- 无标题文档
查看论文信息

论文中文题名:

 基于区块链的供应链溯源优化与应用研究    

姓名:

 郭林纬    

学号:

 19308208015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085212    

学科名称:

 工学 - 工程 - 软件工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 计算机科学与技术学院    

专业:

 软件工程    

研究方向:

 区块链    

第一导师姓名:

 张卫国    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-01-09    

论文答辩日期:

 2022-12-05    

论文外文题名:

 Research on Optimization and Application of Supply Chain Traceability Based on Blockchain    

论文中文关键词:

 区块链 ; 供应链溯源 ; 查询优化 ; 数据分片 ; 二手车溯源    

论文外文关键词:

 Blockchain ; Traceability of Supply Chain ; Query Optimization ; Data Fragmentation ; Used Car Traceability    

论文中文摘要:

当今社会商品质量问题频繁发生,供应链溯源作为有效监管手段之一变得十分重要。传统供应链溯源方法存在数据易篡改、数据孤岛等问题,目前较为流行的是通过区块链技术去中心化存储、节点共识等特点解决上述问题。但区块链由于单个节点性能有限、链式结构等因素,存在查询效率低、查询方式单一的问题。针对区块链查询中存在的问题,本文提出基于数据分片的区块链溯源查询优化方法,并通过Hyperledger Fabric平台完成验证与应用,具体工作如下:

针对区块链查询效率低的问题,本文提出基于数据分片的区块链溯源查询优化方法,上传的数据达成共识并广播发送后,各节点根据数据摘要将数据存储到本地对应分片中,链上只存储溯源信息摘要。进行查询时,通过链码将待查询事务根据事务摘要分发给多个节点并行查询,减少单节点查询的事务数量。节点内部根据事务范围,调用多个进程在本地对应分片并行查询,提高查询效率。针对区块链查询方式单一的问题抽象出4种查询请求:查询某时间点某产品位置信息、查询某时间段内某个体所经手的所有产品、查询某产品所有原材料信息、查询某原材料所有成品信息,并结合基于数据分片的区块链溯源查询优化方法给出具体算法流程。随后基于Hyperledger Fabric平台在不同的数据集进行对比试验,验证本文方法的高效性与可行性。

在基于数据分片的区块链溯源查询优化方法基础上设计基于区块链的供应链溯源方案。分析区块链应用于供应链溯源的可行性,对基于区块链的供应链溯源系统做出设计,将区块链技术与供应链溯源场景相结合,通过方案的数据存储、查询、验证等核心流程实现供应链高效、可信数据溯源,为供应链溯源提供安全的数据存储环境与高效的数据查询方法。

最后以二手车溯源为案例,通过分析基于区块链的二手车溯源流程,结合本文基于数据分片的区块链溯源查询优化方法与基于区块链的供应链溯源方案,在搭建的区块链环境中开发基于区块链的二手车溯源系统。实现二手车数据存储、查询、验证功能,将结果以网页的形式呈现。

论文外文摘要:

Nowadays, commodity quality problems frequently occur in society, and supply chain traceability becomes very important as one of effective supervision means. Traditional supply chain traceability methods have some problems, such as easy data tampering and isolated data island. At present, it is more popular to solve these problems through the characteristics of decentralized storage and node consensus of blockchain technology. However, due to the limited performance of a single node, chain structure and other factors, blockchain has the problems of low query efficiency and single query mode. Aiming at the problems existing in blockchain query, this paper puts forward an optimization method of blockchain traceability query based on data fragmentation, and completes verification and application through Hyperledger Fabric platform. The specific work is as follows:

 Aiming at the problems of low query efficiency and single query mode of blockchain: firstly, combining with the idea of data fragmentation, an optimization method of blockchain traceability query based on data fragmentation is proposed. After the uploaded data reaches a consensus and is broadcast and sent, each node stores the data in the local corresponding fragment according to the information digest, and only the traceability information digest is stored in the chain. When query is needed, the transactions to be queried are distributed to different nodes by chain codes according to transaction summaries for parallel query, thus reducing the number of transactions queried by a single node. According to the transaction scope, the node calls multiple processes to query in parallel locally, which improves the query efficiency. Secondly, according to the diversified demand of supply chain traceability query, four kinds of query requests are abstracted: query the location information of a product at a certain point in time, query all products handled by an individual in a certain period of time, query all raw material information of a product, query all finished product information of a raw material, and give the specific algorithm flow by combining the blockchain traceability query optimization method based on data fragmentation. Then, based on Hyperledger Fabric platform, a comparative experiment was conducted in different data sets to verify the efficiency and feasibility of this method.

Design a supply chain traceability scheme based on blockchain on the basis of blockchain traceability query optimization method based on data fragmentation. This paper analyzes the feasibility of applying blockchain to supply chain traceability, designs a supply chain traceability system based on blockchain, combines blockchain technology with supply chain traceability scenarios, and realizes efficient and verifiable data traceability in supply chain through the core processes of data storage, query and verification of the scheme, thus solving the problems of easy data tampering and poor traceability in traditional supply chain traceability schemes.

