- 无标题文档
查看论文信息

题名:

 伺服电机自动转向系统动力学特性及转向分层控制研究    

作者:

 张新乾    

学号:

 20105016011    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 080204    

学科:

 工学 - 机械工程 - 车辆工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 车辆系统动力学与控制    

导师姓名:

 寇发荣    

导师单位:

 西安科技大学    

提交日期:

 2024-07-01    

答辩日期:

 2024-06-01    

外文题名:

 Study on Dynamic Characteristics and Steering Hierarchical Control of Servo Motor Automatic Steering System    

关键词:

 伺服电机自动转向系统 ; 动力学等效结构 ; 投影关系 ; 传动比函数 ; 转向分层控制    

外文关键词:

 Servo Motor Automatic Steering System ; Dynamic Equivalent Structure ; Projection Relationship ; Transmission Ratio Function ; Steering Hierarchical Control    

摘要:

智能汽车横向运动控制要求转向系统能够及时精确地输出转向角跟踪道路曲率。但目前智能汽车横向运动控制普遍以前轮转向角作为控制目标,忽略了转向系统操纵车辆的中间过程,此种作法除不符合车辆结构实际外,还会降低车辆跟踪道路曲率精度。论文以伺服电机自动转向系统为研究对象,通过建立转向系统动力学等效模型,分析前轮-主销转向特点,优化转向传动机构结构参数,提出转向分层控制算法,控制伺服电机自动转向系统实现智能汽车路径跟踪。
针对转向系统动力学建模不考虑转向梯形几何运动导致转向系统动力学模型精度降低的问题,分析伺服电机自动转向系统传动机构部件运动状态,建立伺服电机自动转向系统动力学等效模型。根据伺服电机自动转向系统物理结构等效出系统的刚度-阻尼-质量结构。对转向传动机构杆系进行几何计算,推导出传动比函数,利用传动比函数计算出前轮转向角与广义回正力矩。采用拉格朗日方程,结合传动比函数,推导出伺服电机自动转向系统动力学方程。Adams/View仿真结果表明:该动力学等效模型能够揭示转向系统非线性传动特性,能够以单自由度分别输出左、右前轮转向角。
忽略车轮定位参数以前轮绕主销转角代替转向角,将导致计算出的转向角不精确,影响转向传动机构的优化精度。针对此问题,通过分析前轮-主销的空间运动关系,构建出前轮转向角计算模型。通过建立局部坐标系与全局坐标系,计算出前轮-主销定位参数投影坐标与轮心绕主销的运动轨迹。采用平移与旋转矩阵,将轮心运动轨迹变换并投影到水平面,从而利用向量夹角公式计算出前轮绕主销转角与转向角间的函数关系。Adams/Car仿真结果表明:主销参数变化不大的情况下,前轮绕主销转角与转向角间的轮-销传动比为定值,通过此传动比可计算出较为精确的转向角。
将转向传动机构当作平面机构优化会导致优化后机构输出的转向角与目标转向角仍具有较大误差。针对此问题,结合转向梯形主销与当量转向梯形间的空间投影关系,对伺服电机自动转系统传动机构进行参数优化。以当量转向梯形推导出转向特征方程作为参数优化的对象。通过分析主销轴线所在的空间四棱锥与转向梯形平面的投影关系确定出优化参数。计算约束条件,利用主销参数、阿克曼率修正阿克曼方程作为目标函数。设计加权均方差作为评价函数,设计分段函数作为适应度函数,采用遗传算法对转向特征方程进行参数优化。优化结果的误差分析表明:主销参数对转向传动机构结构参数与目标函数的计算、转向特征方程的优化均有较大影响,考虑主销参数、主销与转向梯形间的投影关系可提高转向传动机构的精度。
忽略转向系统以转向角作为控制目标进行车辆路径跟踪控制,不符合车辆实际结构,也会降低车辆路径跟踪精度。针对此问题,耦合转向系统与车辆模型,模拟驾驶员操纵转向系统的行为,提出伺服电机自动转向系统转向分层控制算法。通过建立车辆预测模型、添加约束条件、优化求解目标函数,建立上层MPC控制器,模拟驾驶员观察与判断车-路关系,输出期望前轮转向角。利用转向回正力矩耦合车辆模型与转向系统模型,利用车-路误差模型与理想转向角模型,建立转向系统下层拟人控器,模拟驾驶员操纵与微调转向盘的行为,输出实际转向角度跟踪理想转向角度。Simulink与CarSim联合仿真结果表明:该控制算法在不同车速与道路曲率条件下能够控制伺服电机自动转向系统跟踪理想转向角。
为验证所设计转向分层控制算法的有效性与精确性,开展伺服电机自动转向系统台架试验。采用频率响应法,对伺服电机自动转向系统进行参数辨识,获取系统阻尼比、无阻尼自然频率;通过阶跃响应试验与速度控制试验验证伺服电机自动转向系统动力学等效模型的正确性与精确性;分别在 20 km/h、50 km/h、80 km/h车速条件下,开展转向分层控制算法对定曲率与变曲率路径理想转向角的跟踪试验,验证伺服电机自动转向系统动力学等效模型的精确性和转向分层控制算法的有效性。

外文摘要:

