- 无标题文档
查看论文信息

题名:

 梅花型桩竖向承载特性研究    

作者:

 李龙    

学号:

 20104053006    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 081402    

学科:

 工学 - 土木工程 - 结构工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 结构工程    

导师姓名:

 邓友生    

导师单位:

 西安科技大学    

提交日期:

 2024-06-14    

答辩日期:

 2024-06-07    

外文题名:

 Study on vertical bearing characteristics of plum blossom pile    

关键词:

 梅花型桩 ; 承载特性 ; 挤土效应 ; 透明土试验 ; 侧摩阻力 ; 荷载传递机理    

外文关键词:

 Plum blossom pile ; Bearing characteristics ; Penetration effect ; Transparent soil test ; Skin friction ; Load transfer mechanism    

摘要:

随着高速铁路和高速公路建设标准的提高,研发承载力高、材料用量少的异形桩迫在眉睫。为了提高单桩承载力,基于等面积异形周长增大侧表面积原理提出一种新型异形桩——梅花型桩。以梅花型桩的竖向承载特性为研究目的,采用理论分析、室内模型试验及数值计算等方法,提出两种成桩方法、截面几何特性分析方法、考虑桩土剪切作用的荷载传递计算方法和桩侧摩阻力理论,构建梅花型桩沉桩挤土和竖向承载物理及数值分析模型,实现可视化分析其沉桩挤土过程、桩网复合路基竖向承载物理及数值分析,揭示梅花型桩的竖向承载特性,主要研究内容如下:

(1)提出了两种适用于梅花型桩的施工方法和三种常规桩身质量检测方法,给出了涡压挤土过程中混凝土浆液劈裂挤土的临界条件。

(2)以梅花型桩截面外切圆半径和开弧弧度为截面控制参数,提出了梅花型桩桩截面周长-面积比、等截面周长比、截面惯性矩计算方法,并与等桩长等截面圆形桩进行对比分析,给出其截面几何特性。

(3)采用平衡分析法,研究了梅花型桩单桩截面凸出区和尖角区的桩土剪切作用,提出了考虑桩土剪切作用的梅花型桩单桩桩侧摩阻力、桩身下拽力和桩身轴力计算方法,并开展了桩土剪切作用系数影响因素分析,揭示了梅花型桩荷载传递机理。

(4)基于剪切位移法和远藤法,建立了梅花型桩单桩和群桩负摩阻力模型,开展了考虑截面异形效应的梅花型桩桩侧摩阻力产生附加应力系数分析,阐明了梅花型桩的群桩效应和竖向承载特性。

(5)基于粒子图像测速技术,构建了梅花型桩沉桩挤土试验模型及其数值计算模型,研究了沉桩挤土过程中桩土耦合作用机理及桩周土变形演变规律。结合桩网复合路基室内模型试验和数值计算结果,对比分析了梅花型桩和等截面圆形桩复合路基的沉降特性、桩身轴力、桩侧摩阻力等变化规律以及桩截面控制参数对复合路基沉降的影响,阐明了梅花型桩的竖向承载特性。

外文摘要:

With the improvement of construction standards of high-speed railway and expressway, it is urgent to develop special-shaped piles with high bearing capacity and low material consumption. To increase the bearing capacity of a single pile, a new type of special-shaped pile was proposed, that is, the plum blossom pile, based on the principle of maximum perimeter with the same cross-sectional area. This paper took the vertical bearing characteristics of plum blossom pile as the research aim, and theoretical analysis, laboratory model test and numerical calculation were conducted. Two pile forming methods, the geometric characteristics analysis method and the load transfer calculation method considering pile-soil shear effect and pile side friction theory were proposed. Then, the physical and numerical analysis models of pile penetration and vertical bearing characteristics of plum blossom piles are constructed, which realizing the physical and numerical visual analysis of the pile penetration process, and the physical and numerical analysis of the vertical bearing characteristics of pile-net composite subgrade. This study revealed the vertical bearing characteristics of plum blossom pile. The main research contents are as follows:

(1) Two pile forming methods and three quality inspection methods of pile were put forward, and the critical mechanical conditions of fluid concrete squeezing soil during vortex squeezing were proposed.

(2) Taking the outsourcing radius and the open arc angle of plum blossom pile section as section control parameters, this paper puts forward the calculation methods of section perimeter-area ratio, perimeter ratio with the same sectional area and section inertia moment of plum blossom pile, and compared with circular piles with the same length and sectional area, and the section geometric characteristics were given.

