- 无标题文档
查看论文信息

论文中文题名:

 开挖扰动下含水锚固围岩分区破裂规律研究    

姓名:

 贾少彬    

学号:

 21204228063    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 于远祥    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Study on the law of zonal disintegration of water-bearing anchored surrounding rock zone under excavation disturbance    

论文中文关键词:

 深埋硐室 ; 锚固围岩 ; 孔隙水压 ; 开挖扰动 ; 分区破裂 ; 演化规律    

论文外文关键词:

 deep buried chamber ; anchored surrounding rock ; pore water pressure ; excavation disturbance ; zonal disintegration ; evolution law    

论文中文摘要:

21世纪以来,深部地下空间的开发利用成为了岩土工程领域极为重要的研究方向,大量深达千米的地下工程陆续开建。在深埋硐室开挖初期,施工扰动和地下水渗流都将引起围岩中原生裂隙的进一步扩展,围岩强度产生损伤劣化,需及时对围岩进行锚固强化,此后锚杆在渗流作用下也会发生预应力损失现象。分区破裂作为深部工程的典型灾害现象,其灾变过程涉及开挖卸荷、渗流劣化、锚固强化及预应力损失等一系列复杂力学问题。本文以深埋硐室锚固围岩为研究对象,考虑施工扰动、孔隙水压及锚杆预应力的影响,建立了杆岩协调变形的力学分析模型,基于锚杆中性点理论,对不同施工扰动、孔隙水压及锚杆预应力作用下的深埋硐室锚固围岩分区厚度、破裂区厚度、破裂区级数及其破裂时刻进行了反演分析,主要结论如下:

(1)建立了考虑浸水劣化、锚固强化及施工扰动损伤的深埋硐室锚固围岩应力解析解。选取圆形硐室轴向单位长度锚固围岩进行分析,构建了孔隙水压作用下的锚固围岩力学分析模型,建立了考虑地质强度指标、施工扰动及锚杆预应力作用的锚固围岩粘聚力和内摩擦角等效计算公式,最终得到了考虑浸水劣化、锚固强化及扰动损伤的围岩应力解析解及围岩塑性区半径。结果表明:围岩塑性区分布与孔隙水压、锚杆预应力及施工扰动程度密切相关,塑性区半径随着孔隙水压及施工扰动程度的增大而增大,随着锚杆预应力的增大而减小。

(2)研究了施工扰动、孔隙水压及锚杆预应力作用下深埋硐室锚固围岩分区破裂的关键参数。通过构建深埋硐室杆岩协调变形力学模型,基于锚固围岩锚杆中性点理论推导了锚杆预紧力与锚杆中性点的关系,并采用最大正应变理论提出了深埋硐室锚固围岩分区破裂的力学破坏判据。结合深埋硐室锚固围岩应力解析解可得深埋硐室锚固围岩分区厚度、破裂区厚度、破裂区级数及其破裂时刻的计算方法。结果表明:围岩破坏与否受到孔隙水压、锚杆预应力及施工扰动等因素影响,其中孔隙水压及施工扰动将加剧围岩各级分区的破坏,而施加锚杆预应力则可减弱围岩各级分区的破坏。

(3)探讨了施工扰动、孔隙水压及锚杆预应力对深埋硐室锚固围岩分区破裂的主要影响规律。结果表明:施工扰动程度的增大将大幅加剧围岩的分区破裂进程,而孔隙水压的影响则较小;当锚杆预紧力由250 kN损失至50 kN时围岩破裂区级数由0级增加至5级,加剧了硐室锚固围岩的分区破裂化进程。

