- 无标题文档
查看论文信息

题名:

 冻融诱发土石混合体-混凝土界面损伤 演化机制研究    

作者:

 卢子涵    

学号:

 21204053041    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 081401    

学科:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 岩土工程    

导师姓名:

 唐丽云    

导师单位:

 西安科技大学    

提交日期:

 2024-06-13    

答辩日期:

 2024-06-02    

外文题名:

 Evolution mechanism of damage induced by freeze-thaw between soil-rock mixture and concrete interface    

关键词:

 冻融循环 ; 土石混合体-混凝土 ; 孔隙结构 ; 力学特性 ; 强度劣化机制    

外文关键词:

 Freeze-thaw cycles ; Soil-rock mixture-concrete ; Pore structure ; Mechanical properties ; Mechanism of strength deterioration    

摘要:

我国西部地区基础工程建设及运营过程广泛涉及冻融作用下土石混合体与结构物的接触问题。冻融循环下土石混合体-混凝土界面孔隙变形重组引起的界面强度劣化,对寒区基础工程的安全稳定造成严重影响。因此本文以不同含石率、冻融次数下土石混合体-混凝土组合试样为研究对象,借助核磁共振系统及CT扫描技术量化分析界面孔隙发育及连通性变化等细观演化特征,通过界面直剪试验探究不同工况下界面的宏观力学损伤特性,并采用PFC2D模拟软件分析冻融循环下土石混合体-混凝土界面的细观损伤发育与宏观响应规律间的内在关联,最终基于界面应力-位移曲线特征,建立考虑宏细观冻融损伤的界面粘结-滑移量化模型,深入解析冻融循环下土石混合体-混凝土界面冻融损伤演化机制,为寒区基础工程灾害防治提供理论依据。

针对冻融循环下土石混合体-混凝土界面孔隙结构形态变化问题。基于核磁结果分析发现,随冻融次数增加,孔隙占比主要呈现微小孔隙含量减少、中大孔隙增大的趋势。同时受含石量变化影响较为显著的是微孔和大孔,小孔含量占比始终为40%左右,中孔含量占比始终为20%左右。通过CT图像处理结果可知,冻融循环主要对颗粒间的粘结接触关系造成破坏,从三维模型显示看出试样内部喉道尺寸不断增大,且单个连通孔隙间逐渐接触贯通,封闭小孔也逐渐扩大形成较大孔隙。

针对冻融循环下土石混合体-混凝土界面宏观力学特性劣化问题。开展界面直剪试验得出土石混合体-混凝土界面剪切应力-位移曲线随冻融次数增加从显著下降到逐渐趋于稳定,随含石的增加曲线跳跃波动现象愈发显著。冻融循环下界面强度呈现两个典型阶段:0-10次冻融的阶段I内衰减速率较大,3种法向压力下高达40%、53%和62%;10-20次冻融的阶段II内衰减率仅为阶段I的1/2。通过界面剪切破坏特征可知,冻融及剪切下颗粒逐渐开始脱落并不断咬合翻滚,也证实了曲线“跳跃”现象的合理性。

针对冻融循环下土石混合体-混凝土界面宏细观内在关联问题。通过PFC2D软件模拟发现,随冻融次数的增加颗粒接触开始失效且旋转数量逐渐增大,随含石率的增加颗粒的旋转量也逐渐增大并主要发生于界面处。同时根据构建的界面孔隙与冻融强度劣化关联模型可知,冻融循环下土石混合体-混凝土界面强度损失率与冻融循环次数为正比关系,在孔隙度变化量增长前期强度劣化显著,当变化量值到达后期强度劣化逐渐放缓。

针对冻融循环下土石混合体-混凝土界面强度劣化机制问题。根据界面剪切应力-位移曲线分割点特征提出冻融界面曲线类型的判别准则,同时将分形维数与基于孔隙度定义的传统细观冻融损伤变量进行结合从而优化细观损伤变量,并将其引入宏观界面弹性模量计算中以剔除自身损伤带来的影响,最终建立考虑宏细观冻融损伤特性的界面粘结-滑移模型,优化后所得界面损伤模型的预测值与实测值吻合较好,计算误差仅为0.56%,相较传统模型预测效果更精准。