(3) The pile-soil shear action in the convex area and sharp corner area of the single plum blossom pile section was analysed using the equilibrium analysis method, and formulae were proposed to calculate the skin friction, dragload and axial force of the single plum blossom pile by taking into consideration the pile-soil shear effect. The study further studies the influence factors of pile-soil shear coefficient, and revealed the load transfer mechanism of plum blossom pile.

(4) The negative skin friction model for single and group piles of plum blossom piles was established based on the shear displacement method and Endo method. The additional stress coefficient caused by the side friction of plum blossom pile was analyzed by considering the geometrical effect, and the pile group effect and vertical bearing characteristics of plum blossom pile were expounded.

(5) Based on particle image velocimetry, the experimental model and numerical calculation model of plum blossom pile penetration were constructed, and the coupling mechanism of pile-soil and the deformation evolution law of soil around pile were studied. Combined with the laboratory model test and numerical calculation results of pile-net composite subgrade, the settlement characteristics, axial force of pile, skin friction of pile and the influence of pile section control parameters on the settlement of composite subgrade were compared and analyzed, and the vertical bearing characteristics of plum blossom pile were expounded.

参考文献:

[1] 国务院关于印发“十四五”现代综合交通运输体系发展规划的通知[J]. 中华人民共和国国务院公报, 2022, 1759(4): 8-28.

[2] 张林. 共创数字红利[J]. 中国公路, 2023(15): 30-31.

[3] 吕亚茹. 现浇X形桩桩-板结构承载特性与变形机理研究[D]. 南京: 河海大学, 2014.

[4] 曹耿, 龚维明, 竺明星, 等. 均质土中端承壁板桩竖向振动特性[J]. 东南大学学报(自然科学版), 2020, 50(5): 844-852.

[5] Zhou H, Hua J M, Ding X M, et al. Theoretical model for the improved PCC pile using expansive concrete[J]. Science China (Technological Sciences), 2017, 60(5): 772-791.

[6] 陈亚东, 于艳, 陆凡, 等. 密实砂土中竖向受压PCC桩端阻力计算方法研究[J]. 地下空间与工程学报, 2020, 16(3): 780-786.

[7] Rollins K M, Luna A, Budd R, et al. Lateral pile resistance, wall displacement, and induced reinforcement force for laterally loaded single piles near mechanically stabilized earth walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(3): 1-10.

[8] 蔡正银. 板桩结构土压力理论的创新发展[J]. 岩土工程学报, 2020, 42(2): 201-220.

[9] 陈福茂, 谭慧明, 王琰. 分离卸荷式板桩码头承载特性与结构优化设计分析[J]. 湖南大学学报(自然科学版), 2018, 45(S1): 35-40.

[10] 刘松玉, 朱志铎, 席培胜, 等. 钉形搅拌桩与常规搅拌桩加固软土地基的对比研究[J]. 岩土工程学报, 2009, 31(7): 1059-1068.

[11] Zhao L Y, Chen Y K, Chen W X, et al. The performance of T-shaped deep mixed soil cement column-supported embankments on soft ground[J]. Construction and Building Materials, 2023, 369: 1-13.

[12] 任连伟, 顾红伟, 彭怀风, 等. 三种工况下扩底楔形桩承载特性模型试验研究[J]. 岩土力学, 2017, 38(7): 1887-1893.

[13] 王昭庆. 旋挖挤扩灌注DX桩抗拔模型试验研究[D]. 北京: 北京交通大学, 2016.

[14] 张德华, 郭鹏, 胡峰. 不同地层DX桩盘周土体附加应力分布研究[J]. 土木工程学报, 2017, 50(S1): 135-139.

[15] 惠迎新, 陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.

[16] Liu L, Ma H W, Yang X L, et al. A calculation method of bearing capacity of single squeezed branch pile based on load transfer method[J]. Advances in Materials Science and Engineering, 2022, 2022: 1-9.

[17] 张敏霞, 崔文杰, 徐平, 等. 竖向荷载作用下挤扩支盘桩桩周土体位移场变化规律研究[J]. 岩石力学与工程学报, 2017, 36(S1): 3569-3577.

[18] 郭竞, 王晓磊, 史三元, 等. 挤扩支盘桩设计优化研究[J]. 煤炭工程, 2016, 48(4): 28- 30.

[19] 刘甲. 水平荷载作用下工字形桩的受力性能研究[D]. 郑州: 河南大学, 2018.

[20] Ren L W, Yang Q W, Kong G Q, et al. Model tests on Y-shaped piles under compressive and lateral loading in saturated sand[J]. Geofluids, 2021, 2021:1-14.