(4)对深埋硐室锚固围岩的分区破裂演化规律进行了数值分析。采用FLAC3D软件分析了施工扰动、孔隙水压、锚杆预应力及硐室开挖半径等因素对硐室锚固围岩分区破裂的影响规律。结果表明:施工扰动的增大将加剧硐室锚固围岩分区破裂化进程;孔隙水压对硐室锚固围岩分区破裂化影响较小;锚杆预应力损失将大幅加剧硐室锚固围岩分区破裂化发展;硐室开挖半径的增加将增大硐室锚固围岩分区破裂扩展范围,各级破裂区厚度也随之增大;硐室锚固围岩分区破裂时全长锚固锚杆出现拉压交替的受力规律,且距离硐壁越近,锚杆拉压交替现象越为明显,应力应变也越大。

(5)运用所得理论对考虑孔隙水压及施工扰动的某深埋硐室锚固围岩分区破裂分布进行计算,并与不考虑孔隙水压及施工扰动的工况进行对比分析。结果表明:考虑孔隙水压及施工扰动后硐室锚固围岩分区破裂级数由2级增加至4级,最大破裂区厚度由0.35 m增加至0.68 m,即孔隙水压与施工扰动的存在大幅加剧了硐室锚固围岩的分区破裂化进程。

论文外文摘要:

Since the 21st century, the development and utilization of deep underground spaces have become extremely important research directions in the field of geotechnical engineering, with numerous underground projects reaching depths of kilometers being successively constructed. During the initial excavation of deeply buried caverns, excavation disturbances and groundwater seepage will further expand the original fractures in the surrounding rock mass, causing damage and deterioration in its strength. Timely reinforcement is required for the surrounding rock mass, and subsequently, the prestressing force of the rock bolts may also experience loss under the influence of seepage. Zonal disintegration, as a typical disaster phenomenon in deep engineering, involves a series of complex mechanical problems including excavation unloading, seepage deterioration, reinforcement strengthening, and prestress loss. This study focuses on the anchoring of surrounding rock in deeply buried caverns, considering the influences of excavation disturbances, pore water pressure, and prestressing force of rock bolts. A mechanical analysis model of rod-rock coordination deformation is established based on the neutral point theory of rock bolts. Inverse analysis is conducted on the thickness of zonal disintegration, thickness of fractured zones, number of fractured zones, and their fracture times under different excavation disturbances, pore water pressure, and prestressing force of rock bolts. The main conclusions are as follows:

(1) An analytical solution for the stress of the surrounding rock mass in deeply buried caverns is established, considering water immersion deterioration, anchoring reinforcement, and excavation disturbance damage. The mechanical analysis model of the surrounding rock under the action of pore water pressure is constructed, and equivalent calculation formulas for cohesion and internal friction angle of the anchoring rock mass considering geological strength index, excavation disturbance, and prestressing force of rock bolts are established. The analytical solution for the stress of the surrounding rock mass considering water immersion deterioration, anchoring reinforcement, and disturbance damage, as well as the radius of the plastic zone of the surrounding rock mass, are obtained. The results show that the distribution of the plastic zone of the surrounding rock mass is closely related to the pore water pressure, prestressing force of rock bolts, and excavation disturbance. The radius of the plastic zone increases with the increase of pore water pressure and excavation disturbance, and decreases with the increase of prestressing force of rock bolts.

(2) The key parameters of zonal disintegration of the surrounding rock mass in deeply buried caverns under the influence of excavation disturbance, pore water pressure, and prestressing force of rock bolts are studied. By constructing a mechanical model of rod-rock coordination deformation in deeply buried caverns, the relationship between prestressing force and neutral point of rock bolts is derived based on the neutral point theory of anchoring rock mass, and a mechanical failure criterion for zonal disintegration of the surrounding rock mass in deeply buried caverns is proposed using the maximum principal strain theory. Combined with the analytical solution of the stress of the surrounding rock mass in deeply buried caverns, the calculation method for the thickness of zonal disintegration, thickness of fractured zones, number of fractured zones, and their fracture times are obtained. The results show that whether the surrounding rock mass fails or not is influenced by factors such as pore water pressure, prestressing force of rock bolts, and excavation disturbance. Pore water pressure and excavation disturbance exacerbate the failure of various zones of the surrounding rock mass, while applying prestressing force to the rock bolts can mitigate the failure of various zones of the surrounding rock mass.