Finally, taking the used car traceability as an example, by analyzing the used car traceability process based on blockchain, combining the blockchain traceability query optimization method based on data fragmentation and the supply chain traceability scheme based on blockchain in this paper, the used car traceability system based on blockchain is developed in the built blockchain environment. Realize the storage, query and verification functions of used car data, and present the results in the form of web pages, so as to realize the trusted traceability of used cars.

参考文献:

[1]邵奇峰, 金澈清, 张召等. 区块链技术: 架构及进展[J]. 计算机学报, 2018, 41(05): 969-988

[2]Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. Decentralized Business Review, 2008: 21260.

[3]Monrat A A, Schelén O, Andersson K. A survey of blockchain from the perspectives of applications, challenges, and opportunities[J]. IEEE Access, 2019, 7: 117134-117151.

[4]代闯闯, 栾海晶, 杨雪莹等. 区块链技术研究综述[J]. 计算机科学, 2021, 48(S2): 500-508.

[5] Yi H. Securing e-voting based on blockchain in P2P network[J]. EURASIP Journal on Wireless Communications and Networking, 2019: 1-9.

[6]Kelepouris T, Pramatari K, Doukidis G.RFID‐enabled traceability in the food supply chain[J]. Industrial Management & data systems, 2007.: 183-200

[7]刘芳, 薛莲. 农产品产业链安全溯源体系设计与实现[J]. 江苏农业科学, 2017, 45(08): 206-209

[8]张敬, 李风华 ,魏旭光. 供应链治理模式选择的理论溯源与研究展望[J]. 管理现代化, 2019, 39(06): 115-120.

[9]Yuchi Q, Wang N, He Z, et al. Hybrid heuristic for the location‐inventory‐routing problem in closed‐loop supply chain[J]. International Transactions in Operational Research, 2021, 28(3): 1265-1295.

[10]李娟娟, 袁勇, 王飞跃. 基于区块链的数字货币发展现状与展望[J]. 自动化学报, 2021, 47(04): 715-729.

[11]Wang S, Yuan Y, Wang X, et al. An overview of smart contract: architecture, applications, and future trends[C]//Proceding of the 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018: 108-113.

[12]Vujičić D, Jagodić D, Ranđić S. Blockchain technology, bitcoin, and ethereum: A brief overview[C]//Proceding of the 17th international symposium infoteh-jahorina. IEEE, 2018: 1-6.

[13]Wang Q, Su M. Integrating blockchain technology into the energy sector-from theory of blockchain to research and application of energy blockchain[J]. Computer Science Review, 2020, 37: 100275: 157-168

[14]Zhang L, Peng M, Wang W, et al. Secure and efficient data storage and sharing scheme based on double blockchain[J]. 2021: 499-515

[15]Qin Q, Jin B, Liu Y. A secure storage and sharing scheme of stroke electronic medical records based on consortium blockchain[J]. BioMed Research International, 2021.: 1-14

[16]陈飞, 叶春明, 陈涛. 基于区块链的食品溯源系统设计[J]. 计算机工程与应用, 2021, 57(02): 60-69.

[17]杜瑞忠, 谭艾伦, 田俊峰. 基于区块链的公钥可搜索加密方案[J]. 通信学报, 2020, 41(04): 114-122.

[18]Li X, Jiang P, Chen T, et al. A survey on the security of blockchain systems[J]. Future Generation Computer Systems, 2020, 107: 841-853.

[19]陈思吉, 翟社平, 汪一景. 一种基于环签名的区块链隐私保护算法[J]. 西安电子科技大学学报, 2020, 47(05): 86-93.

[20]Xu Y, Zhao S, Kong L, et al. ECBC: A high performance educational certificate blockchain with efficient query[C]//Proceding of the 2017 International Colloquium on Theoretical Aspects of Computing. ,2017: 288-304.

[21]华亚洲, 丁琳琳, 陈泽, 王俊陆, 朱珠. 面向时空数据的区块链构建及查询方法[J]. 计算机应用, 2022: 1-10.

[22]Jia D, Xin J, Wang Z, et al. ElasticChain: Support very large blockchain by reducing data redundancy[C]//Proceding of the 2nd Asia Pacific Web and Web-Age Information Management Joint Conference on Web and Big Data, 2018: 440-454.

[23]贾大宇, 信俊昌, 王之琼等. 存储容量可扩展区块链系统的高效查询模型[J]. 软件学报, 2019, 30(09): 2655-2670.

[24]Yadav A S, Kushwaha D S. Query Optimization in a Blockchain-Based Land Registry Management System[J]. Ingénierie des Systèmes d Inf., 2021, 26(1):13-21.

[25]Li Y, Zheng K, Yan Y, et al. EtherQL: a query layer for blockchain system[C]//International Conference on Database Systems for Advanced Applications. 2017: 556-567.

[26]隋源, 汪卫, 邓雪. 一种面向区块链的链下数据库高吞吐量可验证查询方法[J]. 小型微型计算机系统, 2021, 42(06): 1304-1312.