[21] Zhou P, Liu H, Zhou H, et al. A simplified analysis approach for the effect of the installation of adjacent XCC pile on the existing single XCC pile in undrained clay[J]. Acta Geotechnica, 2022, 17(12): 5499-5519.

[22] 马运锋. 长春泥岩地区扩底桩承载性能研究[D]. 包头: 内蒙古科技大学, 2020.

[23] 孙砚. 根式基础竖向受压承载性状模型试验研究及数值分析[D]. 合肥: 合肥工业大学, 2018.

[24] 叶阳升, 蔡德钩, 陈晓斌, 等. 高速铁路螺杆桩复合地基桩侧摩阻力原位试验研究[J]. 中国铁道科学, 2020, 41(2): 1-10.

[25] Ghazavi M, Mahmoodi E, EI Naggar H. Load-deflection analysis of laterally loaded piles in unsaturated soils[J]. Acta Geotechnica, 2022, 18(4): 2217-2238.

[26] 赫中营, 叶爱君. 系梁对哑铃型高桩承台基础抗震性能影响[J]. 振动与冲击, 2013, 32(1): 128-133+158.

[27] 《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(3): 1-49.

[28] Ramaswamy S D, Pertusier E M. Construction of barrettes for high-rise foundations[J]. Journal of construction engineering and management, 1986, 112(4): 455-462.

[29] 洪鑫, 雷国辉, 施建勇. 非均质土体对壁板桩承载特性的影响[C]//中国土木工程学会.中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册).清华大学出版社, 2003: 499-502.

[30] 雷国辉, 洪鑫, 施建勇. 壁板桩承载特性的近似三维分析[J]. 岩土力学, 2004, 25(4): 590-594+600.

[31] Ng C W W, Lei G H. Performance of long rectangular barrettes in granitic saprolites[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(8): 685-696.

[32] 刘汉龙. 岩土工程技术创新方法与实践[J]. 岩土工程学报, 2013, 35(1): 34-58.

[33] 唐秋生. 螺纹桩机的开发与应用[J]. 建筑机械化, 2006, (2): 32-34.

[34] 方焘. 阶梯型变截面桩变形及承载特性研究[D]. 重庆: 重庆大学, 2012.

[35] 纪玉天. 桥梁挤扩支盘桩受力性能研究[D]. 石家庄: 石家庄铁道大学, 2022.

[36] 顾红伟, 孔纲强, 车平, 等. 楔形桩与等直径桩承载特性对比模型试验研究[J]. 中南大学学报(自然科学版), 2017, 48(6): 1600-1606.

[37] 胡志刚. 哑铃桩承载特性试验与分析研究[D]. 南京: 河海大学, 2007.

[38] 詹金林. 水平或竖直受荷壁板桩群桩的变分法分析[D]. 南京: 河海大学, 2006.

[39] 雷国辉, 洪鑫, 施建勇. 壁板桩的研究现状回顾[J]. 土木工程学报, 2005, 38(4): 103-110.

[40] 刘汉龙, 刘芝平, 王新泉. 现浇X型混凝土桩截面几何特性研究[J]. 中国铁道科学, 2009, 30(1): 17-23.

[41] Liu H L, Zhou H, Kong G Q. XCC pile installation effect in soft soil ground: a simplified analytical model[J]. Computers and Geotechnics, 2014, 62: 268-282.

[42] Lv Y R, Liu H L, Ng C W W, et al. Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation[J]. Computers and Geotechnics, 2014, 55: 365-377.

[43] 周航, 孔纲强, 崔允亮. 基于透明土的XCC桩沉桩挤土效应模型试验及其理论研究[J]. 土木工程学报, 2017, 50(7): 99-109.

[44] 周航, 孔纲强, 刘汉龙, 等. 任意角度水平向荷载下现浇X形桩力学特性研究(I): 惯性矩[J]. 岩土力学, 2012, 33(9): 2754-2758.

[45] 孔纲强, 周航, 刘汉龙, 等. 任意角度水平向荷载下现浇X形桩力学特性研究(Ⅱ): 截面应力分布[J]. 岩土力学, 2012, 33(S1): 8-12.

[46] Yin F, Zhou H, Liu H L, et al. Experimental and numerical analysis of XCC pile-geogrid foundation for existing expressway under traffic load[J]. International Journal of Civil Engineering, 2018, 16(10): 1371-1388.