以上研究成果不仅对于认知寒区基础工程孕灾机制及针对性防控具有重要指导价值,而且是对冻融循环下土石混合体-混凝土界面基础理论研究的有益补充。

外文摘要:

In the construction and operation of infrastructure engineering in western China, the problem of contact between soil-rock mixture and structure under freeze-thaw cycles is widely involved. The deterioration of interfacial strength caused by pore deformation and recombination of soil-rock mixture and concrete under freeze-thaw cycles has a serious impact on the safety and stability of foundation engineering in cold area. Therefore, this paper takes the sample of soil-rock mixture and concrete combination under different stone content and freeze-thaw times as the research object, uses nuclear magnetic resonance system and CT scanning technology to quantitatively analyze the mesoscopic evolution characteristics such as interface pore development and connectivity changes, and explores the macroscopic mechanical damage characteristics of the interface under different working conditions through direct shear tests. In addition, PFC2D simulation software was used to analyze the internal relationship between the microscopic damage development and the macroscopic response rules of the soil-rock mixture and concrete interface under freeze-thaw cycles. Finally, based on the characteristics of the interface stress-displacement curve, a quantitative model of interfacial bonding-slip considering macro and microscopic freeze-thaw damage was established, and the evolutionary mechanism of freeze-thaw damage at the soil-rock mixture and concrete interface under freeze-thaw cycles was deeply analyzed. It provides theoretical basis for disaster prevention and control of basic engineering in cold area.

The change of pore structure at the interface between soil-rock mixture and concrete under freeze-thaw is studied. Based on the nuclear magnetic results, it was found that with the increase of freeze-thaw times, the pore proportion mainly shows a trend of small pore content decreasing and large pore size increasing. Ans the micropores and macropores are more significantly affected by the change of stone content, and the proportion of small pores is always about 40%, and the proportion of medium pores is always about 20%. According to the results of CT image processing, the freeze-thaw cycles mainly causes damage to the adhesive contact relationship between particles. The three-dimensional model shows that the size of the throat inside the sample continues to increase, and the single connected pores are gradually connected, and the closed pores are gradually expanded to form larger pores.

The macroscopic mechanical properties of the interface between soil-rock mixture and concrete under freeze-thaw cycles. The direct shear test at the interface shows that the shear stress-displacement curve at the interface of soil-rock mixture and concrete decreases significantly with the increase of freeze-thaw times and gradually tends to be stable, and the jump fluctuation phenomenon becomes more significant with the increase of rock content. The interface strength presents two typical phases under freeze-thaw cycles: the decay rate in the phase I of 0-10 freeze-thaw cycles is larger, and it is as high as 40%, 53% and 62% under three normal pressures. The attenuation rate in stage II of 10-20 freeze-thawing cycles is only 1/2 of that in stage I. According to the interface shear failure characteristics, the particles gradually began to fall off and continuously occluded and rolled both freeze-thaw and shear, which also confirmed the rationality of the curve "jumping" phenomenon.

The macro and micro correlation problem of the interface between soil-rock mixture and concrete under freeze-thaw cycles. Through PFC2D software simulation, it was found that the particle contact began to fail and the rotational quantity gradually increased with the increase of freeze-thaw times, and the rotational quantity of particles also gradually increased with the increase of rock content, mainly occurring at the interface. And according to the established correlation model between interfacial porosity andstrength deterioration under freeze-thaw cycles, it can be seen that the strength loss rate of soil-rock mixture and concrete interfacial strength under freeze-thaw cycles is proportional to the number of freeze-thaw times, and the strength deterioration is significant in the early stage of the increase of porosity change, and gradually slows down when the change value reaches the later stage.