(3) The main influencing laws of excavation disturbance, pore water pressure, and prestressing force of rock bolts on zonal disintegration of the surrounding rock mass in deeply buried caverns are discussed. The results show that increasing the degree of excavation disturbance will significantly exacerbate the zonal disintegration process of the surrounding rock mass, while the influence of pore water pressure is relatively small. When the prestressing force of rock bolts decreases from 250 kN to 50 kN, the number of fractured zones of the surrounding rock mass increases from 0 to 5, intensifying the zonal disintegration process of the anchoring surrounding rock mass in the cavern.

(4) Numerical analysis of the evolution laws of zonal disintegration of the surrounding rock mass in deeply buried caverns is conducted. The influence laws of factors such as excavation disturbance, pore water pressure, prestressing force of rock bolts, and excavation radius of the cavern on zonal disintegration of the surrounding rock mass in deeply buried caverns are analyzed using FLAC3D software. The results show that increasing the degree of excavation disturbance will exacerbate the zonal disintegration process of the surrounding rock mass in the cavern; the influence of pore water pressure on zonal disintegration of the surrounding rock mass in the cavern is relatively small; loss of prestressing force of rock bolts will significantly exacerbate the development of zonal disintegration of the surrounding rock mass in the cavern; increasing the excavation radius of the cavern will expand the range of zonal disintegration of the surrounding rock mass in the cavern, and the thickness of fractured zones at each level will increase accordingly; during zonal disintegration of the surrounding rock mass in the cavern, the anchoring rock bolts exhibit a pattern of alternating tension and compression along their entire length, and the closer they are to the cavern wall, the more pronounced the phenomenon of alternating tension and compression of the rock bolts and the greater the stress and strain.

(5) The theoretical results are used to calculate the distribution of zonal disintegration of the surrounding rock mass in a certain deeply buried cavern considering pore water pressure and excavation disturbance, and compared with the case where pore water pressure and excavation disturbance are not considered. The results show that considering pore water pressure and excavation disturbance, the number of fractured zones of the surrounding rock mass in the cavern increases from 2 to 4, and the maximum thickness of fractured zones increases from 0.35 m to 0.68 m, indicating that the presence of pore water pressure and excavation disturbance significantly exacerbates the zonal disintegration process of the anchoring surrounding rock mass in the cavern.

参考文献:

参考文献

[1] 张铜宽. 深部巷道围岩分区变形破坏理论研究[D]. 阜新: 辽宁工程技术大学, 2020.

[2] 钱七虎. 分区破裂化研究现状和一些思考[C]//新观点新学说学术沙龙文集21:深部岩石工程围岩分区破裂化效应. 北京: 中国科学技术出版社, 2008: 10-15, 134-135.

[3] 王赋宇. 预应力锚杆作用下深部岩体分区破裂规律及支护优化研究[D]. 西安: 西安科技大学, 2020.

[4] 王明洋, 宋 华, 郑大亮, 等. 深部巷道围岩的分区破裂机制及“深部”界定探讨[J]. 岩石力学与工程学报, 2006, 25(09): 1771-1776.

[5] 李春睿, 康立军, 齐庆新, 等. 深部巷道围岩分区破裂与冲击地压关系初探[J]. 煤炭学报, 2010, 35(02): 185-189.

[6] 周小平, 钱七虎, 张伯虎, 等. 深埋球形洞室围岩分区破裂化机理[J]. 工程力学, 2010, 27(01): 69-75, 90.

[7] 陈建功, 朱成华, 张永兴. 深部巷道围岩分区破裂化弹塑脆性分析[J]. 煤炭学报, 2010, 35(04): 541-545.

[8] 高召宁, 孟祥瑞, 付志亮. 二向不等地压条件下高水压区隧道稳定性分析[J]. 铁道工程学报, 2013, 11(11): 62-68.