[47] Zhou H, Liu H L, Ding X M, et al. A p-y curve model for laterally loaded XCC pile in soft clay[J]. Acta Geotechnica, 2020, 15(11): 3229-3242.

[48] Yin F, Zhou H, Liu H L, et al. Numerical investigation on dynamic stress transfer of XCC pile-supported embankment under a moving vehicle[J]. Soil Mechanics and Foundation Engineering, 2021, 58(2): 116-122.

[49] Fu Q, Yuan J. Experimental and numerical study of the dynamic response of XCC pile-raft foundation under high-speed train loads[J]. Applied Sciences, 2021, 11(19): 1-25.

[50] Zhou P, Liu H L, Zhou H, et al. A lateral soil resistance model for XCC pile in soft clay considering the effect of the geometry of cross section[J]. Acta Geotechnica, 2022, 17(10): 4681-4697.

[51] 刘汉龙, 丁选明, 陈育民, 等. 现浇钢筋混凝土大直径管桩施工方法[P]. 江苏省:CN102296598B, 2013-05-15.

[52] Liu H L, Fei K, Deng A, et al. Erective sea embankment with PCC piles[J]. China Ocean Engineering, 2005, 19(2): 339-348.

[53] 中华人民共和国住房和城乡建设部. JGJ/T 213-2010 现浇混凝土大直径管桩复合地基技术规程[S]. 北京:中国建筑工业出版社, 2010.

[54] Zhou M, Liu H L, Chen Y M, et al. First application of cast-in-place concrete large-diameter pipe (PCC) pile-reinforced railway foundation: a field study[J]. Canadian Geotechnical Journal, 2015, 53(4): 1-39.

[55] Liu H L, Ng C W W, Fei K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493.

[56] 刘汉龙, 周密, 陈育民, 等. PCC桩加固铁路软土地基现场试验研究[J]. 岩土力学, 2012, 33(11): 3201-3207.

[57] Ali H M. New technique of ground improvement: driven cast-in-situ thin wall concrete pipe piles (PCC)[J]. Geomechanics and Geoengineering, 2011, 6(2): 119-129.

[58] 谭慧明, 刘芝平, 丁选明. 加筋褥垫层对PCC桩复合地基承载特性影响足尺试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2531-2538.

[59] Liu H L, Kong G Q, Ding X M, et al. Performances of large-diameter cast-in-place concrete pipe piles and pile groups under lateral loads[J]. Journal of Performance of Constructed Facilities, 2013, 27(2): 191-202.

[60] 姜彦彬, 何宁, 耿之周, 等. PCC桩复合地基离心模型制备及桩土接触模拟[J]. 水利水运工程学报, 2020, (2): 91-98.

[61] Chen Z X, Wang B X, Wang C L, et al. Performance of a subgrade-embankment-seawall system reinforced by drainage PCC piles and ordinary piles subjected to lateral spreading[J]. Geofluids, 2023, 2023: 1-18.

[62] Zhang F Y, Chen C S, Wei L J, et al. Cast-in-place concrete thin-wall pipe pile as barrier for vibration isolation[J]. Journal of Central South University of Technology, 2008, 15(S2): 121-125.

[63] 付强, 丁选明, 刘汉龙, 等. 列车激振荷载下PCC桩复合地基动力分析[J]. 岩土力学, 2013, 34(S2): 413-420.

[64] 郑长杰, 丁选明, 刘汉龙, 等. 饱和均质土中PCC桩纵向振动响应简化解析方法[J]. 岩土工程学报, 2013, 35(S2): 1087-1090.

[65] 栾鲁宝, 丁选明, 刘汉龙, 等. 考虑剪切变形的PCC桩水平振动响应解析解[J]. 岩石力学与工程学报, 2016, 35(11): 2345-2358.

[66] 徐立新, 杨少华, 段冰. 高速公路Y形沉管灌注桩软基处理试验研究[J]. 岩土工程学报, 2007, 29(1): 120-124.

[67] Wang X Q, Chen Y H, Lin F, et al. Evaluation of ultimate bearing capacity of Y-shaped vibro-pile[J]. Journal of Central South University of Technology, 2008, 15(2): 186-194.

[68] 王新泉, 陈永辉, 刘汉龙. Y型沉管灌注桩荷载传递机制的现场试验研究[J]. 岩石力学与工程学报, 2008, 196(3): 615-623.

[69] 陈永辉, 王新泉. 公路软土地基处理中Y型沉管灌注桩异形特性研究[J]. 中国公路学报, 2008, 93(5): 19-25.

