- 无标题文档
查看论文信息

论文中文题名:

 安阳煤矿软岩回采巷道变形破坏机理及控制研究    

姓名:

 高守世    

学号:

 20203077024    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 张杰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-06-09    

论文外文题名:

 Study on deformation failure mechanism and control of soft rock mining roadway in Anyang Coal Mine    

论文中文关键词:

 回采动压 ; 软岩巷道 ; 极限分析理论 ; 变形机理 ; 补强支护    

论文外文关键词:

 Mining dynamic pressure ; Soft rock roadway ; Limit analysis theory ; Deformation mechanism ; Reinforcement support    

论文中文摘要:

在工作面回采过程中,煤岩体应力重新分布,造成工作面前方及侧向应力集中,引起回采动压区巷道围岩发生变形和破坏,研究回采动压软岩巷道变形破坏机理及控制具有重要的应用价值。本文以安阳煤矿1506工作面回风巷为工程背景,采用室内试验、理论分析、物理模拟、数值计算及现场实测相结合的研究方法,研究了回采动压软岩巷道围岩变形破坏机理及控制技术,主要研究成果如下:

(1)通过1506回风巷煤岩力学测试分析,岩石质量评价以及回采扰动影响范围钻孔探测分析,确定了1506回风巷的围岩性质为软岩,工作面超前60m的范围受到回采扰动的影响。采用塑性力学中的极限分析理论,构建了动压软岩巷道围岩破坏的刚性滑块体系破坏模型,推导得出了巷道围岩速度间断线内滑块的自重功率、围岩压力做功功率以及速度间断线能量耗散率计算公式,并得到了速度间断线高度的上限目标函数。利用Origin进行多变量约束条件下的目标函数求解,得到了目标函数的局域最大值。

(2)采用物理相似模拟的方法分析了不同采动应力下围岩裂隙发育特征和软岩巷道变形破坏机理,验证了理论速度间断线分布形态的准确性。模拟结果表明巷道变形破坏主要是由于围岩内部微观裂隙沿支护盲区及低强度支护区扩展和贯通,导致锚固系统产生滑移破坏。进一步采用数值模拟分析了1506工作面回采过程中巷道围岩变形破坏特征及应力演化规律。在工作面回采期间,正帮垂直应力峰值增加17.59MPa。副帮垂直应力峰值增加11.93MPa,围岩变形量与物理模拟中得到的结果基本相同。

(3)针对回采动压软岩巷道覆岩“大”结构高应力和“小”结构支护强度不足的问题,提出巷道“顶板预裂卸压”和“高强度、高预紧力长锚索强化”的综合围岩控制措施,计算得到顶板预裂及补强支护的相关参数。现场监测结果表明,使用该方案后,煤体峰值应力、顶底板移近量以及两帮移近量都大幅度降低,围岩控制效果良好。

论文外文摘要:

During the mining process of the working face, the stress redistribution of coal and rock mass causes the stress concentration in front of the working face and the lateral stress concentration, which causes the deformation and failure of the surrounding rock of the roadway in the mining dynamic pressure area. It is of great application value to study the deformation and failure mechanism and control of the mining dynamic pressure soft rock roadway. In this paper, the return airway of 1506 working face in Anyang Coal Mine is taken as the engineering background. The deformation and failure mechanism and control technology of surrounding rock in mining dynamic pressure soft rock roadway are studied by means of indoor test, theoretical analysis, physical simulation, numerical calculation and field measurement. The main research results are as follows:

(1) Through the analysis of coal and rock mechanics test, rock quality evaluation and drilling detection analysis of the influence range of mining disturbance in 1506 return airway, it is determined that the surrounding rock of 1506 return airway is soft rock, and the range of 60 m ahead of working face is affected by mining disturbance. Based on the limit analysis theory in plastic mechanics, the failure model of rigid slider system for surrounding rock failure of dynamic soft rock roadway is constructed. The calculation formulas of self-weight power, working power of surrounding rock pressure and energy dissipation rate of velocity discontinuity line in roadway surrounding rock velocity discontinuity line are derived, and the upper limit objective function of velocity discontinuity line height is obtained. Using Origin to solve the objective function under multivariate constraints, the local maximum value of the objective function is obtained.