The deterioration mechanism of the interface strength of soil-rock mixture and concrete under freeze-thaw cycles. According to the characteristics of the split-point of the interfacial shear stress-displacement curve, the criterion for the type of freeze-thaw interface curve is proposed. Meanwhile, the fractal dimension is combined with the traditional mesoscopic freeze-thaw damage variable defined based on porosity to optimize the mesoscopic damage variable, and it is introduced into the calculation of the macroscopic interfacial elastic modulus to eliminate the influence caused by its own damage. Finally, an interface bonding slip model considering the macro and micro freeze-thaw damage characteristics was established. After optimization, the predicted value of the interface damage model was in good agreement with the measured value, and the calculation error was only 0.56%, which was more accurate than the traditional model.

The above research results not only have important guiding value for the understanding of disaster pregnancy mechanism and targeted prevention and control of basic engineering in cold areas, but also are useful supplements for the study of soil-rock mixture and concrete interface under freeze-thaw cycles.

参考文献:

[1]马巍, 牛富俊, 赖远明, 等. 青藏高原重大冻土工程的基础研究. 甘肃省, 中国科学院寒区旱区环境与工程研究所, 2017-07-14.

[2] 蔡汉成, 李 勇, 杨永鹏, 等. 青藏铁路沿线多年冻土区气温和多年冻土变化特征[J]. 岩石力学与工程学报, 2016, 35(7): 1434-1444.

[3] 陈玉燕, 马学宁, 张正. 环境温度及含水率对土体温度场影响研究[J]. 自然灾害学报, 2022, 31(05): 168-174.

[4] 张莲海, 马巍, 石亚军, 等. 不同成冰机制下冻结锋面附近水分积聚模式及其工程环境意义[J/OL]. 冰川冻土: 1-11[2022-12-23].

[5] 中铁第一勘察设计院集团有限公司. 改建铁路青藏线格尔木至拉萨段扩能改造车站工程勘察报告[R]. 西安: 中铁第一勘察设计院集团有限公司, 2014.

[6] Tang L Y, Li G, Luo T, et al. Mechanism of shear strength deterioration of soil–rock mixture after freeze–thaw cycles[J]. Cold Regions Science and Technology, 2022, 200

[7] Qin Z P, Lai Y M, Tian Y, et al. Effect of freeze–thaw cycles on soil engineering properties of reservoir bank slopes at the northern foot of Tianshan Mountain. J Mt Sci, 2021, 18(2):541-557.

[8] Wu Q, Sheng Y, Yu Q, et al. Engineering in the rugged permafrost terrain on the roof of the world under a warming climate. Permafr Periglac Process, 2020, 31(3):417-428.

[9] Tian F H, Jian K L, Ben Z Z, et al. Study on Sliding Characteristics and Controlling Measures of Colluvial Landslides in Qinghai-Tibet Plateau[J]. Procedia Engineering, 2016, 143: 1477-1484.

[10] Wen J X, Qiang X, Rui L H. Study on the shear strength of soil–rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1235-1247.

[11] 穆彦虎, 马巍, 牛富俊, 等. 多年冻土区道路工程病害类型及特征研究[J]. 防灾减灾工程学报, 2014, 34(03): 259-267.

[12] 张玉芝, 杜彦良, 孙宝臣, 等. 季节性冻土地区高速铁路路基冻融变形规律研究[J]. 岩石力学与工程学报, 2014, 33(12): 2546-2553.

[13] Xie S B, Qu J J, Lai Y M, et al. Effects of Freeze–thaw Cycles on Soil Mechanical and Physical Properties in the Qinghai–Tibet Plateau[J]. Journal of Mountain Science, 2015, 12(4): 999-1009.

[14] Lu Z, Xian S, Yao H, et al. Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil[J]. Cold Regions Science and Technology, 2019, 157: 42-52

[15] 陆勇, 周国庆, 夏红春, 等. 中、高压下粗粒土-结构接触面特性受结构面形貌尺度影响的试验研究[J]. 岩土力学, 2013, 34(12): 3491-3499+3526.