[70] Chen R P, Xu Z Z, Chen Y M, et al. Field tests on pile-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 777-785.

[71] Ren L W, Guo W D, Yang Q W. Analysis on bearing performance of Y-shaped piles under compressive and tensile loading[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 2019, 173(1): 1-29.

[72] 贺杰. Y形桩水平承载性能试验研究[D]. 南京: 河海大学, 2007.

[73] 刘安远. 考虑异形效应的Y形桩受力机理及承载特性研究[D]. 杭州: 浙江大学, 2013.

[74] 李建委, 王新泉, 刘安远. 异形效应下Y形桩沉降和单桩极限承载力研究[J]. 世界地震工程, 2015, 31(2): 162-171.

[75] 王新泉, 张世民, 崔允亮, 等. 考虑异形效应Y形桩侧摩阻力产生附加应力研究[J]. 工程力学, 2016, 33(8): 194-204.

[76] 刘辉光, 严平, 李艳红, 等. 水泥搅拌土植入工形钢筋混凝土桩基坑围护技术[J]. 施工技术, 2009, 38(9): 80-82.

[77] 刘汉中, 张扬清, 王建华. 波浪荷载下U型混凝土板桩促淤坝动力响应数值分析[J]. 水利学报, 2015, 46(S1): 142-147.

[78] Sylvain M B. A study on soil-structure interaction of axially loaded sheet piles[D]. The University of North Carolina at Charlotte, 2019.

[79] 史佩栋. 国外高层建筑深基础及基坑工程技术发展概况[J]. 建筑施工, 1997, (2): 49-51.

[80] 文松霖. 扩底桩桩端承载机制初探[J]. 岩土力学, 2011, 32(7): 1970-1974.

[81] Qi C G, Zhang J H, Zou D J, et al. Measurement on soil deformation caused by expanded-base pile in transparent soil using particle image velocimetry (PIV)[J]. Journal of Mountain Science, 2017, 14(8): 1655-1665.

[82] 李风丽. 扩底桩-承台复合疏桩基础竖向承载试验及受力特性研究[D]. 昆明: 昆明理工大学, 2020.

[83] 刘双. 大直径扩底桩受力性能及施工关键技术研究[D]. 哈尔滨: 东北林业大学, 2022.

[84] 毛宗原, 徐文武, 马骥, 等. 大直径扩底灌注桩抗压承载力试验研究[J]. 施工技术(中英文), 2022, 51(1): 68-71+76.

[85] 杨柏, 肖世国, 马建林, 等. 砂岩地层扩底桩抗拔承载特性现场试验研究[J]. 工业建筑, 2021, 51(4): 132-138+147.

[86] 李保安, 王永成, 李东彬, 等. 大直径扩底灌注桩抗拔承载力试验研究[J]. 建筑技术, 2022, 53(2): 148-151.

[87] 曾浩. 长螺旋扩底桩竖向抗拔承载机理及破坏模式试验研究[D]. 南昌: 东华理工大学, 2022.

[88] Fahmy A, EI Naggar M H. Cyclic axial performance of helical-tapered piles in sand[J]. DFI Journal-The Journal of the Deep Foundations Institute, 2016, 10(3): 98-110.

[89] Liang H A, Zeng H, Cao K W, et al. Analysis of cumulative damage characteristics of long spiral belled pile under horizontal cyclic loading at sea[J]. Shock and Vibration, 2021, 2021: 1-20.

[90] Majumder M, Chakraborty D. Under-reamed pile-soil interaction in sand under lateral loading: A three-dimensional numerical study[J]. Ocean Engineering, 2022, 263: 1-15.

[91] 周航, 孔纲强, 刘汉龙. 基于圆孔扩张理论的静压楔形桩沉桩挤土效应研究[J]. 中国公路学报, 2014, 27(4): 24-30.

[92] 周航, 孔纲强, 曹兆虎. 水平荷载下楔形桩桩-土相互作用理论分析[J]. 中南大学学报(自然科学版), 2016, 47(3): 897-904.

[93] 陈浩华, 李镜培, 李林, 等. 楔形桩极限承载力提高机理研究[J]. 哈尔滨工业大学学报, 2017, 49(12): 110-116.

[94] 李镜培, 陈浩华, 李林, 等. 楔形单桩与群桩非线性荷载-沉降曲线计算方法[J]. 哈尔滨工业大学学报, 2017, 49(12): 102-109.

[95] Vali R, Mehrinejad Khotbehsara E, Saberian M, et al. A three-dimensional numerical comparison of bearing capacity and settlement of tapered and under-reamed piles[J]. International Journal of Geotechnical Engineering, 2019, 13(3): 236-248.