[9] 周小平, 毕 靖, 钱七虎. 动态开挖卸荷条件下深埋圆形洞室各向同性围岩的分区破裂化机理[J]. 固体力学学报, 2013, 34(04): 352-360.

[10] 李 涛, 陈宏斌, 王永刚, 等. 侧压力系数对高地应力隧道系统锚杆影响分析[J]. 地下空间与工程学报, 2020, 16(S1): 437-441.

[11] 贺子光, 赵法锁, 陈昊祥, 等. 深部圆形隧道围岩分区破裂的简化梯度模型[J]. 煤田地质与勘探, 2022, 50(05): 103-109.

[12] 王明洋, 陈昊祥, 李 杰, 等. 深部巷道分区破裂化计算理论与实测对比研究[J]. 岩石力学与工程学报, 2018, 37(10): 2209-2218.

[13] 李宗利, 任青文, 王亚红. 考虑渗流场影响深埋圆形隧洞的弹塑性解[J]. 岩石力学与工程学报, 2004, 23(08): 1291-1295.

[14] 谷拴成, 李晓栋, 周 攀. 考虑渗流作用的锚杆支护巷道围岩稳定性分析[J]. 煤矿安全, 2019, 50(08): 194-198.

[15] 王 睢, 钟祖良, 刘新荣. 基于D-P屈服准则考虑渗流影响的深埋有压圆形隧洞弹塑性解[J]. 现代隧道技术, 2019, 56(01): 39-46.

[16] 于旭光, 郑 宏. 考虑渗流影响的幂强化-理想塑性模型圆形隧洞围岩弹塑性新解[J]. 长江科学院院报, 2021, 38(07): 102-108, 114.

[17] 惠 强, 姜海波, 张玉洁, 等. 考虑渗流及软化效应的深埋引水隧洞围岩弹塑性分析[J]. 水资源与水工程学报, 2021, 32(03): 210-218.

[18] 张治国, 程志翔, 汪嘉程, 等. 考虑渗流影响的深埋隧道围岩-衬砌相互作用研究[J]. 隧道建设(中英文), 2021, 41(S1): 108-121.

[19] 于旭光. 基于对数应变考虑渗流影响的软弱围岩圆形隧洞弹塑性解[J]. 隧道建设(中英文), 2022, 42(07): 1227-1238.

[20] WU Hao, FANG Qin, ZHANG Yadong, et al. Zonal disintegration phenomenon in enclosing rock mass surrounding deep tunnels—Elasto-plastic analysis of stress field of enclosing rock mass[J]. Miningscience and Technology, 2009, 19(1): 84-90.

[21] X.P. Zhou, G. Chen, Q.H. Qian. Zonal disintegration mechanism of cross-anisotropic rock masses around a deep circular tunnel[J]. Theoretical and Applied Fracture Mechanics, 2012, 57: 49-54.

[22] Pu Yuan, Ying Xu. Zonal Disintegration Mechanism of Deep Rock Masses under Coupled High Axial Geostress and Blasting Load[J]. Shock and Vibration, 2018, 2018: 1-11.

[23] Y.D. Shou, X.P. Zhou, Q.H. Qian. A critical condition of the zonal disintegration in deep rock masses: Strain energy density approach[J]. Theoretical and Applied Fracture Mechanics, 2018, 97: 322-332.

[24] Chen X, Zhang N, Zhang M, et al. Energy-Based Forming Mechanism and Criterion for Zonal Disintegration[J]. Journal of Testing and Evaluation, 2018, 46: 1-11.

[25] Xuguang Chen, Ning Zhang, Tianchi Ma, et al. Energy-based forming and anchoring mechanism and criterion for zonal disintegration[J]. Theoretical and Applied Fracture Mechanics, 2018, 97: 349-356.