[16] 李天降, 陈雪锋, 陈伟超, 等. 砂土与混凝土顶管界面摩擦特性试验研究[J]. 地质科技通报, 2021, 40(06): 178-184.

[17] Zhai Y, Gao H, Wang T N. Research on the Dynamic Response and Failure Characteristics of Concrete-Granite Specimens with Varied Interface Roughness[J]. Journal of Materials in Civil Engineering, 2023, 35(2).

[18] 陈静, 李邵军, 孟凡震, 等. 三峡库区滑坡土石混合体与桩的接触面力学特性试验研究[J]. 岩石力学与工程学报, 2011, 30(S1): 2888-2895.

[19] Liu H Y, Zhu M X, Li X J, et al. Experimental Study on Shear Behavior of Interface between Different Soil Materials and Concrete under Variable Normal Stress[J]. Applied Sciences, 2022, 12(21) : 11213-11213.

[20] 刘方成, 尚守平, 王海东. 粉质黏土-混凝土接触面特性单剪试验研究[J]. 岩石力学与工程学报, 2011, 30(08): 1720-1728.

[21] 张国栋, 罗雯, 杜鹏. 三峡库区典型土石混合体与混凝土接触面大型剪切试验研究[J]. 水利水电技术, 2014, 45(08): 149-152.

[22] 陈美婷, 赵光思, 雪青华, 等. 粗糙度对接触面处土石混合体剪切特性的影响[J]. 地下空间与工程学报, 2020, 16(05): 1328-1337.

[23] 陈琛, 冷伍明, 杨奇, 等. 考虑粗糙度和相对密实度下砂土-混凝土桩接触面力学特性试验研究[J]. 湖南大学学报(自然科学版), 2022, 49(11): 225-236.

[24] Ying M J, Liu F Y, Jun W, et al. Coupling effects of particle shape and cyclic shear history on shear properties of coarse-grained soil–geogrid interface[J]. Transportation Geotechnics, 2021, 27: 100504.

[25] 成浩, 王晅, 张家生, 等. 颗粒粒径对粗粒土-混凝土接触面剪切特性影响试验研究[J]. 应用基础与工程科学学报, 2018, 26(01): 145-153.

[26] O'Dwyer K G, McCabe B A, Sheil B B. Critical state shear strength at concrete-sand-bentonite slurry interfaces: mix proportions and rate effects[J]. Géotechnique Letters, 2022, : 1-24.

[27] 杨忠平, 李进, 刘浩宇, 等. 土石混合体-基岩界面剪切力学特性块石尺寸效应[J/OL]. 岩土力学, 2022(12): 1-10.

[28] 杨忠平, 刘浩宇, 李进, 等. 土石混合料–基岩接触面剪切力学特性及剪切带变形特征研究[J]. 岩石力学与工程学报, 2023, 42(02): 292-306.

[29] 刘飞禹, 姚嘉敏, 孔剑捷. 土石混合料-土工织物界面剪切特性研究[J].中国公路学报, 2024, 37(01): 35-43.

[30] 魏巍, 杨保存, 杨晓松. 粉细砂与混凝土接触面强度影响因素显著性分析[J]. 水利与建筑工程学报, 2021, 19(02): 77-82.

[31] Chang J, Liu J K, Li Y L. Frozen sand–concrete interface direct shear behavior under constant normal load and constant normal height boundary[J]. Journal of Zhejiang University-SCIENCE A, 2022, 23(11) : 917-932.

[32] Pan J J, Wang B X, Wang Q, et al. Deformation characteristics of the shear band of silty clay–concrete interface under the influence of freeze–thaw[J]. Cold Regions Science and Technology, 2023, 206.

[33] 何菲, 王旭, 蒋代军, 等. 基于含冰量的冻结砂土-混凝土接触面蠕变特性[J/OL]. 西南交通大学学报: 1-8 [2022-12-26].

[34] 孙铁成, 高晓静, 岳祖润, 等. 粉土–混凝土接触面冻结强度试验研究[J]. 岩石力学与工程学报, 2020, 39(05): 1032-1039.