(2) The physical similarity simulation method is used to analyze the fracture development characteristics of surrounding rock and the deformation and instability mechanism of soft rock roadway under different mining stress, and the accuracy of the theoretical velocity discontinuity distribution is verified. The simulation results show that the deformation and failure of the roadway is mainly due to the expansion and penetration of the micro-cracks in the surrounding rock along the blind area of the support and the low-strength support area, resulting in slip failure of the anchorage system. The deformation and failure characteristics and stress evolution law of roadway surrounding rock during the mining process of 1506 working face are further analyzed by numerical simulation. During the mining period of the working face, the peak vertical stress of the front wall increased by 17.59 MPa. The peak vertical stress of the secondary wall increases by 11.93 MPa, and the deformation of the surrounding rock is basically the same as that obtained in the physical simulation.

(3) Aiming at the problem of high stress of “big” structure and insufficient support strength of “small” structure in overlying strata of mining dynamic pressure soft rock roadway, the comprehensive surrounding rock control measures of “roof pre-splitting pressure relief” and “high strength, high pre-tightening force long anchor cable strengthening” are put forward, and the relevant parameters of roof pre-splitting and reinforcement support are calculated. The field monitoring results show that the peak stress of coal, the convergence of roof and floor and the convergence of two sides are greatly reduced, and the control effect of surrounding rock is good.

参考文献:

[1] 中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究[M].北京:科学出版社,2011.

[2] 国家发展改革委,发改能源[2012]640号.煤炭工业发展“十二五”规划[S],2012.

[3] 杨真,郭瑞瑞,杨永亮.浅埋深综放工作面矿压显现规律及控制研究[J].工矿自动化,2020,46(9):44-50.

[4] 袁亮,薛俊华,刘泉声,等.煤矿深部岩巷围岩控制理论与支护技术[J].煤炭学报,2011,36(4):535-543.

[5] 耿继业,王方田,张洋,等.高应力煤巷围岩控制关键技术研究[J].煤炭科学技术,2019,47(9):189-196.

[6] 王文林,赵宾,王方田.综放面沿空侧巷道支护设计的数值模拟与应用[J].黑龙江科技大学学报,2019,29(5):521-526.

[7] 翁明月.深部大断面回采巷道顶板锚固层稳定控制机理与技术研究[D].辽宁:辽宁工程技术大学,2017.

[8] 刘金海,姜福兴,孙广京,等.深井综放面沿空顺槽超前液压支架选型研究[J].岩石力学与工程学报,2012,31(11):2232-2239.

[9] 张德生,牛艳奇,孟峰.综采工作面超前支护技术现状及发展[J].矿山机械,2014,42(8):1-5.

[10] 范京道,闫振国,李川.基于5G技术的煤矿智能化开采技术研究与探索[J].煤炭科学技术,2020,44(1):10-17.

[11] 范京道,李川,闫振国.融合5G技术生态的智能煤矿总体架构及核心场景[J].煤炭学报,2020,44(5):1-11.

[12] QIAN M-g. A study of the behavior of overlying strata in longwall mining and its application to strata control[J]. Proceedings of the Symposium on Strata Mechanics, 1981(32): 13-17.

[13] 高玉兵,王琦,杨军,等.特厚煤层综放开采临空动压巷道围岩变形机理及卸压控制[J/OL].煤炭科学技术:1-12[2023-02-14].

[14] 张源,万志军,李付臣,等.不稳定覆岩下沿空掘巷围岩大变形机理[J].采矿与安全工程学报,2012,29(4):451-458.

[15] 唐建新,王艳磊,舒国钧,等.高应力“三软”煤层回采巷道围岩破坏机制及控制研究[J].采矿与安全工程学报,2018,35(3):449-456.

[16] 曹树刚,邹德均,白燕杰,等.近距离“三软”薄煤层群回采巷道围岩控制[J].采矿与安全工程学报,2011,28(4):524-529.

[17] 张炜,张东升,陈建本,等.孤岛工作面窄煤柱沿空掘巷围岩变形控制[J].中国矿业大学学报,2014,43(1):36-42.

[18] 高召宁,孟祥瑞,郑志伟.采动应力效应下的煤层底板裂隙演化规律研究[J].地下空间与工程学报,2016,12(1):90-95.

[19] 浦海,缪协兴.综放采场覆岩冒落与围岩支承压力动态分布规律的数值模拟[J].岩石力学与工程学报,2004,(7):1122-1126.