The lateral motion control of intelligent vehicles requires the steering system to output steering angles accurately and timely to track road curvature. However, the current common practice in lateral motion control of intelligent vehicles is to use the front wheel steering angle as the control target, ignoring the intermediate process of vehicle manipulation by the steering system. This approach not only does not conform to the actual vehicle structure but also reduces the accuracy of vehicle tracking road curvature. This dissertation takes the automatic steering system of servo motors as the research object. By establishing a dynamic equivalent model of the steering system, analyzing the steering characteristics of the front wheel and kingpin, optimizing the structural parameters of the steering transmission mechanism, and proposing a steering hierarchical control algorithm, the automatic steering system of servo motors is controlled to achieve path tracking for intelligent vehicles.
To address the issue of reduced accuracy in steering system dynamics models due to the neglect of the geometric movement of the steering trapezoid, the motion states of the transmission mechanism components is analyzed and the equivalent dynamics model for the servo motor automatic steering system is established. Based on the physical structure of the servo motor automatic steering system, the stiffness-damping-mass structure of the system is equivalent. The geometric calculation of the steering transmission mechanism rods are carried out, and the transmission ratio function is derived. The transmission ratio function is used to calculate the front wheel steering angle and the generalized aligning torque. Using Lagrange's equation and combining with the transmission ratio function, the dynamic equation of the servo motor automatic steering system is derived. Adams/View simulation shows that this dynamic equivalent model can reveal the nonlinear transmission characteristics of the steering system, and can output left and right front wheel steering angles with a single degree of freedom.
Ignoring the wheel alignment parameters and replacing the steering angle with the angle of the front wheel rotating around the kingpin will lead to inaccurate calculation of the steering angle, affecting the optimization accuracy of the steering transmission mechanism. To address this issue, by analyzing the spatial motion relationship between the front wheel and the kingpin, a calculation model for the front wheel steering angle is constructed. By establishing a local coordinate system and a global coordinate system, the projection coordinates of the positioning parameters of the front wheel and the kingpin are calculated, and the motion trajectory of the wheel center around the kingpin is calculated. Using translation and rotation matrices, the motion trajectory of the wheel center is transformed and projected onto a horizontal plane, so that the functional relationship between the rotation angle of the front wheel around the kingpin and the steering angle can be calculated using the vector angle formula. Adams/Car simulation results show that under the condition of small changes in the kingpin parameters, the wheel-to-kingpin transmission ratio between the rotation angle of the front wheel around the kingpin and the steering angle is a constant value, which can be used to calculate a more accurate steering angle.
Treating the steering transmission mechanism as a planar mechanism for optimization can result in errors between the optimized steering angle output and the target steering angle. To address this issue, parameter optimization of the servo motor automatic steering system transmission mechanism is conducted by considering the spatial projection relationship between the kingpin and the equivalent steering trapezoid. The steering characteristic equation derived from the equivalent steering trapezoid is used as the object of parameter optimization. The optimization parameters are determined by analyzing the projection relationship between the space pyramid where the kingpin axis is located and the steering trapezoid plane. The calculation constraints are analyzed, and the Ackermann equation is modified using the kingpin parameters and Ackermann rate as the objective function. The weighted mean square error is designed as the evaluation function, and the piecewise function is designed as the fitness function. The genetic algorithm is used to optimize the parameters of the steering characteristic equation. The error analysis of the optimization results shows that the kingpin parameters have a significant impact on the calculation of structural parameters and objective functions of the steering transmission mechanism, as well as on the optimization of the steering characteristic equation. Considering the projection relationship between the kingpin parameters and the steering trapezoid can improve the accuracy of the steering transmission mechanism.
Ignoring the steering system but using steering angle as the control target for vehicle path tracking control does not align with the actual vehicle structure and can also reduce the accuracy of vehicle path tracking. To address this issue, a steering system hierarchical control algorithm for servo motor automatic steering systems is proposed by coupling the steering system with the vehicle model and simulating the driver's steering system manipulation behavior. The control algorithm integrates the steering system with the vehicle model, simulates the driver's actions in manipulating the steering system. By establishing a vehicle prediction model, adding constraints, optimizing the objective function, and establishing an upper-level MPC controller, the control algorithm simulates the driver's observation and judgment of the relationship between the vehicle and the road, and outputs the desired front wheel steering angle.The generalized aligning torquee is used to couple the vehicle model and the steering system model, and the vehicle-road error model and the ideal steering angle model are used to establish a lower-level human-like controller for the steering system. This controller simulates the driver's actions in manipulating and fine-tuning the steering wheel, and outputs the actual steering angle to track the ideal steering angle. Simulink and CarSim co-simulation show that this control algorithm can control the servo motor automatic steering system to track the ideal steering angle under different vehicle speeds and road curvature conditions.
To verify the effectiveness and accuracy of the steering hierarchical control algorithm, a bench test of the servo motor automatic steering system is conducted. Using frequency response method, the parameters of the servo motor automatic steering system are identified to obtain the system damping ratio and undamped natural frequency. The correctness and accuracy of the dynamic equivalent model of the servo motor automatic steering system are verified through step response test and speed control test. The tracking test of the ideal steering angle for constant curvature and variable curvature paths is conducted at vehicle speeds of 20 km/h, 50 km/h, and 80 km/h, respectively, to verify the accuracy of the dynamic equivalent model of the servo motor automatic steering system and the effectiveness of the steering hierarchical control algorithm.

参考文献:

[1]中华人民共和国国家发展和改革委员会. 智能汽车创新发展战略[EB/OL]. [2020-02-24]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202002/t20200224_1221077.html.

[2]中华人民共和国中央人民政府国务院办公厅. 新能源汽车产业发展规划 (2021—2035年) [EB/OL]. [2020-11-02]. https://www.gov.cn/zhengce/zhengceku/2020-11/02/content_5556716.htm?ivk_sa=1023197a.

[3]中华人民共和国中央人民政府工业和信息化部, 国家标准化管理委员会. 国家车联网产业标准体系建设指南 (智能网联汽车) (2023版)[EB/OL]. [2023-07-18]. https://www.gov.cn/zhengce/zhengceku/202307/content_6894735.htm.

[4]王晓, 张翔宇, 周锐, 等. 基于平行测试的认知自动驾驶智能架构研究[J]. 自动化学报, 2024, 50(2): 356-371.