[96] Bryden C, Arjomandi K, Valsangkar A. Dynamic axial response of tapered piles including material damping[J]. Practice Periodical on Structural Design and Construction, 2020, 25(2): 1-9.

[97] Singh S, Patra N R. Lateral dynamic response of tapered pile embedded in a cross-anisotropic medium[J]. Journal of Earthquake Engineering, 2022, 26(11): 5826-5847.

[98] 张久龙, 李冰冰, 胡盛明. 任意土层地基中楔形桩水平振动特性研究[J]. 建筑结构, 2022, 52(S2): 2557-2562.

[99] 杨紫健, 吴文兵, 陆洪智, 等. 黏弹性地基中楔形桩水平振动特性研究[J]. 哈尔滨工业大学学报, 2021, 53(11): 74-83.

[100] 和礼红, 李艳, 张妮娜, 等. 钉形水泥土双向搅拌桩桩身强度差异原因分析与检测探讨[J]. 岩土力学, 2010, 31(S1): 255-260.

[101] 易耀林, 刘松玉, 朱志铎. 复合地基承载力特性[J]. 建筑结构学报, 2010, 31(9): 119-125.

[102] 谢胜华, 刘松玉, 杜广印. 钉形粉喷桩加固海相软土地基的现场试验研究[J]. 西南交通大学学报, 2012, 47(2): 204-209.

[103] Liu S Y, Du Y J, Yi Y L, et al. Field investigations on performance of T-shaped deep mixed soil cement column-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 718-727.

[104] Raongjant W, Jing M. Field testing of stiffened deep cement mixing piles under lateral cyclic loading[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(2): 261-265.

[105] 曹洋, 郑林达. 钉型水泥土搅拌桩加固软土路堤的数值分析[J]. 水利与建筑工程学报, 2019, 17(4): 217-222.

[106] Xiong L, Li G W, Zhou Y, et al. Experimental and analytical investigation of the bearing capacity of bulbs for squeezed branch piles[J]. International Journal of Geomechanics, 2023, 23(5): 1-10.

[107] 李振, 蒙瑜, 郑睿, 等. 挤扩支盘灌注桩在某工程中的应用[J]. 建筑结构, 2022, 52(S2): 2465-2469.

[108] Zhang M X, Xu P, Cui W J, et al. Bearing behavior and failure mechanism of squeezed branch piles[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(5): 935-946.

[109] Ma H W, Wu Y Y, Tong Y, et al. Research on bearing theory of squeezed branch pile[J]. Advances in Civil Engineering, 2020, 2020: 1-12.

[110] 蒋建平, 高广运, 刘文白. 描述抗拔挤扩支盘桩Q-s曲线的修正双曲线模型研究[J]. 应用基础与工程科学学报, 2010, 18(6): 999-1009.

[111] Chen J W, Hui Y X. Optimized design of a squeezed-branch pile group based on an improved particle swarm algorithm[J]. Sustainability, 2023, 15(3): 1-13.

[112] 刘汉龙, 戴会超, 费康, 等. 一种帽状型小直径钢筋混凝土扩大头桩[P]. 江苏:CN2775136, 2006-04-26.

[113] 范孟华. 关于大直径哑铃形灌注桩的研究[J]. 路基工程, 2008, (5): 103-104.

[114] 沈扬, 陈育民, 胡志刚, 等. 哑铃桩模型试验与承载力计算方法研究[J]. 防灾减灾工程学报, 2009, 29(4): 428-432.

[115] 韩森. 高速铁路有砟轨道黄土路基螺杆桩桩网复合地基工作特性研究[D]. 兰州: 兰州交通大学, 2020.

[116] 熊乾. 高速铁路有砟轨道黄土路基螺杆桩复合地基沉降控制技术研究[D]. 兰州: 兰州交通大学, 2019.

[117] 郑军锋, 范德全, 陈济熙, 等. 挤密螺纹桩复合地基桩土应力比现场试验研究[J]. 铁道科学与工程学报, 2019, 16(12): 3005-3012.

[118] Zhao Q X, Hu K, Wang Y X, et al. Analysis on torque and pile-soil interaction of anti-flood screw pile during the installation process[J]. Arabian Journal of Geosciences, 2022, 15(11): 1-18.

[119] Ma H W, Liu L, Wang P, et al. Calculation method and mechanism of ultimate side resistance of screw pile[J]. Marine Georesources & Geotechnology, 2023, 41(1): 99-113.