[35] 丑亚玲, 原冰月. 基于冻融作用的固化硫酸盐渍土-混凝土界面力学行为[J]. 科学技术与工程, 2022, 22(31): 13914-13921.

[36] Jia H L, Ding S, Zi F, et al. Evolution in sandstone pore structures with freeze–thaw cycling and interpretation of damage mechanisms in saturated porous rocks[J]. Catena, 2020, 195: 104915.

[37] 马刚, 周伟, 常晓林, 等. 粗粒土与结构接触面特性的离散-连续耦合数值研究[J]. 岩土力学, 2012, 33(11): 3454-3464.

[38] Jamshidi A, Nikudel M R, Khamehchiyan M. A novel physico-mechanical parameter for estimating the mechanical strength of travertines after a freeze–thaw test[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(1): 181-190.

[39] Zhang G, Liu E, Chen S, et al. Micromechanical analysis of frozen silty clay–sand mixtures with different sand contents by triaxial compression testing combined with real-time CT scanning[J]. Cold Regions Science and Technology, 2019, 168: 102872.

[40] Wang Y, Li C H, Hu Y Z. 3D image visualization of meso–structural changes in a bimsoil under uniaxial compression using X–ray computed tomography (CT)[J]. Engineering Geology, 2019, 248: 61-69.

[41] Ji X, Han B, Hu J, et al. Application of the discrete element method and CT scanning to investigate the compaction characteristics of the soil–rock mixture in the subgrade[J]. Road Materials and Pavement Design, 2022, 23(2): 397-413.

[42] Wang Y, Li C H, Hu Y Z. X–ray computed tomography (CT) observations of crack damage evolution in soil–rock mixture during uniaxial deformation[J]. Arabian Journal of Geosciences, 2018, 11: 1-13.

[43] Sun H F, Yang Z K, Xing M X, et al. CT Investigation of fracture mechanism of soil–rock mixtures[J]. Applied Mechanics and Materials, 2012, 204: 67-71.

[44] Zhang Y, Lu Y, Liu S, et al. Volumetric behavior of an unsaturated clayey soil–rock mixture subjected to freeze–thaw cycles: A new insight[J]. Cold Regions Science and Technology, 2022, 201: 103608.

[45] Sun X K, Li X, Mao T Q, et al. Fracture evolution analysis of soil–rock mixture in contrast with soil by CT scanning under uniaxial compressive conditions[J]. Science China Technological Sciences, 2021, 64(12): 2771-2780.

[46] Xu W J, Zhang H Y. Meso and macroscale mechanical behaviors of soil–rock mixtures[J]. Acta Geotechnica, 2022, 17(9): 3765-3782.

[47] 徐文杰, 张海洋. 土石混合体研究现状及发展趋势[J]. 水利水电科技进展, 2013, 33(01): 80-88.

[48] 王宇, 李晓, 赫建明, 等. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 2014, 22(01): 112-123.

[49] 冯上鑫, 柴军瑞, 许增光, 等. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. 岩土力学, 2018, 39(08): 2886-2894.

[50] Li J, Kaunda R B, Zhou K. Experimental investigations on the effects of ambient freeze–thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology, 2018, 154: 133-141.

[51] Shen A, Lin S, Guo Y, et al. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and Freeze–thaw interaction in seasonal frozen regions[J]. Construction and Building Materials, 2018, 174: 684-692.

[52] Aldaood A, Bouasker M, Al-Mukhtar M. Impact of freeze–thaw cycles on mechanical behaviour of lime stabilized gypseous soils[J]. Cold Regions Science and Technology, 2014, 99: 38-45.

[53] Konrad J M, Duquennoi C. A model for water transport and ice lensing in freezing soils[J]. Water Resources Research, 1993, 29(9): 3109-3124.

[54] Liu Y, Deng H, Xu J, et al. Association study on the pore structure and mechanical characteristics of coarse-grained soil under freeze–thaw cycles[J]. Minerals, 2022, 12(3): 314.