[5]王浩宇, 左志强, 邓宇翔, 等. 无人驾驶车辆运动控制综述[J/OL]. 控制理论与应用, [2024-03-20]. http://kns.cnki.net/kcms/detail/44.1240.TP.20231214.0029.006.html.

[6]Hwang Y, Kang C M, Kim W. Robust nonlinear control using barrier Lyapunov function under lateral offset error constraint for lateral control of autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(2): 1565-1571.

[7]王震坡, 黎小慧, 孙逢春. 产业融合背景下的新能源汽车技术发展趋势[J]. 北京理工大学学报, 2020, 40(1): 1-10.

[8]Liang X, Zhao L, Wang Q, et al. A novel steering-by-wire system with road sense adaptive friction compensation[J]. Mechanical Systems and Signal Processing, 2022, 169: 108741.

[9]罗建南, 朱光钰, 杨浩瀚, 等. 线控转向系统的前轮转角跟踪策略研究[J]. 机械工程学报, 2019, 55(22): 165-173.

[10]Ye Q, Wang R, Cai Y, et al. The stability and accuracy analysis of automatic steering system with time delay[J]. ISA Transactions, 2020, 31(9): 278-286.

[11]屈翔, 陈豪, 张君. 车辆线控转向系统关键技术研究综述[J]. 重庆理工大学学报 (自然科学), 2023, 37(8): 74-84.

[12]Guo C S, Sentouh C, Popieul J C, et al. Predictive shared steering control for driver override in automated driving: A simulator study[J]. Transportation research Part F: Traffic psychology and behaviour, 2019, 21(2): 326-336.

[13]中国汽车工程学会. 节能与新能源汽车技术路线图2.0[M]. 北京: 机械工业出版社, 2020: 2+225.

[14]GB/T 40429-2021, 汽车驾驶自动化分级[S]. 北京: 中国标准出版社, 2021.

[15]孟志军, 王昊, 付卫强, 等. 农业装备自动驾驶技术研究现状与展望[J]. 农业机械学报, 2023, 54(10): 1-24.

[16]赵志慧, 王兰英. 自动驾驶车辆及其控制方法、装置及存储介质、电子设备[P]. 中国专利: 113562064A, 2021-10-29.

[17]Huang C, Li L. Architectural design and analysis of a steer-by-wire system in view of functional safety concept[J]. Reliability engineering & system safety, 2020, 198: 106822.

[18]国家统计局. 民用汽车拥有量(2023)[EB/OL]. https://data.stats.gov.cn/search.htm?s=%E6%B1%BD%E8%BD%A6.

[19]李克强, 罗禹贡, 郭景华. 先进车辆系统动力学与控制[M]. 武汉: 华中科技大学出版社, 2021: 139-142.

[20]白国星, 孟宇, 刘立, 等. 无人驾驶车辆路径跟踪控制研究现状[J]. 工程科学学报, 2021, 43(4): 475-485.

[21]Song J, Zhang W, Wu X, et al. Laser-based SLAM automatic parallel parking path planning and tracking for passenger vehicle[J]. IET Intelligent transport systems, 2019, 13(10): 1557-1568.

[22]Ye H, Jiang H, Ma S, et al. Linear model predictive control of automatic parking path tracking with soft constraints[J]. International journal of advanced robotic systems, 2019, 16(3): 1-13.

[23]Zhang J, Shi Z, Yang X, et al. Trajectory planning and tracking control for autonomous parallel parking of a non-holonomic vehicle[J]. Measurement and Control, 2020, 53(9-10): 1800-1816.

[24]Sun C, Zhang X, Xi L, et al. Design of a path-tracking steering controller for autonomous vehicles[J]. Energies, 2018, 11(6): 1451.

[25]周维, 过学迅, 裴晓飞, 等. 基于RRT与MPC的智能车辆路径规划与跟踪控制研究[J]. 汽车工程, 2020, 42(9): 1151-1158.

[26]冀杰, 唐志荣, 吴明阳, 等. 面向车道变换的路径规划及模型预测轨迹跟踪[J]. 中国公路学报, 2018, 31(4): 172-179.

[27]Wei S, Zou Y, Zhang X, et al. An integrated longitudinal and lateral vehicle following control system with radar and vehicle-to-vehicle communication[J]. IEEE Transactions on vehicular technology, 2019, 68(2): 1116-1127.

[28]He Z, Nie L, Yin Z, et al. A two-layer controller for lateral path tracking control of autonomous vehicles[J]. Sensors, 2020, 20(13): 3689.

[29]DOUMIATIM, VICTORINO A C, CHARARA A, et al. Onboard real-time estimation of vehicle lateral tire-road force sand sideslip angle[J]. IEEE/ASME Transactions on mechatronics, 2011, 16(4): 601-614.

[30]Bhardwaj A, Slavin D, Walsh J, et al. Estimation and decomposition of rack force for driving on uneven roads[J]. Control engineering practice, 2021, 28(9): 1-12.

[31]Chugh T, Bruzelius F, Klomp M, et al. Steering feedback transparency using rack force observer[J]. IEEE/ASME Transactions on mechatronics, 2022, 27(5): 3853-3864.

[32]Chen G, Zhao X, Gao Z, et al. Dynamic drifting control for general path tracking of autonomous vehicles[J]. IEEE Transactions on intelligent vehicles, 2023, 8(3): 2527-2537.

[33]赵万忠, 张寒, 邹松春, 等. 线控转向系统控制技术综述[J]. 汽车安全与节能学报, 2021, 12(1): 18-34.

[34]Zhang X, Kou F, Wang G, et al. Computation and optimization of rack and pinion steering mechanism considering kingpin parameters and tire side slip angle[J]. Journal of mechanical science and technology, 2023, 37(1): 81-94.

