study on the dust filtration performance with participation of water mist[J]. Process Safety and Environmental Protection. 2017, 109, 357–364.

[36] Wang Q H, Wen H, Wang Q S, et al. Inhibiting effect of Al(OH)3 and Mg(OH)2 dust on the explosions of methane-air mixtures in closed vessel[J]. 中国科学:技术科学(英文版). 2012, 055, 1371-1375.

[37] Wei L J, Su M Q, Wang K, et al. Suppression effects of ABC powder on explosion characteristics of hybrid C2H4/polyethylene dust. Fuel. 2022, 122159.

[38] Luo Z M, Wang T, Tian Z H, et al. Experimental study on the suppression of gas explosion using the gas–solid suppressant of CO2/ABC powder[J]. Journal of Loss Prevention in the Process Industries. 2014, 30, 17–23.

[39] Zhou J H, Li B, Ma D Q, et al. Suppression of nano-polymethyl methacrylate dust explosions by ABC powder[J]. Process Safety and Environmental Protection. 2019, 122, 144-152.

[40] Zhao Q, Chen X F, Yang M J, et al. Suppression characteristics and mechanisms of ABC powder on methane/coal dust compound deflagration. Fuel. 2021, 298, 120831.

[41] Liu Z Q, Zhou G, Song S Z, et al. Synthesis and characteristic analysis of coal dust explosion suppressant based on surface modification of ammonium dihydrogen phosphate with methyl hydrogen-containing silicone oil. Journal of Loss Prevention in the Process Industries. 2020, 64, 104059.

[42] 张辛亥, 于胜坤, 康凯. P2O5 粉体抑制瓦斯爆炸的实验研究[J]. 煤炭技术. 2015, 34(12), 179-181.

[43] 戴晓静. 磷酸二氢盐抑爆剂的制备与抑爆作用研究[D]. 南京理工大学. 2013.

[44] 白俊红. 改性超细氢氧化镁阻燃剂的制备[D]. 中北大学. 2014.

[45] 苑会林, 张立新. 软质PVC阻燃抑烟的研究[J]. 聚氯乙烯. 2005(5), 21-25.

[46] 邓军, 田志辉, 罗振敏, 等. Mg(OH)2/CO2抑爆瓦斯实验研究[J]. 煤矿安全. 2013, 44(10): 4-6.

[47] 王秋红, 邓军, 罗振敏, 等. 超细氢氧化镁粉体抑制甲烷-空气混合物爆炸效能研究[J].中国安全科学学报. 2014, 24(12), 33-37.

[48] 文虎, 王秋红, 邓军, 等. 超细Al(OH)3粉体浓度对甲烷爆炸压力的影响[J]. 煤炭学报. 2009, 34(11), 1479-1482.

[49] 文虎, 王秋红, 罗振敏, 等. 超细Al(OH)3粉体抑制甲烷爆炸的实验研究[J]. 西安科技大学学报. 2009, 29(4), 388-390+395.

[50] Du D X, Shen X H, Feng L, et al. Efficiency characterization of fire extinguishing compound superfine powder containing Mg(OH)2[J]. Journal of Loss Prevention in the Process Industries. 2019, 57, 73-80.

[51] 杜德旭, 沈晓辉, 冯立, 等. 复合超细干粉灭火剂灭火性能研究[J]. 中国安全科学学报. 2018, 28(2), 69-74.

[52] Amyotte P R, Pegg M J, Khan F I. Application of inherent safety principles to dust explosion prevention and mitigation[J]. Process Safety and Environmental Protection. 2009, 87(1), 35-39.

[53] Gao D D, Wen X, Guan Y Y, et al. Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites. Composites Communications. 2020, 17, 170-176.

[54] Feng Y Z, He C G, Wen Y F, et al. Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene[J]. Journal of Hazardous Materials. 2018, 346, 140–151.

[55] Wang Q H, Shen Z Y, Jiang J C, et al. Suppression effects of ammonium dihydrogen phosphate dry powder and melamine pyrophosphate powder on an aluminium dust cloud explosion [J]. Journal of Loss Prevention in the Process Industries. 2020, 68, 104312.

[56] Zhang Y M, Wang Y, Meng X Q, et al. The Suppression Characteristics of NH4H2PO4/Red Mud Composite Powders on Methane Explosion[J]. Applied Sciences. 2018, 8(9), 1433.

[57] Zhao P P, Guo C G, Li L P. Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites[J]. Construction and Building Materials. 2018,170, 193–199.

[58] 颜龙, 徐志胜, 徐彧, 等. 典型硼化合物与磷酸二氢铵协效阻燃松木的燃烧性能及热解动力学研究[J]. 中国安全生产科学技术. 2015, 11(03), 19-23.

[59] 崔飞, 颜龙. 磷酸二氢铵与硼酸对木材的阻燃和抑烟作用[J]. 消防科学与技术. 2018, 37(04), 523-526.