[55] Tang L Y, Li G, Li Z, et al. Shear properties and pore structure characteristics of soil–rock mixture under freeze–thaw cycles[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(4): 3233-3249.

[56] Tang L Y, Li G, Luo T, et al. Mechanism of shear strength deterioration of soil-rock mixture after freeze–thaw cycles[J]. Cold Regions Science and Technology, 2022: 103585.

[57] 毛坚强. 一种解岩土工程变形体-刚体接触问题的有限元法[J]. 岩土力学, 2004(10): 1592-1598.

[58] 周健, 张刚, 曾庆有. 主动侧向受荷桩模型试验与颗粒流数值模拟研究[J]. 岩土工程学报, 2007, No.174(05): 650-656.

[59] 张华, 陆阳. 基于有限差分与离散元耦合的支挡结构数值计算方法[J]. 岩土工程学报, 2009, 31(09): 1402-1407.

[60] 周健, 邓益兵, 贾敏才, 等. 基于颗粒单元接触的二维离散-连续耦合分析方法[J]. 岩土工程学报, 2010, 32(10): 1479-1484.

[61] Xu W J, Hu L M, GaoW. Random generation of the meso–structure of a soil–rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86 : 166-178.

[62] Shan P F, Lai X P. Mesoscopic structure PFC–2D model of soil rock mixture based on digital image.[J]. J. Visual Communication and Image Representation, 2019, 58 : 407-415.

[63] 杨升, 李晓庆. 基于3维离散元颗粒流的土石混合体大型直剪试验模拟分析[J]. 工程科学与技术, 2020, 52(03): 78-85.

[64] 丁秀丽, 李耀旭, 王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 2010, 29(03): 477-484.

[65] 张强, 汪小刚, 赵宇飞, 等. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究[J]. 岩土工程学报, 2019, 41(08): 1545-1554.

[66] 张强, 汪小刚, 赵宇飞, 等. 土石混合体三维细观结构随机重构及其力学特性颗粒流数值模拟研究[J]. 岩土工程学报, 2019, 41(01): 60-69.

[67] 杨忠平, 刘浩宇, 李进, 等. 土石混合料-基岩接触面剪切力学特性及剪切带变形特征研究[J/OL]. 岩石力学与工程学报: 1-14[2022-12-29].

[68] Xu W J, Wang S, Zhang H Y. Discrete element modelling of a soil–rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86 : 141-156.

[69] Clough G W, Duncan J M. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673.

[70] Brandt J R T. Behaviour of soil-concrete interfaces[J]. 1985.

[71] 陈慧远. 摩擦接触单元及其分析方法[J]. 水利学报, 1985(04): 44-50.

[72] Mortara G, Ferrara D, Fotia G. Simple model for the cyclic behavior of smooth sand-steel interfaces[J]. Journal of geotechnical and geoenvironmental engineering, 2010, 136(7): 1004-1009.

[73] 殷宗泽, 朱泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994(03): 14-22.

[74] Boulon M, Nova R. Modelling of soil–structure interface behaviour a comparison between elastoplastic and rate type laws[J]. Computers and Geotechnics, 1990, 9(1-2): 21-46.

[75] Desai C S, Zaman M M, Lightner J G, et al. Thin–layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19-43.

[76] 杨林德, 刘齐建. 土-结构物接触面统计损伤本构模型[J]. 地下空间与工程学报, 2006(01): 79-82+86.

[77] 叶妤文, 麦健, 张学峰. 公路桥梁桩基础受竖向荷载桩侧土接触面损伤机理模型试验研究[J]. 公路交通科技, 2021, 38(06): 104-111.

[78] 方火浪, 王文杰, 施可南. 粒状土与结构接触面多重剪切边界面模型[J]. 哈尔滨工业大学学报, 2020, 52(11): 80-87.

[79] 刘志强, 王博, 王涛, 等. 高压冻(融)土-结构接触面剪切应力-应变关系[J]. 哈尔滨工业大学学报, 2021, 53(05): 134-140.