[35]Slibar A, Paslay P R. Behavior of vehicles subjected to wind gusts[J]. Archive of Applied Mechanics, 1959, 28(1): 313-326.

[36]Segel L. On the lateral stability and control of the automobile as influenced by the dynamics of the steering system[J]. Journal of Engineering for Industry, 1966, 88(3): 283.

[37]Badawy A, Zuraski J, Bolourchi F, et al. Modeling and analysis of an electric power steering system[R]. Detroit: SAE Technical Paper, 1999.

[38]Zaremba A, Davis R I. Dynamic analysis and stability of a power assist steering system[C]//Proceedings of 1995 American Control Conference-ACC'95. New York: IEEE, 1995: 4253-4257.

[39]Abe M. Vehicle handling dynamics: theory and application[M]. Oxford: Butterworth-Heinemann, 2015: 9-15+129-130.

[40]Pfeffer P E, Harrer M, Johnston D N. Interaction of vehicle and steering system regarding on-centre handling[J]. Vehicle System Dynamics, 2008, 46(5): 413-428.

[41]Adams W K, Topping R W. The steering characterizing functions (SCFs) and their use in steering system specification, simulation, and synthesis[J]. SAE Transactions, 2001, 110(6): 1438-1449.

[42]Salaani M K, Heydinger G, Grygier P. Modeling and implementation of steering system feedback for the national advanced driving simulator[J]. SAE Transactions, 2002, 111(6): 1767-1775.

[43]Liao Y G, Du H I. Modelling and analysis of electric power steering system and its effect on vehicle dynamic behaviour[J]. International Journal of Vehicle Autonomous Systems, 2003, 1(2): 153-166.

[44]Zhang N, Wang M. Dynamic modeling of hydraulic power steering system with variable ratio rack and pinion gear[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2005, 48(2): 251-260.

[45]Chen X, Yang T, Chen X, et al. A generic model-based advanced control of electric power-assisted steering systems[J]. IEEE Transactions on Control Systems Technology, 2008, 16(6): 1289-1300.

[46]Zagorski S B, Ushimura T, Post J. Development of an electric-based power steering system[J]. SAE International Journal of Commercial Vehicles, 2015, 8(1): 88-101.

[47]Tai M, Hingwe P, Tomizuka M. Modeling and control of steering system of heavy vehicles for automated highway systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 609-618.

[48]Zhang S, Wang Y. Study of electric power steering system[C]//2015 International Conference on Computer Science and Intelligent Communication. Atlantis Press, 2015: 321-324.

[49]Van Ende K T R, Küçükay F, Henze R, et al. Vehicle and steering system dynamics in the context of on-centre handling[J]. International Journal of Automotive Technology, 2015, 16(5): 751-763.

[50]Shafana P, Muhammed S. Admittance based position tracking using sliding mode controller for an electric power steering system[C]//2017 International Conference on Intelligent Computing and Control Systems (ICICCS). New York IEEE, 2017: 574-578.

[51]Wang C Y, Zhang Y Q, Zhao W Z. Multi-objective optimization of a steering system considering steering modality[J]. Advances in Engineering Software, 2018, 26(12): 61-74.

[52]Cianetti F, Fabellini L, Formica V, et al. Development and validation of a simplified automotive steering dynamic model[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 35(8): 2188-2199.

[53]Govender V, Müller S. Modelling and position control of an electric power steering system[J]. IFAC-PapersOnLine, 2016, 49(11): 312-318.

[54]Lee D, Kim K S, Kim S. Controller design of an electric power steering system[J]. IEEE Transactions on Control Systems Technology, 2017, 26(2): 748-755.

[55]Loof J, Besselink I, Nijmeijer H. Implementation and validation of a three degrees of freedom steering-system model in a full vehicle model[J]. Vehicle System Dynamics, 2019, 57(1): 86-107.

[56]Chen H, Chen X, Chen C, et al. Multidisciplinary design optimization for vehicle handling stability of steering-by-wire system[J]. The Journal of Supercomputing, 2019, 75(6): 2964-2985.

[57]Zhao W, Zhang H, Li Y. Displacement and force coupling control design for automotive active front steering system[J]. Mechanical Systems and Signal Processing, 2018, 31(9): 76-93.

[58]Ye Q, Wang R, Cai Y, et al. Research on modeling and compensation control strategy of automatic steering system[J]. Science Progress, 2020, 21(1): 1-23.

[59]Post J W, Law E H. Modeling, Characterization and simulation of automobile power steering systems for the prediction of on-center handling[J]. SAE Transactions, 1996, 105(6): 90-99.

[60]Chenguang H, Peng J, Haifeng Y. Analysis of influence of steering system on vehicle Straight Line[C]//2010 WASE International Conference on Information Engineering. New York, IEEE, 2010: 336-339.

[61]Jiang H, Li A, Zhou X, et al. Establishment and tracking control of trapezoidal steering wheel angle model for autonomous vehicles[J]. International Journal of Advanced Robotic Systems, 2020, 17(6): 1-12.

[62]Gao J, Qi X. Analysis and optimization of vehicle transient characteristics under sine-swept steering input with considering steering system stiffness and damping[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2022, 23(1): 51-67.

[63]Sharp R S, Granger R. On car steering torques at parking speeds[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 17(2): 87-96.

[64]Yaohua L, Jikang F, Jie H, et al. Novel electric power steering control strategies of commercial vehicles considering adhesion coefficient[J]. Advances in Mechanical Engineering, 2020, 12(12): 1-11.

[65]X F Wang. Automotive Suspension and Steering System Design[M]. Beijing: Tsinghua University Press, 2015: 203-206+ 348-354.