[20] 邓康宇,武腾飞.孤岛工作面回采巷道的破坏机理及端头超前支护技术[J].矿业安全与环保,2016,43(3):67-70.

[21] 董合祥,段宏飞,王亚军.特厚煤层坚硬顶板临空煤巷强矿压显现机理及控制技术[J].煤矿安全,2018,49(9):271-275.

[22] 戈素亮,张江波.综放工作面沿空巷道围岩破断机理及支护技术研究[J].煤炭工程,2019,51(7):44-48.

[23] 潘欢欢,查文华.掘采扰动下坚硬顶板半煤岩巷道围岩破坏特征分析及支护实践[J].矿业研究与开发,2020,40(8):97-102.

[24] 陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.

[25] 宋振骐,卢国志,夏洪春.一种计算采场支承压力分布的新算法[J].山东科技大学学报,2006,25(1):1-4.

[26] 李洪,代进.支承压力的弹性基础梁解算初探[J].矿山压力与顶板管理,2005,(2):4-6.

[27] 陈忠辉,谢和平.综放采场支承压力分布的损伤力学分析[J].岩石力学与工程学报,2000,19(4):436-439.

[28] 张蓓.厚层放顶煤小煤柱沿空巷道采动影响段围岩变形机理与强化控制技术研究[D].徐州:中国矿业大学,2015.

[29] 谢广祥,杨科,刘全明.综放面倾向煤柱支承压力分布规律研究[J].岩石力学与工程学报,2006,25(3):545-549.

[30] 谢广祥.综放工作面及其围岩宏观应力壳力学特征[J].煤炭学报,2005,30(3):309-313.

[31] 谢广祥.采高对工作面及围岩应力壳的力学特征影响[J].煤炭学报,2006,31(1):6-10.

[32] 谢广祥,王磊.工作面支承压力采厚效应分析[J].煤炭学报,2008,33(4):361-363.

[33] Gunay M G, Timarci T. Static analysis of thin-walled laminated composite closed-section beams with variable stiffness[J]. Composite Structures,2017,182:67-78.

[34] Martin A F, Leissa A W. Application of the Ritz method to plane elasticity problems for composite sheets with variable fibre spacing[J]. International Journal for Numerical Methods in Engineering,1989,28(8):1813-1825.

[35] Thai H T, Park M, Choi D H.A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation[J].International Journal of Mechanical Sciences,2013,73(73):40-52.

[36] 杨春生.煤矿单体液压支柱的选择应用探讨[J].煤炭技术,2011,30(7):240-241.

[37] 王秀娟,刘立民,张梦瑶,等.DWZ型组合式单体液压支柱研究与应用[J].煤矿机械,2019,40(8):135-137.

[38] 陈世其,李炳文,赵继云,等.冲击载荷作用下DWX型单体液压支柱内压分析[J].煤炭学报,2008(6):699-702.

[39] 吴广宇.单体液压支柱在会泽铅锌矿的应用研究[D].长沙:中南大学,2011.

[40] 李建民,耿清友,周志.我国煤矿综采技术应用现状与发展[J].煤炭科学技术,2012,40(10):55-60.

[41] 刘新华.采煤工作面沿空巷道无反复支撑超前支护技术[J].煤炭工程,2017,49(11):38-40.

[42] 杨新安,陆士良.软岩巷道锚注支护理论与技术的研究[J].煤炭学报,1997,22(1):34-38.

[43] 林登阁,韩立军,易恭猷.注浆锚杆支护设计与应用[J].建井技术,1996(4):45-48.

[44] 赵呈祥,戴标兵.高水材料注浆在软岩回采巷道支护中的应[J].江苏煤炭,1996(1):35-38.

[45] 毛宏远.吕家坨矿深部巷道中空注浆锚索加固研究与应用[D].邯郸:河北工程大学,2019.

[46] 许万忠.节理裂隙边坡稳定性及锚注加固效应研究[D].长沙:中南大学,2006.

[47] 许万忠,曹平,彭振斌,等.考虑弱面注浆因素对加锚层理边坡抗剪性能影响的力学机制分析[J].岩石力学与工程学报,2006,25(7):1475-1480.