[80] Meng Q X, Wang H L, Xu W Y, et al. A numerical homogenization study of the elastic property of a soil-rock mixture using random mesostructure generation[J]. Computers and Geotechnics, 2018, 98: 48-57.

[81] Zhao Y, Liu K, Liu H, et al. Study on stability analysis of soil–rock mixture slopes under freeze-thaw erosion in Greater Khingan Mountains[J]. Lithosphere, 2022, 2022(Special 10): 6936421.

[82] 中华人民共和国交通运输部. 公路土工试验规程 (JTG 3430-2020)[S]. 北京:人民交通出版社, 2020.

[83] Fu X, Ding H, Sheng Q, et al. Fractal analysis of particle distribution and scale effect in a soil–rock mixture[J]. Fractal and Fractional, 2022, 6(2): 120.

[84] Xu W J, Zhang H Y. Research on the effect of rock content and sample size on the strength behavior of soil–rock mixture[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 2715-2726.

[85] 中华人民共和国住房和城乡建设部. 土工试验方法标准 (GBT 50123-2019)[S]. 北京:中国计划出版社, 2019.

[86] Tatsuya Ishikawa, Seiichi Miura. Influence of Freeze–Thaw Action on Deformation–Strength Characteristics and Particle Crushability of Volcanic Coarse–Grained Soils[J]. Soils and Foundations, 2011, 51(5): 785-799.

[87] Xing K, Zhou Z, Yang H, et al. Macro–meso freeze–thaw damage mechanism of soil–rock mixtures with different rock contents[J]. International Journal of Pavement Engineering, 2020, 21(1) : 9-19.

[88] 中华人民共和国行业标准编写组. 水利水电工程岩石试验规程 (SL/T 264-2020)[S]. 北京:中国水利水电出版社,2020.

[89] Chen B, Luo S, Lü S, et al. Effects of the soil freeze–thaw process on the regional climate of the Qinghai–Tibet Plateau[J]. Climate Research, 2014, 59(3): 243-257.

[90] Qin Y, Liu W, Guo Z, et al. Spatial and temporal variations in soil temperatures over the Qinghai–Tibet Plateau from 1980 to 2017 based on reanalysis products[J]. Theoretical and Applied Climatology, 2020, 140: 1055-1069.

[91] Sun Z Z, Ma W, Wu G L, et al. Permafrost degradation along the Qinghai–Tibet Highway from 1995 to 2020[J]. Advances in Climate Change Research, 2023, 14(2): 248-254.

[92] Tang L Y, Li G, Li Z, et al. Shear properties and pore structure characteristics of soil–rock mixture under freeze–thaw cycles[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 3233-3249.

[93] Kitamaki Y, Saito N, Yamazaki T, et al. Determination of PAHs in solution with a single reference standard by a combination of 1H quantitative NMR spectroscopy and chromatography[J]. Analytical Chemistry, 2017, 89(13): 6963-6968.

[94] Brabants L, Reniers B, Cavus H, et al. Computed tomography to evaluate the influence of the internal concrete structure on attenuation coefficients[J]. Radiation Physics and Chemistry, 2022, 201: 110433.

[95] 王宇, 李晓, 毛天桥, 等. 三轴循环荷载下土石混合体细观结构劣化实时CT扫描试验研究[J]. 工程地质学报, 2023, 31(06): 1820-1832.

[96] Tatsuya Ishikawa, Seiichi Miura. Influence of Freeze–Thaw Action on Deformation–Strength Characteristics and Particle Crushability of Volcanic Coarse–Grained Soils[J]. Soils and Foundations, 2011, 51(5): 785-799.

[97] Zhou Z, Xing K, Yang H, et al. Damage mechanism of soil–rock mixture after freeze–thaw cycles[J]. Journal of Central South University, 2019, 26(1): 13-24..

[98] 中华人民共和国交通运输部. 公路土工试验规程 (JTG 3430-2020)[S]. 北京:人民交通出版社, 2020.