[66]Cho Y G. Vehicle steering returnability with maximum steering wheel angle at low speeds[J]. International Journal of Automotive Technology, 2009, 10(4): 431-439.

[67]Marzbani H, Vo D Q, Khazaei A, et al. Transient and steady-state rotation centre of vehicle dynamics[J]. International Journal of Nonlinear Dynamics and Control, 2017, 1(1): 97-113.

[68]M. 米奇克, 桑杰(译). 汽车动力学[M]. 北京: 机械工业出版社, 1980: 428-430.

[69]Cho Y G. Vehicle steering returnability with maximum steering wheel angle at low speeds[J]. International Journal of Automotive Technology, 2009, 10(4): 431-439.

[70]Marzbani H, Vo D Q, Khazaei A, et al. Transient and steady-state rotation centre of vehicle dynamics[J]. International Journal of Nonlinear Dynamics and Control, 2017, 1(1): 97-113.

[71]Stoicescu A P. On the optimization of an ackermann steering linkage[J]. UPB Scientific Bulletin, Series D: Mech Engi, 2013, 75(4): 5-9.

[72]Sleesongsom S, Bureerat S. Multiobjective optimization of a steering linkage[J]. Journal of Mechanical Science and Technology, 2016, 30(8): 3681-3691.

[73]Wang L, Zhang X, Zhou Y. An effective approach for kinematic reliability analysis of steering mechanisms[J]. Reliability Engineering & System Safety, 2018, 30(12): 62-76.

[74]Zheng H, Yang S. Research on race car steering geometry considering tire side slip angle[J]. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2020, 12(1): 72-87.

[75]Chen T, Cai Y, Chen L, et al. Trajectory tracking control of steer-by-wire autonomous ground vehicle considering the complete failure of vehicle steering motor[J]. Simulation Modelling Practice and Theory, 2021, 19(3): 1-19.

[76]Kim S H, Shin M C. Steering pull model and its sensitivity analysis[J]. Applied Sciences, 2020, 10(22): 8072.

[77]Kang Y, Zhang W, Rakheja S. Relative kinematic and handling performance analyses of independent axle suspensions for a heavy-duty mining truck[J]. International Journal of Heavy Vehicle Systems, 2015, 22(2): 114-136.

[78]Mi T, Stepan G, Takacs D, et al. Shimmy model for electric vehicle with independent suspensions[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 32(3): 330-340.

[79]Jazar R N, Subic A, Zhang N. Kinematics of a smart variable caster mechanism for a vehicle steerable wheel[J]. Vehicle System Dynamics, 2012, 50(12): 1861-1875.

[80]Vo D, Jazar R N, Fard M. Kinematics of a steering tyre with adjustable caster[J]. International Journal of Vehicle Design, 2017, 74(2): 134-152.

[81]Alberding M B, Onder C H, Sager F, et al. Variable caster steering[J]. IEEE Transactions on Vehicular Technology, 2013, 63(4): 1513-1529.

[82]Vo D Q, Marzbani H, Fard M, et al. Variable caster steering in vehicle dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 32(9): 1270-1284.

[83]古玉锋, 吕彭民, 单增海, 等. 转向杆系空间结构非线性建模与分析[J]. 农业机械学报, 2014, 45(10): 7-14.

[84]王成志, 王云超. 含运动副间隙的空间转向机构运动精度分析及优化设计[J]. 中国机械工程, 2021, 32(9): 1027-1034+1042.

[85]王成志, 王云超. 转向节主销与转向轮间转向运动及转角误差分析[J]. 汽车技术, 2020, 50(5): 37-43.

[86]Li B, Ge W, Liu D, et al. Optimization method of vehicle handling stability based on response surface model with D-optimal test design[J]. Journal of Mechanical Science and Technology, 2020, 34(6): 2267-2276.

[87]Lee E J, Lee J H, Choi S B, et al. Model-based prediction of steering response[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 32(4): 511-520.

[88]Ende K V, Kallmeyer F, Nippold C, et al. Analysis of steering system elasticities and their impact on on-centre handling[J]. International Journal of Vehicle Design, 2016, 70(3): 211-233.

[89]日本自动车技术会, 中国汽车工程学会. 汽车工程手册5—底盘设计篇[M]. 北京: 北京理工大学出版社, 2010: 133-135.

[90]Wolfe W A. Analytical design of an Ackermann steering linkage[J]. Journal of Engineering for Industry, 1959, 81(1): 10-13.

[91]Simionescu P A, Beale D. Optimum synthesis of the four-bar function generator in its symmetric embodiment: the Ackermann steering linkage[J]. Mechanism and Machine Theory, 2002, 37(12): 1487-1504.

[92]Zhao J S, Liu X, Feng Z J, et al. Design of an Ackermann-type steering mechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 30(11): 2549-2562.

[93]Chernenko S, Klimov E, Chernish A, et al. Simulation technique of kinematic processes in the vehicle steering linkage[J]. International Journal of Engineering & Technology, 2018, 7(4): 120-124.

[94]Zhang L, Dong E. Robust design for steering mechanism based on preference function[J]. SAE International Journal of Passenger Cars-mechanical Systems, 2018, 11(2): 119-128.

[95]Chernenko S, Klimov E, Chernysh A, et al. Mathematical modeling of the spatial steering linkage of a wheeled vehicle[C]//2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). New York: IEEE, 2020: 1-4.

[96]M. L. Ioffe. Ackermann Principle and its Implementation in Modern Cars[J]. BMSTU Journal of Mechanical Engineering, 2021, 9, 40-47.

[97]Pramanik S , Thipse S S .Kinematic synthesis of central-lever steering mechanism for four wheel vehicles[J].Acta Polytechnica, 2020, 60(3): 252-258.

[98]Townsend M A. Optimal design of rack-and-pinion steering linkages[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 5(2): 220-226.