[26] Haoxiang Chen, Chengzhi Qi, Shuo Wang, et al. A simple gradient model for zonal disintegration of the surrounding rock around a deep circular tunnel[J]. Tunnelling and Underground Space Technology, 2019, 91: 103006.

[27] Zeng Xianren, You Shihui, Li Fang, et al. An Analytical Research on Stress-Wave Propagation and Comparison of Experiments and Theory of Zonal Disintegration in Rock Masses around Deep Tunnels[J]. Materials Science Forum, 2020, 980: 333-345.

[28] Yuanxiang Yu, Zhixun Xie, Baoping Chen. Space-Time Evolution Laws of Zonal Disintegration in Deep Underground Caves Based on Coordination Deformation between the Bolt Body and Surrounding Rock[J]. Advances in Civil Engineering, 2021, 2021: 1-14.

[29] Heng Zhou, Shengjie Di, Xi Lu, et al. Study on Formation Mechanism of Zonal Disintegration of Surrounding Rock in Deep Tunnel[J]. E3s Web of Conferences, 2021, 276: 1-4.

[30] 程志斌. 动载扰动下锚固系统荷载传递及破坏演化规律数值模拟研究[D]. 焦作: 河南理工大学, 2017.

[31] 唐礼忠, 陈英毅, 刘 昌, 等. 基于应变率损伤本构模型的围岩分区破裂化现象数值模拟[J]. 长江科学院院报, 2020, 37(07): 82-87.

[32] 刘学生, 范德源, 谭云亮, 等. 深部动载作用下超大断面硐室群锚固围岩破坏失稳机制研究[J]. 岩土力学, 2021, 42(12): 3407-3418.

[33] 吴 政, 梁 斌, 祝方才, 等. 基于FLAC~(3D)的深部隧道分区破裂特性研究[J]. 湖南工业大学学报, 2022, 36(06): 15-21.

[34] Fengshan Han, Xinli Wu, Xia Li, et al. Numerical simulation of phenomenon on zonal disintegration in deep underground mining in case of unsupported roadway[J]. Iop Conference Series: Earth and Environmental Science, 2018, 113: 1-7.

[35] Qiang Gao, Qiangyong Zhang, Wen Xiang, et al. Numerical Simulation of Zonal Disintegration for Deep Rock Mass under High Geostress[J]. Iop Conference Series: Earth and Environmental Science, 2018, 170: 1-10.

[36] Qiang Gao, Qiangyong Zhang, Wen Xiang. Mechanism of Zonal Disintegration Phenomenon (ZDP) Around Deep Roadway Under Dynamic Excavation[J]. Geotechnical and Geological Engineering, 2018, 37: 25-41.

[37] Xunguo Zhu, Yunping Wang, Yan Ren. Numerical Simulation to Research on the Fracture Mechanism of the Surrounding Rock in Deep Tunnels[J]. Geotechnical and Geological Engineering, 2019, 38: 319-327.

[38] Jianjun Ma, Peijie Yin, Linchong Huang, et al. The application of distinct lattice spring model to zonal disintegration within deep rock masses[J]. Tunnelling and Underground Space Technology, 2019, 90: 144-161.

[39] Huifang Li, Jiao Zhang. Zonal Disintegration Effect of Deep Straight Wall Semicircular Arch with Different Roadway Heights[J]. Open Access Library Journal, 2020: 1-18.

[40] Yuanhai Li, Shuo Yang, Xiaojie Tang, et al. Experimental Investigation of the Deformation and Failure Behavior of a Tunnel Excavated in Mixed Strata Using Transparent Soft Rock[J]. Ksce Journal of Civil Engineering, 2020, 24: 1-13.

[41] Xiaohui Ma, Jihong Wei, Jin Liu, et al. Study on the Generation Mechanism and Development Law of the Zonal Disintegration in Deep Burial Tunnels[J]. Shock and Vibration, 2020, 2020: 1-16.