[120] 董俊利, 陈军浩, 聂如松, 等. 螺纹桩复合地基桩土应力比模型试验与数值模拟[J]. 铁道科学与工程学报, 2022, 19(10): 2966-2975.

[121] Kong G Q, Peng H F, Qin H Y, et al. Ultimate lateral bearing capacity and group effect of belled wedge pile groups[J]. KSCE Journal of Civil Engineering, 2019, 23(12): 5041-5050.

[122] 孔纲强, 周航, 曹兆虎. 扩底楔形桩水平向承载力理论计算方法研究[J]. 现代隧道技术, 2016, 53(1): 119-126.

[123] 周立朵, 周航, 孔纲强, 等. 扩底楔形桩竖向抗拔承载力理论计算方法[J]. 中南大学学报(自然科学版), 2017, 48(5): 1276-1282.

[124] Kong G Q, Yang Q, Liu H L, et al. Numerical study of a new belled wedge pile type under different loading modes[J]. European Journal of Environmental and Civil Engineering, 2013, 17(S1): 65-82.

[125] Huang M S, Zhang C R, Mu L L, et al. Analysis of anchor foundation with root caissons loaded in nonhomogeneous soils[J]. Canadian geotechnical journal, 2011, 48(2): 234-246.

[126] Luo X G, Ren W X, Yin Y G, et al. A modified hyperbolicity-based load transfer model for nonlinear settlement analysis of root piles in multilayered soils[J]. Acta Geotechnica, 2022, 17(1): 303-317.

[127] 胡勇. 根键桩水平承载性状及受力机理研究[D]. 兰州: 兰州理工大学, 2021.

[128] Zhou J, Huang X, Zhang J, et al. Experimental investigation of the uplift and lateral bearing capacity of root piles[J]. Soil Mechanics and Foundation Engineering, 2021, 57(6): 473-479.

[129] Melchior Filho J, Moura A S, Monteiro F F. Contribution for a root pile installation control approach using a digital odometer[J]. Soils and Rocks, 2022, 45(3):1-11.

[130] Yu Y C, Ren W X, Yin Y G, et al. Numerical simulation and field tests on vertical load bearing behaviour of bored root piles[J]. Computers and Geotechnics, 2023, 159: 1-17.

[131] 黄雪峰, 张吉禄, 周俊鹏, 等. 根键桩抗拔承载特性分析及变形预测[J]. 兰州: 兰州理工大学学报, 2023, 49(1): 119-126.

[132] 张胤红. 粘土地层中阶梯型变截面桩横向承载特性试验研究[D]. 南昌: 华东交通大学, 2019.

[133] Song J, Huang M, Deng A, et al. Theoretical solution for long-term settlement of a large step-tapered hollow pile in karst topography[J]. International Journal of Geomechanics, 2021, 21(8): 1-15.

[134] Fang T, Huang M. Deformation and load-bearing characteristics of step-tapered piles in clay under lateral load[J]. International Journal of Geomechanics, 2019, 19(6): 1-9.

[135] Xiong L X, Chen H J. A numerical study and simulation of vertical bearing performance of step-tapered pile under vertical and horizontal loads[J]. Indian Geotechnical Journal, 2020, 50(3): 383-409.

[136] 张晓笛, 王金昌, 杨仲轩, 等. 基于状态空间法的阶梯型变截面水平受荷桩分析方法[J]. 岩土工程学报, 2023, 45(9): 1944-1952.

[137] 赵明华, 黄利雄, 刘思思. 横向荷载对基桩竖向承载力的影响分析[J]. 公路交通科技, 2009, 26(7): 44-48.

[138] 赵春风, 刘丰铭, 邱志雄, 等. 砂土中竖向和水平荷载共同作用下的单桩承载特性研究[J]. 岩土工程学报, 2015, 37(1): 183-190.

[139] Zormpa T E, Comodromos E M. Numerical evaluation of pile response under combined lateral and axial loading[J]. Geotechnical and Geological Engineering, 2018, 36(2): 793-811.

[140] Hazzar L, Hussien M N, Karray M. Vertical load effects on the lateral response of piles in layered media[J]. International Journal of Geomechanics, 2017, 17(9): 1-11.

[141] Khodairet Y, Abdel-Mohti A. Numerical analysis of pile-soil interaction under axial and lateral loads[J]. International Journal of Concrete Structures and Materials, 2014, 8(3): 239-249.