[99]Simionescu P A, Smith M R. Initial estimates in the design of rack-and-pinion steering linkages[J]. Journal of Mechanical Design, 2000, 22(2): 194-200.

[100]Hanzaki A R, Rao P V M, Saha S K. Kinematic and sensitivity analysis and optimization of planar rack-and-pinion steering linkages[J]. Mechanism and Machine Theory, 2009, 44(1): 42-56.

[101]Bendefy A G, Piros A, Horák P. Arbitrary vehicle steering characteristics with changing ratio rack and pinion transmission[J]. Advances in Mechanical Engineering, 2015, 7(12): 1-12.

[102]Wei D, Wang Y, Jiang T, et al. Chaos vibration of pinion and rack steering trapezoidal mechanism containing two clearances[J]. Mechanical Systems and Signal Processing, 2017, 30(14): 146-155.

[103]Wang L, Zhang X, Zhou Y. An effective approach for kinematic reliability analysis of steering mechanisms[J]. Reliability Engineering & System Safety, 2018, 30(12): 62-76.

[104]Wang W, Gao H, Zhou C, et al. Reliability analysis of motion mechanism under three types of hybrid uncertainties[J]. Mechanism and Machine Theory, 2018, 33(3): 769-784.

[105]柴天, 李凡, 雷飞, 等. 考虑轮胎侧偏特性的赛车转向几何研究[J]. 中国机械工程, 2017, 28(9): 1106.

[106]Sleesongsom S, Bureerat S. Multi-objective optimization of a steering linkage using alternative objective functions[C]//Advances in Swarm Intelligence: 10th International Conference. Berlin: Springer International Publishing, 2019: 47-58.

[107]Sleesongsom S, Bureerat S. Multi-objective, reliability-based design optimization of a steering linkage[J]. Applied Sciences, 2020, 10(17): 5748.

[108]Nunez N N R, Florez A R, Vieira R S, et al. Dimensional synthesis of rack-and-pinion steering mechanism using a novel synthesis equation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(8): 1-9.

[109]Pradhan D, Ganguly K, Swain B, et al. Optimal kinematic synthesis of 6 bar rack and pinion ackerman steering linkage[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 35(6): 1660-1669.

[110]Wang Y, Shao Q, Zhou J, et al. Longitudinal and lateral control of autonomous vehicles in multi-vehicle driving environments[J]. IET Intelligent Transport Systems, 2020, 14(8): 924-935.

[111]Li J, Wang J, Peng H, et al. Fuzzy-torque approximation-enhanced sliding mode control for lateral stability of mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(4): 2491-2500.

[112]陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38(6): 1203-1214.

[113]Liu J, Yang Z, Huang Z, et al. Simulation performance evaluation of pure Pursuit, Stanley, LQR, MPC controller for autonomous vehicles[C]//2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). New York: IEEE, 2021: 1444-1449.

[114]Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: The robot that won the DARPA Grand Challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692.

[115]Hoffmann G M, Tomlin C J, Montemerlo M, et al. Autonomous automobile trajectory tracking for off-road driving: Controller design, experimental validation and racing[C]//2007 American Control Conference. New York: IEEE, 2007: 2296-2301.

[116]Debarshi S, Sundaram S, Sundararajan N. Robust EMRAN-aided coupled controller for autonomous vehicles[J]. Engineering Applications of Artificial Intelligence, 2022, 34(4): 1-13.

[117]Abdelmoniem A, Osama A, Abdelaziz M, et al. A path-tracking algorithm using predictive Stanley lateral controller[J]. International Journal of Advanced Robotic Systems, 2020, 17(6): 1-11.

[118]Amer N H, Zamzuri H, Hudha K, et al. Path tracking controller of an autonomous armoured vehicle using modified Stanley controller optimized with particle swarm optimization[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(1): 1-17.

[119]Amer N H, Zamzuri H, Hudha K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86: 225-254.

[120]Li J, Wu Q, Wang J, et al. Autonomous tracking control for four-wheel independent steering robot based on improved pure pursuit[J]. Journal of Beijing Institute of Technology, 2020, 29(4): 466-473.

[121]Joonwoo A, Seho S, Kim M, et al. Accurate path tracking by adjusting look-ahead point in pure pursuit method[J]. International Journal of Automotive Technology, 2021, 22(1): 119-129.

[122]段建民, 杨晨, 石慧. 基于Pure Pursuit算法的智能车路径跟踪[J]. 北京工业大学学报, 2016, 42(9): 1301-1306.

[123]杨阳阳, 何志刚, 汪若尘, 等. 基于转角补偿的智能车辆循迹控制系统[J]. 仪表技术与传感器, 2019(5): 73-77.

[124]Li J, Wu Q, Wang J, et al. Autonomous tracking control for four-wheel independent steering robot based on improved pure pursuit[J]. Journal of beijing Institute of technology, 2020, 29(4): 466-473.

[125]Liu J, Yang Z, Huang Z, et al. Simulation performance evaluation of pure Pursuit, Stanley, LQR, MPC controller for autonomous vehicles[C]//2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). New York: IEEE, 2021: 1444-1449.

[126]寇发荣, 杨慧杰, 张新乾, 等. 采用状态反馈的无人车路径跟踪横向控制[J]. 机械科学与技术, 2022, 41(1): 143-150.

[127]Guo J, Li K, Luo Y. Coordinated control of autonomous four wheel drive electric vehicles for platooning and trajectory tracking using a hierarchical architecture[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 37(10): 1-18.

[128]李军, 唐爽, 黄志祥, 等. 融合稳定性的高速无人驾驶车辆纵横向协调控制方[J]. 交通运输工程学报, 2020, 20(2): 205-218.