[42] Chuang Sun, Yunhe Ao, Laigui Wang. The Research on Strain-Softening Characteristics and Local Fracture Law of Deep Granite Roadway[J]. Complexity, 2020, 2020: 1-13.

[43] Long Chen, Shunchuan Wu, Aibing Jin, et al. The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM[J]. Bulletin of Engineering Geology and the Environment, 2021, 81.

[44] Qiang Gao, Chuanxiao Liu, Jian Zhang, et al. Simulating the Formation of Blasting-Excavation-Induced Zonal Integration in Deep Tunnels with an Elastoplastic Damage Model[J]. Shock and Vibration, 2021, 2021: 1-18.

[45] Yukai Wang, Xiaoli Liu, Yanlin Xiong. Numerical simulation of zonal disintegration of surrounding rock in the deep‐buried chamber[J]. Deep Underground Science and Engineering, 2022, 1: 174-182.

[46] 阚甲广, 杨 森, 张 农. 巷道掘进扰动效应影响因素研究[J]. 采矿与安全工程学报, 2014, 31(06): 932-937.

[47] 惠 鑫, 马凤山, 郭 捷, 等. 金属矿山深部巷道围岩分区破裂现场监测研究[C]//2018年全国工程地质学术年会论文集. 西安: 科学出版社, 2018: 719-724.

[48] 康永全, 薛 里, 孙崔源, 等. 对强岩爆隧道进行分区爆破卸压的设计方法[J]. 工程爆破, 2021, 27(06): 52-58.

[49] 许 磊, 郭 帅, Elmo Davide, 等. 深部不同断面巷道分区破裂形态与围岩结构控制[J]. 岩土工程学报, 2023, 45(04): 720-729.

[50] Xiating Feng, Haosen Guo, Chengxiang Yang, et al. In situ observation and evaluation of zonal disintegration affected by existing fractures in deep hard rock tunneling[J]. Engineering Geology, 2018, 242: 1-11.

[51] Zhang Xutao, Xue Junhua, Duan Changrui. Research on Formation Process of Zonal Disintegration in Deep Rock Mass Based on Field Monitoring and Geomechanical Model Test[J]. Geotechnical and Geological Engineering, 2018, 36: 2725-2733.

[52] Xutao Zhang, Qiang Gao, Shicai Cui, et al. Research on Failure Mechanism and Parameter Sensitivity of Zonal Disintegration in Deep Tunnel[J]. Advances in Civil Engineering, 2019, 2019: 1-10.

[53] Huiming Yang, Zhonghua Wang, Yongjiang Zhang, et al. In‐site investigation of regional outburst prevention in coal roadway strip of a deep mine using an improved method[J]. Energy Science & Engineering, 2020, 8: 3823-3838.

[54] V. N. Odintsev, V. V. Makarov. Dynamic Fracture of Gas-Bearing Coal Seam during Zonal Disintegration[J]. Journal of Mining Science, 2020, 56: 1-15.

[55] Guang Li, Fengshan Ma, Jie Guo, et al. Deformation Characteristics and Control Method of Kilometer-Depth Roadways in a Nickel Mine: A Case Study[J]. Applied Sciences, 2020, 10: 1-20.

[56] Haosen Guo, Qiancheng Sun, Guangliang Feng, et al. In-situ observations of damage-fracture evolution in surrounding rock upon unloading in 2400-m-deep tunnels[J]. International Journal of Mining Science and Technology, 2023, 33(04): 437-446.

[57] 左宇军, 马春德, 朱万成, 等. 动力扰动下深部开挖洞室围岩分层断裂破坏机制模型试验研究[J]. 岩土力学, 2011, 32(10): 2929-2936.

[58] 张绪涛, 张强勇, 向 文, 等. 深部层状节理岩体分区破裂模型试验研究[J]. 岩土力学, 2014, 35(08): 2247-2254.

[59] 袁 亮, 顾金才, 薛俊华, 等. 深部围岩分区破裂化模型试验研究[J]. 煤炭学报, 2014, 39(06): 987-993.