[48] 陆银龙,王连国,张蓓,等.软岩巷道锚注支护时机优化研究[J].岩土力学, 2012, 33(5):1395-1401.

[49] 孟庆彬.深部高应力软岩巷道变形破坏机理及锚注支护技术研究[D].青岛:山东科技大学,2011.

[50] 孟庆彬,韩立军,乔卫国,等.深部软岩巷道锚注支护机理数值模拟研究[J].采矿与安全工程学报,2016,33(1):27-34.

[51] V.V. Nazimko, A.A. Lapteev, V.P. Sazhnev. Rock mass self-supporting effect utilization for enhancement stability of a tunnel[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4).

[52] C.C.Li. Dynamic test of a high energy-absorbing rock bolt[C]. Proceedings of the 12th ISRM International Congress on Rock Mechanics,2011:517-518.

[53] 王襄禹,柏建彪,陈勇,等.软岩巷道锚注结构承载特性的时变规律与初步应用[J].岩土工程学报,2013,35(3):469-475.

[54] Sun X, Wang L, Lu Y, et al. A yielding bolt - grouting support design for a soft-rock roadway under high stress: a case study of the Yuandian No. 2 coal mine in China[J]. Journal of the Southern African Institute of Mining and Metallurgy,2018,118(1):71-82.

[55] Chen YL, Meng QB, Xu G, et al. Bolt-grouting combined support technology in deep soft rock roadway[J]. International Journal of Rock Mechanics and Mining Sciences, 2016,26(5):777-785.

[56] Jing Wei, Liu Shuxin, Yang Renshu, et al. Mechanism of aging deformation zoning of surrounding rock in deep high stress soft rock roadway based on rock creep characteristics[J]. Journal of Applied Geophysics,2022,202.

[57] Ma Chunde, Xu Jiaqing, Tan Guanshuang, et al. Research on Supporting Method for High Stressed Soft Rock Roadway in Gentle Dipping Strata of Red Shale[J]. Minerals,2021,11(4).

[58] Laizheng Xu, Sijiang Wei. Control Technology and Simulation Study of Floor Heave in High Stress Soft Rock Roadway[J]. Geotechnical and Geological Engineering, 2020, 38(prepublish).

[59] M.S Diederichs, P.K Kaiser, E Eberhardt. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):785-812.

[60] P.H.S.W. Kulatilake, Qiong Wu, Zhengxing Yu, et al. Investigation of stability of a tunnel in a deep coal mine in China[J]. International Journal of Mining Science and Technology,2013,23(4):579-589.

[61] Martin LB, Tijani M, Hadj-Hassen F, et al. Assessment of the bolt-grout interface behaviour of fully grouted rock bolts from laboratory experiments under axial loads[J]. International Journal of Rock Mechanics and Mining Sciences,2013,63(6):50-61.

[62] 卜若迪.厚煤层沿空巷道切顶卸压和锚固协同围岩稳定性控制研究[D].徐州:中国矿业大学,2020.

[63] 马新根.塔山煤矿复合坚硬顶板110工法关键技术及矿压规律研究[D].北京:中国矿业大学(北京),2019.

[64] 杨峰.浅埋隧道围岩稳定性的极限分析上限法研究[D].长沙:中南大学,2010.

[65] 李巍.基于极限分析上限法的土质围岩隧道开挖面稳定性研究[D].北京:北京交通大学,2021.

[66] 代仲海,胡再强.复合地层盾构开挖面极限支护力上限分析[J].工程科学与技术,2021,53(2):95-102.

[67] 康红普,姜鹏飞,冯彦军,等.煤矿巷道围岩卸压技术及应用[J].煤炭科学技术,2022,50(6):1-15.

[68] 苏超,弓培林,康红普,等.深井临空高应力巷道切顶卸压机理研究[J].采矿与安全工程学报,2020,37(6):1104-1113.

[69] 杨德传.深部厚层复合顶板沿空留巷围岩变形机理及其控制研究[D].淮南:安徽理工大学,2013.

[70] 祁方坤.掘采全过程综放沿空巷道围岩变形机理及控制技术[D].徐州:中国矿业大学,2016.

[71] 郭宁.厚坚硬顶板超前应力分布规律及超前支护技术优化研究[D].徐州:中国矿业大学,2021.

中图分类号:

 TD322.4    

开放日期:

 2023-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式