[129]Ding J, Guo K. Development of a generalised equivalent estimation approach for multi-axle vehicle handling dynamics[J]. Vehicle System Dynamics, 2016, 54(1): 20-57.

[130]寇发荣, 郑文博, 张新乾, 等. 采用状态扩展MPC与转角补偿的无人车路径跟踪控制[J]. 机械科学与技术, 2023, 42(9): 1533-1541.

[131]Wang J, Longoria R G. Coordinated and reconfigurable vehicle dynamics control[J]. IEEE Transactions on Control Systems Technology, 2009, 17(3): 723-732.

[132]Guo J, Luo Y, Li K, et al. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation[J]. Mechanical Systems and Signal Processing, 2018, 31(8): 183-199.

[133]Viehweger M, Vaseur C, van Aalst S, et al. Vehicle state and tyre force estimation: demonstrations and guidelines[J]. Vehicle System Dynamics, 2021, 59(5): 675-702.

[134]Wenzel T A, Burnham K J, Blundell M V, et al. Dual extended kalman filter for vehicle state and parameter estimation[J]. Vehicle System Dynamics, 2006, 44(2): 153-171.

[135]Doumiati M, Victorino A C, Charara A, et al. Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[J]. IEEE/ASME Transactions on Mechatronics, 2010, 16(4): 601-614.

[136]聂小博, 熊玥, 潘勇军. 基于模糊PID算法的车身稳定控制策略与多工况联合仿真[J]. 动力学与控制学报, 2021, 19(3): 46-52.

[137]Mashadi B, Mahmoodi-Kaleybar M, Ahmadizadeh P, et al. A path-following driver/vehicle model with optimized lateral dynamic controller [J]. Latin American Journal of Solids and Structures, 2014, 11(4): 613-630.

[138]Carlucho I, De Paula M, Acosta G G. An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots[J]. ISA Transactions, 2020, 31(7): 280-294.

[139]尹奇辉, 李捷, 梁志鹏, 等. 基于模糊神经网络PID的机器人路径跟踪控制[J]. 中国农机化学报, 2020, 41(5): 182-187.

[140]Hu C, Wang R, Yan F, et al. Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4033-4043.

[141]Fan Z, Chen H. Study on path following control method for automatic parking system based on LQR[J]. SAE International Journal of Passenger Cars-electronic and Electrical Systems, 2016, 10(1): 41-49.

[142]Alcala E, Puig V, Quevedo J, et al. Autonomous vehicle control using a kinematic lyapunov-based technique with LQR-LMI tuning[J]. Control Engineering Practice, 2018(4), 73: 1-12.

[143]高琳琳, 唐风敏, 郭蓬, 等. 自动驾驶横向运动控制的改进LQR方法研究[J]. 机械科学与技术, 2021, 40(3): 435-441.

[144]Park M, Kang Y. Experimental verification of a drift controller for autonomous vehicle tracking: A circular trajectory using LQR method[J]. International Journal of Control, Automation and Systems, 2021, 19(1): 404-416.

[145]Li H, Li P, Yang L, et al. Safety research on stabilization of autonomous vehicles based on improved-LQR control[J]. AIP Advances, 2022, 12(1): 1-14.

[146]Zhang Y, Gao F, Zhao F. Research on path planning and tracking control of autonomous vehicles based on improved RRT* and PSO-LQR[J]. Processes, 2023, 11(6): 1841.

[147]Yu S, Hirche M, Huang Y, et al. Model predictive control for autonomous ground vehicles: a review[J]. Autonomous Intelligent Systems, 2021, 1(8): 1-17.

[148]Cao Y, Cao J, Yu F, et al. A new vehicle path-following strategy of the steering driver model using general predictive control method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 32(24): 4578-4587.

[149]Guo H, Liu J, Cao D, et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles[J]. Mechatronics, 2018, 27(2): 422-433.

[150]Yuan X, Huang G, Shi K. Improved adaptive path following control system for autonomous vehicle in different velocities[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(8): 3247-3256.

[151]Yang L, Yue M, Ma T. Path following predictive control for autonomous vehicles subject to uncertain tire-ground adhesion and varied road curvature[J]. International Journal of Control, Automation and Systems, 2019, 17(1): 193-202.

[152]孟宇, 甘鑫, 白国星. 基于预瞄距离的地下矿用铰接车路径跟踪预测控制[J]. 工程科学学报, 2019, 41(5): 662-671.

[153]石贞洪, 江洪, 于文浩, 等. 适用于路径跟踪控制的自适应MPC算法研究[J]. 计算机工程与应用, 2020, 56(21): 266-271.

[154]王启明, 毛作龙, 张栋林, 等. 基于轨迹预测与模型预测的换道路径跟踪控制[J]. 控制工程, 2023, 30(9): 1598-1605.

[155]熊璐, 杨兴, 卓桂荣, 等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56(10): 127-143.

[156]Guo J, Luo Y, Li K. An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(8): 2482-2492.

[157]Xu Y, Lu Z, Shan X, et al. Study on an automatic parking method based on the sliding mode variable structure and fuzzy logical control[J]. Symmetry, 2018, 10(10): 1-13.

[158]Chen T, Chen L, Xu X, et al. Passive actuator-fault-tolerant path following control of autonomous ground electric vehicle with in-wheel motors[J]. Advances in Engineering Software, 2019, 27(8): 22-30.

[159]姜立标, 杨杰. 基于滑模控制的自动泊车系统路径跟踪研究[J]. 农业机械学报, 2019, 50(2): 356-364.

[160]Hao Y, Yin D. Integrated control of path following and lateral stability for unmanned autonomous vehicle with decentralized driving system[C]//Proceedings of the 2020 the 7th International Conference on Automation and Logistics (ICAL), New York: ACM, 2020: 18-22.