[60] 郭闪闪. 爆炸动荷载对加锚洞室的扰动效应研究[D]. 衡阳: 南华大学, 2015.

[61] 张智慧, 潘一山. 深部巷道破坏分区破裂规律三维相似材料实验[J]. 煤炭学报, 2015, 40(12): 2780-2786.

[62] 邓东生, 薛俊华, 任 波. 深部高地应力软岩巷道围岩分区破裂模拟及支护设计[J]. 煤矿安全, 2017, 48(09): 215-217.

[63] 王云平, 朱训国, 赵德深. 深埋隧硐围岩分区断裂模型试验研究[J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(03): 522-526.

[64] 陈卓立, 朱训国, 赵德深, 等. 深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019, 56(04): 16-22, 29.

[65] 段昌瑞, 郑 群, 薛俊华, 等. 不同工况下深部围岩分区破坏非连续变形试验研究[J]. 采矿与岩层控制工程学报, 2021, 3(04): 76-84.

[66] Qiang Gao, Qiangyong Zhang, Wen Xiang, et al. Model test study of zonal disintegration phenomenon (ZDP) in deep rock mass under hydrostatic pressure[J]. Iop Conference Series: Earth and Environmental Science, 2018, 170: 1-9.

[67] Qiang Gao, Qiangyong Zhang, Xutao Zhang, et al. Geomechanical Model Test and Energy Mechanism Analysis of Zonal Disintegration in Deep Surrounding Rock[J]. Geosciences, 2018, 8: 1-21.

[68] Qingteng Tang, Wenbing Xie, Xingkai Wang, et al. Numerical Study on Zonal Disintegration of Deep Rock Mass Using Three-Dimensional Bonded Block Model[J]. Advances in Civil Engineering, 2019, 2019: 1-12.

[69] Pu Yuan, Ying Xu. Analyses on deformation and fracture evolution of zonal disintegration during axial overloading in 3D geomechanical model tests[J]. Special Issue on Nonlinearity and Numerical Simulation Applications in Geotechnical Engineering, 2019, 21: 1163-1174.

[70] Zhichao Tian, Chun’an Tang, Yejiao Liu, et al. Zonal disintegration test of deep tunnel under plane strain conditions[J]. International Journal of Coal Science & Technology, 2020, 7: 337-349.

[71] Qiangyong Zhang, Fan Li, Kang Duan, et al. Experimental investigation on splitting failure of high sidewall cavern under three-dimensional high in-situ stress[J]. Tunnelling and Underground Space Technology, 2021, 108: 103725.

[72] Baoping Chen, Bin Gong, Shanyong Wang, et al. Research on Zonal Disintegration Characteristics and Failure Mechanisms of Deep Tunnel in Jointed Rock Mass with Strength Reduction Method[J]. Mathematics, 2022: 1-20.

[73] Tianen Xue, Qiangyong Zhang, Kang Duan, et al. Geo-mechanical model test on the water inrush induced by zonal disintegration of deep tunnel under hydro-mechanical coupling[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160: 105278.

[74] WANG Shiming, WANG Jiaqi, XIONG Xianrui, et al. Zonal disintegration phenomenon based on triaxial dynamic load test of hollow cylindrical sandstone specimens[J]. Journal of Central South University, 2023, 30(4): 1311-1324.

[75] 卓 莉, 何江达, 谢红强, 等. 基于Hoek-Brown准则确定岩石材料强度参数的新方法[J]. 岩石力学与工程学报, 2015, 34(S1): 2773-2782.

[76] 阳军生. 岩体力学[M]. 北京: 机械工业出版社, 2008.

[77] 陈 鹏. 基于Hoek-Brown准则的边坡等效Mohr-Coulomb参数估算[D]. 西安: 长安大学, 2021.

[78] 杨双锁, 张百胜. 锚杆对岩土体作用的力学本质[J]. 岩土力学, 2003, 24(S2): 279-282.