[99] Lindquist E S, Goodman R E. Strength and deformation properties of a physical model. In: Proceedings of the first North American rock mechanics conference, Balkema, Rotterdam 1994: 843-50.

[100] Liu Y, Deng H W, Xu J R, et al. Association Study on the Pore Structure and Mechanical Characteristics of Coarse–Grained Soil under Freeze–Thaw Cycles[J]. Minerals, 2022, 12(3): 314-314.

[101] Ren L, Zhao L Y, Niu F J. A physically–based elastoplastic damage model for quasi–brittle geomaterials under freeze–thaw cycles and loading[J]. Applied Mathematical Modelling, 2022, 106: 276-298.

[102] Garcia E, Bennett D W, Connelly M A, et al. The extended lipid panel assay: a clinically–deployed high–throughput nuclear magnetic resonance method for the simultaneous measurement of lipids and Apolipoprotein B[J]. Lipids in health and disease, 2020, 19: 1-11.

[103] Song X, Gao H, Feng C, et al. Analysis of the Influence of Micro–Pore Structure on Oil Occurrence Using Nano–CT Scanning and Nuclear Magnetic Resonance Technology: An Example from Chang 8 Tight Sandstone Reservoir, Jiyuan, Ordos Basin[J]. Processes, 2023, 11(4): 1127.

[104] 刘瑾, 车文越, 郝社锋, 等. 基于CT技术的黄原胶加固土干湿循环条件下力学性能和微观结构劣化机制研究[J/OL]. 岩土工程学报: 1-8 [2024-01-03].

[105] 唐丽云, 李屹恒, 于永堂, 等. 冻融作用下土石混合体-混凝土界面强度劣化、孔隙结构演化及颗粒运移研究[J]. 冰川冻土, 2023, 45(03): 1047-1062.

[106] Fu X, Ding H, Sheng Q, et al. Fractal Analysis of Particle Distribution and Scale Effect in a Soil–Rock Mixture[J]. Fractal and Fractional, 2022, 6(2): 120.

[107] Li S, Zhang M, Tian Y, et al. Experimental and numerical investigations on frost damage mechanism of a canal in cold regions[J]. Cold Regions Science and Technology, 2015, 116: 1-11.

[108] Cho N, Martin C D, Sego D C. Development of a shear zone in brittle rock subjected to direct shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1335-1346.

[109] Wang Y, Li X, Zheng B, et al. Experimental study on the non–Darcy flow characteristics of soil–rock mixture[J]. Environmental Earth Sciences, 2016, 75: 1-18.

[110] Gargiulo L, Mele G, Terribile F. Effect of rock fragments on soil porosity: a laboratory experiment with two physically degraded soils[J]. European Journal of Soil Science, 2016, 67(5): 597-604.

[111] Mishakin V ,Klyushnikov V ,Gonchar A , et al. On assessing damage in austenitic steel based on combination of the acoustic and eddy current monitoring[J]. International Journal of Engineering Science, 2019, 135.

[112] 朱翔琛, 张云升, 刘志勇, 等. 基于核磁共振技术的硫酸盐冻融下机制骨料混凝土孔结构演变规律研究[J/OL]. 复合材料学报: 1-14 [2024-01-28].

[113] 许胜兵, 彭旭东, 戴全厚, 等. 喀斯特高原石漠化区露石岩-土界面与非岩-土界面土壤入渗特性差异[J]. 水土保持学报, 2022, 36(05): 136-143.

[114] 王伟先. 冻融作用下BFRP-混凝土界面粘结性能研究[D]. 吉林建筑大学, 2023.

[115] 唐丽云, 黄涛, 汪卫兵, 等. 冻融循环下土石混合体-混凝土界面剪切特性及孔隙结构演化特征试验研究[J]. 中南大学学报(自然科学版), 2023, 54(05): 1954-1969.

[116] 张慧梅, 王云飞. 冻融红砂岩损伤演化多尺度分析[J]. 岩土力学, 2022, 43(08): 2103-2114.

中图分类号:

 TU445    

开放日期:

 2028-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式