[161]Lei Y, Wen G, Fu Y, et al. Trajectory-following of a 4WID-4WIS vehicle via feedforward-backstepping sliding-mode control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 36(2): 322-333.

[162]张家旭, 王欣志, 赵健, 等. 汽车高速换道避让路径规划及离散滑模跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(3): 1081-1090.

[163]Mashadi B, Ahmadizadeh P, Majidi M, et al. Integrated robust controller for vehicle path following[J]. Multibody System Dynamics, 2015, 33(2): 207-228.

[164]Wang W, Xi J, Liu C, et al. Human-centered feed-forward control of a vehicle steering system based on a driver's path-following characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(6): 1440-1453.

[165]Chen T, Chen L, Xu X, et al. Simultaneous path following and lateral stability control of 4WD-4WS autonomous electric vehicles with actuator saturation[J]. Advances in Engineering Software, 2019, 27(2): 46-54.

[166]Cao X, Tian Y, Ji X, et al. Fault-tolerant controller design for path following of the autonomous vehicle under the faults in braking actuators[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2530-2540.

[167]Zhang Z, Yang C, Zhang W, et al. Motion control of a 4WS4WD path-following vehicle: dynamics-based steering and driving models[J]. Shock and Vibration, 2021, 28(1): 1-13.

[168]Wang R, Ye Q, Cai Y, et al. Analyzing the influence of automatic steering system on the trajectory tracking accuracy of intelligent vehicle[J]. Advances in Engineering Software, 2018, 26(7): 188-196.

[169]张长龙, 李文春, 马蓉, 等. 基于模糊PID自动转向控制系统的研究[J]. 农机化研究, 2016, 38(11): 162-165+176.

[170]熊中刚, 刘忠, 王寒迎, 等. RBF神经网络增量式 PID 自动转向控制系统设计[J]. 农机化研究, 2021, 43(4): 27-32.

[171]杨洋, 张刚, 查家翼, 等. 基于直流电机与全液压转向器直联的自动转向系统研究[J]. 农业机械学报, 2020, 51(8): 44-54+61.

[172]施国标, 周倩, 王帅, 等. 无人驾驶模式下电液复合转向系统高鲁棒性控制策略[J]. 农业机械学报, 2019, 50(12): 395-402.

[173]Wang H, Man Z, Kong H, et al. Design and implementation of adaptive terminal sliding-mode control on a steer-by-wire equipped road vehicle[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5774-5785.

[174]贾全, 张小超, 苑严伟, 等. 拖拉机自动转向系统容错自适应滑模控制方法[J]. 农业工程学报, 2018, 34(10): 76-84.

[175]Wang P, Gao S, Li L, et al. Automatic steering control strategy for unmanned vehicles based on robust backstepping sliding mode control theory[J]. IEEE Access, 2019, 7: 64984-64992.

[176]罗玉涛, 郭海文. 线控转向系统的自适应神经网络滑模控制[J]. 华南理工大学学报(自然科学版), 2021, 49(1): 65-73.

[177]Huang C, Naghdy F, Du H. Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems[J]. IEEE Transactions on Control Systems Technology, 2017, 26(5): 1810-1817.

[178]Nam H, Choi W, Ahn C. Model predictive control for evasive steering of an autonomous vehicle[J]. International Journal of Automotive Technology, 2019, 20(5): 1033-1042.

[179]Ataei M, Khajepour A, Jeon S. Model predictive rollover prevention for steer-by-wire vehicles with a new rollover index[J]. International Journal of Control, 2020, 93(1): 140-155.

[180]Saifia D, Chadli M, Karimi H R, et al. Fuzzy control for electric power steering system with assist motor current input constraints[J]. Journal of the Franklin Institute, 2015, 30(2): 562-576.

[181]Li W, Xie Z, Zhao J, et al. Velocity-based robust fault tolerant automatic steering control of autonomous ground vehicles via adaptive event triggered network communication[J]. Mechanical Systems and Signal Processing, 2020, 33(10): 1-19.

[182]Wu J, Tian Y, Walker P, et al. Attenuation reference model based adaptive speed control tactic for automatic steering system[J]. Mechanical Systems and Signal Processing, 2021, 34(11): 1-18.

[183]Fu D, Rakheja S, Shangguan W B, et al. Robust control for fuzzy electric power steering system: A two-layer performance approach[J]. Journal of Vibration and Control, 2022, 28(5-6): 536-550.

[184]Wu X, Zhang M, Xu M. Active tracking control for steer-by-wire system with disturbance observer[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5483-5493.

[185]Bai G, Bao C, Wu J, et al. A robust guiding torque control method for automatic steering using LMI algorithm[J]. IEEE Access, 2020, 8: 22162-22169.

[186]刘延, 周金应, 徐磊, 等. 基于质心侧偏角计算的自动转向控制[J]. 重庆理工大学学报(自然科学), 2021, 35(8): 33-38+89.

[187]卢中德, 黄艳玲, 陈震, 等. 线控转向系统的自适应神经网络跟踪控制[J]. 控制工程, 2022, 29(3): 571-576.

[188]Li K, Guo J, Luo Y. Design of robust output-feedback-based automatic steering controller for unmanned electric vehicles[J]. International Journal of Vehicle Design, 2019, 79(1): 63-83.

[189]Y. Han, W. X. Qian, On the Solution of Region-based Planar Four-bar Motion Generation[J]. Mechanism and Machine Theory, 2009, 44 (2): 457-465.

[190]Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia tools and applications, 2021, 80: 8091-8126.

[191]龚建伟, 刘凯, 齐建永. 无人驾驶车辆模型预测控制(第2版)[M]. 北京:北京理工大学出版社, 2020: 116-120.

中图分类号:

 U463.4    

开放日期:

 2027-07-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式