[79] 任建喜, 张向东, 杨双锁, 等. 岩石力学[M]: 中国矿业大学出版社, 2013.

[80] 张桂民, 李银平, 杨春和, 等. 岩石直剪峰后曲线与抗剪强度参数关系探讨[J]. 岩石力学与工程学报, 2012, 31(S1): 2981-2988.

[81] 文竞舟, 王 成, 刘礼标. 锚杆轴力反算围岩塑性区及松动区范围研究[J]. 地下空间与工程学报, 2008, 4(06): 1023-1026.

[82] 王明恕. 全长锚固锚杆机理的探讨[J]. 煤炭学报, 1983, (01): 40-47.

[83] 万志军, 周楚良, 马文顶, 等. 巷道/隧道围岩非线性流变数学力学模型及其初步应用[J]. 岩石力学与工程学报, 2005, 24(05): 761-767.

[84] 李英明, 张 瀚, 孟祥瑞. 软岩巷道二次支护时机研究[J]. 煤炭学报, 2015, 40(S1): 47-52.

[85] 周小平, 钱七虎. 深埋巷道分区破裂化机制[J]. 岩石力学与工程学报, 2007, (05): 877-885.

[86] 李术才, 王汉鹏, 钱七虎, 等. 深部巷道围岩分区破裂化现象现场监测研究[J]. 岩石力学与工程学报, 2008, (08): 1545-1553.

[87] 李树忱, 冯现大, 李术才, 等. 深部岩体分区破裂化现象数值模拟[J]. 岩石力学与工程学报, 2011, 30(07): 1337-1344.

[88] 苏永华, 郑 璇. 深部节理岩体分区破裂化机制数值研究[J]. 公路交通科技, 2013, 30(01): 94-101.

[89] 高 强, 张强勇, 张绪涛, 等. 深部洞室开挖卸荷分区破裂机制的动力分析[J]. 岩土力学, 2018, 39(09): 3181-3194.

[90] 刘广茹. 深埋输水隧洞围岩分区破裂监测及支护优化设计研究[J]. 水利技术监督, 2021, (03): 24-26.

[91] 李邵军, 郑民总, 邱士利, 等. 中国锦屏地下实验室开挖隧洞灾变特征与长期原位力学响应分析[J]. 清华大学学报(自然科学版), 2021, 61(08): 842-852.

[92] 肖宝林. 浅析三峡船闸锚索预应力损失及锚固效果[J]. 人民长江, 2003, 34(09): 6-7.

[93] 张发明, 刘 宁, 陈祖煜, 等. 影响大吨位预应力长锚索锚固力损失的因素分析[J]. 岩土力学, 2003, 24(02): 194-197.

[94] 范卫琴. 锚索预应力损失规律的数值模拟[D]. 武汉: 武汉理工大学, 2007.

[95] 宋 洋, 李永启, 杜炎齐. 节理岩体剪切蠕变作用下锚杆预应力损失规律研究[J]. 岩土力学, 2020, 41(S2): 1-11.

[96] 王学滨, 潘一山, 张智慧. 基于加荷和卸荷模型的分区破裂化初步模拟及空间局部化机理[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(01): 1-7.

[97] 王学滨, 张智慧, 潘一山, 等. 岩石峰后脆性对圆形巷道围岩破坏及能量释放影响的数值模拟—兼谈滑移线与分区破裂化现象的差别[J]. 防灾减灾工程学报, 2013, 33(01): 11-17.

[98] 王学滨, 马 冰, 张智慧, 等. 不同轴压/侧压下逐步开挖马蹄形巷道围岩分区破裂化数值模拟[J]. 防灾减灾工程学报, 2019, 39(05): 827-834.

[99] 王学滨, 白雪元, 马 冰, 等. 巷道围岩非均质性对其分区破裂化的影响[J]. 中国矿业大学学报, 2019, 48(01): 78-86.

中图分类号:

 TU452    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式