[27]余涛, 牛保宁, 樊星. FabricSQL: 区块链数据的关系查询[J]. 计算机工程与设计, 2020, 41(10): 2988-2995.

[28]Nathan S, Govindarajan C, Saraf A, et al. Blockchain meets database: Design and implementation of a blockchain relational database[J]. arXiv preprint arXiv:1903.01919, 2019.

[29]Wan L. An optimization method for blockchain electronic transaction queries based on indexing technology[C]//Proceding of the 2nd Big Data Analytics for Cyber-Physical System in Smart City, 2020: 1273-1281.

[30]郑浩瀚, 申德荣, 聂铁铮等. 面向混合索引的区块链系统的可查询性优化[J]. 计算机科学, 2020,47 10: 301-308.

[31]Chang S E, Chen Y. When blockchain meets supply chain: A systematic literature review on current development and potential applications[J]. IEEE Access, 2020, 8: 62478-62494.

[32]Saberi S, Kouhizadeh M, Sarkis J, et al. Blockchain technology and its relationships to sustainable supply chain management[J]. International Journal of Production Research, 2019, 57(7): 2117-2135.

[33]Dhumwad S, Sukhadeve M, Naik C, et al. A peer to peer money transfer using SHA256 and Merkle tree[C]//Proceding of the Annual International Conference in Advanced Computing and Communications, 2017: 40-43.

[34]Zheng Z,Xie S,Dai H N,et al. Blockchain challenges and opportunities: A survey[J].International Journal of Web and Grid Services, 2018, 14(4): 352-375.

[35]Wang R L. Application of Blockchain Technology in Supply Chain Finance in Beibu Gulf Region[C]//Proceding of the 2021 International Wireless Communications and Mobile Computing, 2021: 1860-1864.

[36]Cao B, Wang X, Zhang W, et al. A many-objective optimization model of industrial internet of things based on private blockchain[J]. IEEE Network, 2020, 34(5): 78-83.

[37]王皓, 宋祥福, 柯俊明等. 数字货币中的区块链及其隐私保护机制[J]. 信息网络安全, 2017 (7): 32-39.

[38]Neudecker T, Hartenstein H. Network layer aspects of permissionless blockchains[J]. IEEE Communications Surveys & Tutorials, 2018, 21(1): 838-857.

[39]宋焘谊, 赵运磊. 区块链共识算法的比较研究[J]. 计算机应用与软件, 2018, 35(08): 1-8.

[40]Carter J L, Wegman M N. Universal classes of hash functions[J]. Journal of computer and system sciences, 1979, 18(2): 143-154.

[41]Rivest R L. The MD4 message digest algorithm[C]//Proceding of the Conference on the Theory and Application of Cryptography, 1990: 303-311.

[42]Rivest, Ronald, and S. Dusse.The MD5 message-digest algorithm.[R]. 1992: 330-344.

[43]Rachmawati D, Tarigan J T, Ginting A B C. A comparative study of Message Digest 5 (MD5) and SHA256 algorithm[C]//Proceding of the Journal of Physics: Conference Series., 2018: 1-6

[44]何蒲, 于戈, 张岩峰等. 区块链技术与应用前瞻综述[J]. 计算机科学, 2017, 44(4): 1-7.

[45]Lepore C, Ceria M, Visconti A, et al. A survey on blockchain consensus with a performance comparison of PoW, PoS and pure PoS[J]. Mathematics, 2020, 8(10): 1782.

[46]刘艺华, 陈康. 区块链共识机制新进展[J]. 计算机应用研究, 2020, 37(S2): 6-11.

[47]Keenan T P. Alice in blockchains: surprising security pitfalls in PoW and PoS blockchain systems[C]//Proceding of the 15th Annual Conference on Privacy, Security and Trust, 2017: 4000-4002.

[48]Saleh F. Blockchain without waste: Proof-of-stake[J]. The Review of financial studies, 2021, 34(3): 1156-1190.

[49]Ongaro D, Ousterhout J. In search of an understandable consensus algorithm[C]//Proceding of the2014 USENIX Annual Technical Conference, 2014: 305-319.

[50]Ongaro D. Consensus: Bridging theory and practice[M]. Stanford University, 2014.

[51]Watanabe H, Fujimura S, Nakadaira A, et al. Blockchain contract: Securing a blockchain applied to smart contracts[C]//Proceding of the 2016 International conference on consumer electronics, 2016: 467-468.

[52]Szabo N. Formalizing and securing relationships on public networks[J]. First monday, 1997.2(9): 48-54

[53]Gervais A, Capkun S, Karame G O, et al. On the privacy provisions of bloom filters in lightweight bitcoin clients[C]//Proceedings of the Annual Computer Security Applications Conference. 2014: 326-335.

[54]Androulaki E, Barger A, Bortnikov V, et al. Hyperledger fabric: a distributed operating system for permissioned blockchains[C]//Proceedings of the 2018 EuroSys conference. 2018: 1-15.

中图分类号:

 TP391    

开放日期:

 2023-01-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式