[60] 裴凤娟, 胡双启, 叶亚明, 等. 粉末阻燃剂对钛粉燃烧抑制的实验研究[J]. 无机盐工业. 2017, 49(04), 61-63.

[61] 姜峰, 孙雯倩, 李珍宝, 等.复合阻化剂抑制煤自燃过程的阶段阻化特性[J]. 煤炭科学技术. 2022, 1-8.

[62] 陈建江. 我国磷系阻燃剂的应用和发展[J]. 2021, 21, 166-167.

[63] 杨凯. 协效成炭剂在PE-HD膨胀阻燃体系中的协同作用研究[D]. 西南科技大学. 2010.

[64] 何爱晓. 有机硅树脂改性氢氧化镁及应用研究[D]. 兰州大学. 2017.

[65] Wang Q H, Jiang X X, Deng J, et al. Analysis of the effectiveness of Mg(OH)2/NH4H2PO4 composite dry powder in suppressing methane explosion. Powder Technology. 2023, 118255.

[66] 王亮, 程远平, 聂政, 等. 巨厚火成岩对煤层瓦斯赋存及突出灾害的影响[J]. 中国矿业大学学报. 2011, 40(1), 29-34.

[67] 滕英跃, 宋银敏, 李阳, 等. 胜利褐煤半焦显微结构及其燃烧反应性能[J]. 煤炭学报. 2015, 40(2), 456-462.

[68] 沈冰洁, 黄婕, 曹银平, 等. 低温氧化过程中煤的宏观特性与微观结构变化[J]. 华东理工大学学报. 2021, 47(1), 17-25.

[69] 张静, 吴国光, 孟献梁, 等. 褐煤自燃机理及阻化剂防自燃技术进展[J]. 能源技术与管理. 2011, 06, 66-68.

[70] 徐精彩. 煤自燃危险区域判定理论[M]. 北京: 煤炭工业出版社. 2011.

[71] 邓军, 李亚清, 张玉涛, 等. 羟基(-OH)对煤自燃侧链活性基团氧化反应特性的影响[J]. 煤炭学报. 2020, 45(1), 232-240.

[72] Liu S, Zhao H, Liu X L, et al. Effect of a combined process on pyrolysis behavior of huolinhe lignite and its kinetic analysis[J]. Fuel. 2020, 279, 118485.

[73] Wang Q H, Lu X Y, Ma C, et al. Comparative study of the kinetic characteristics of coal spontaneous combustion[J]. Journal of Thermal Analysis and Calorimetry. 2023, 12028.

[74] Wiktofssofl L P, Wanzl W. Kinetic parameter for coal pyrolysis at low and high heating rates-a comparison of data from different laboratory equipment[J]. Fuel. 2000, 79(6), 701-716.

[75] 覃小玲, 李晓泉. NH4H2PO4对蔗糖粉尘爆炸的抑制作用试验研究[J]. 中国安全科学学报. 2020, 30(04), 41-46.

[76] 覃小玲, 李晓泉. NH4H2PO4对蔗糖粉尘云最低着火温度的影响研究[J]. 中国安全科学学报. 2019, 29(12), 66-71.

[77] Vyazovkin S, Burnham A K, Criado J M, et al. 2011. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 520, 1–19.

[78] Wang Q H, Lu X Y, Ma C, et al. 2023. Comparative study of the kinetic characteristics of coal spontaneous combustion. Journal of Thermal Analysis and Calorimetry. 12028.

[79] 孙雯倩. 复合阻化剂抑制煤自燃过程的阶段阻化特性[D]. 兰州理工大学. 2021.

[80] Qi H, Sun R, Peng J, et al. Experimental investigation on the ignition and combustion characteristics of pyrolyzed char and bituminous coal blends[J]. Fuel. 2020, 281, 118732.

[81] 肖旸, 吕慧菲, 任帅京, 等. 咪唑类离子液体抑制煤自燃特性的研究[J]. 中国矿业大学学报. 2019, 48(1), 175-181.

[82] Chu R Z, Wu J X, Meng X L, et al. Inhibition mechanism of spontaneous combustion by nano-sized complex inhibitor for Chinese lignite in low-temperature oxidation[J]. Chemical Engineering Communications. 2021, 1680373.

[83] 王烽. 绿色环保型复合阻化剂抑制煤自燃实验研究[D]. 中国矿业大学. 2018.

[84] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析. 第3版[M]. 化学工业出版社. 2016.

[85] 张进, 胡芸, 周罗雄, 等. 近红外光谱分析中的化学计量学算法研究新进展[J]. 分析测试学报. 2020, 39(10), 1196-1203.

[86] 王凯. 陕北侏罗纪煤低温氧化反应性及动力学研究[D]. 西安科技大学. 2015.

[87] Chen Y Y, Maria M, Arndt S. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology. 2012, 104, 22-33.

[88] Niu Z, Liu G, Yin H, et al. Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR[J]. Fuel. 2016, 172, 1-10.

中图分类号:

 X932/TD753    

开放日期:

 2025-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式