[142] Liang F Y, Zhang H, Wang J L. Variational solution for the effect of vertical load on the lateral response of offshore piles[J]. Ocean engineering, 2015, 99: 23-33.

[143] Hazzar L, Hussien M N, Karray M. On the behaviour of pile groups under combined lateral and vertical loading[J]. Ocean Engineering, 2017, 131: 174-185.

[144] 吕亚茹, 刘汉龙, 王明洋, 等. 异形桩桩土荷载传递机理理论分析[J]. 岩土工程学报, 2015, 37(S1): 212-217.

[145] 王卫东, 王萌, 吴江斌. 静钻根植桩扩底桩端极限承载性能的试验研究[J]. 岩土力学, 2023,44(11): 3091-3098.

[146] 刘汉龙. 现浇X形混凝土桩施工方法: 中国, 2007100203063[P]. 2007.

[147] 吕亚茹, 刘汉龙, 王新泉, 等. 现浇X形桩产生地基附加应力的修正Geddes应力解[J]. 岩石力学与工程学报, 2013, 32(2): 349-362.

[148] 刘汉龙, 金辉, 丁选明, 等. 现浇X形混凝土桩沉桩挤土效应现场试验研究[J]. 岩土力学, 2012, 33(S2): 219-223+228.

[149] 江强, 陈育民, 王翔鹰, 等. 排水刚性桩沉桩挤土效应的现场试验研究[J]. 土木工程学报, 2018, 51(4): 87-93+101.

[150] 邹长春, 何杰, 刘孟鑫, 等. 楔形管桩沉桩挤土效应试验研究[J]. 湖南工业大学学报, 2022, 36(2):1-7.

[151] 邓友生, 李龙, 赵衡, 等. 基于透明土的梅花桩沉桩挤土效应[J]. 湖南大学学报(自然科学版), 2022, 49(7): 205-213.

[152] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于PIV技术的沉桩过程土体位移场模型试验研究[J]. 工程力学, 2014, 31(8): 168-174.

[153] Liu C, Tang X W, Wei H W, et al. Model tests of jacked-pile penetration into sand using transparent soil and incremental particle image velocimetry[J]. KSCE Journal of Civil Engineering, 2020, 24(4): 1128-1145.

[154] Ni Q, Hird C C, Guymer I. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry[J]. Géotechnique, 2010, 60(2): 121-132.

[155] Zhou D, Zhang W G. Transparent soil model test on displacement field of soils around single passive pile[M]//IACGE 2018: Geotechnical and Seismic Research and Practices for Sustainability. Reston, VA: American Society of Civil Engineers, 2019: 652-659.

[156] 周密, 韩雨薇, 周小文, 等. 海洋软黏土大直径沉桩贯入挤土效应[J]. 广东海洋大学学报, 2021, 41(1): 90-96.

[157] 梅国雄, 宋林辉, 宰金珉, 等. 静压沉桩挤土机理探讨及有限元分析[J]. 计算力学学报, 2008, 25(5): 660-664.

[158] 萧琳琛, 谢新宇, 曹秀娟. 考虑土体结构性损伤的沉桩挤土效应解析分析[J]. 岩土力学, 2006(S1): 59-64.

[159] 高子坤, 施建勇. 基于变分原理的静压沉桩挤土效应理论解答研究[J]. 岩土工程学报, 2009, 31(1): 52-58.

[160] 张亚国, 李镜培. 考虑地表边界效应的静压沉桩挤土位移解析[J]. 同济大学学报:自然科学版, 2018, 46(9): 1195-1200+1260.

[161] 邓友生, 宋虔, 张克钦, 等. 锥形帽单桩竖向承载力模型试验研究[J]. 武汉科技大学学报, 2023, 46(6): 472-477.

[162] 冷伍明, 魏广帅, 聂如松, 等. 螺纹桩竖向承载特性及承载机理研究[J]. 铁道工程学报, 2020, 37(5): 1-6+35.

[163] 邓友生, 李龙, 邓明科, 等. 梅花型混凝土桩截面几何特性[J]. 西安科技大学学报, 2023, 43(1): 143-150.

[164] L Li, YS Deng. Strengthening mechanism of plum blossom pile composite foundation[J]. Acta Geotechnica, 2024, 19(1): 1-18.

[165] 李春宝. 涡压挤扩桩承载特性研究[D]. 青岛: 中国石油大学(华东), 2019.

[166] 中华人民共和国住房与城乡建设部. JGJ 94-2008建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008.

[167] 中华人民共和国国家铁路局. TB 510621-2014高速铁路设计规范[S]. 北京:中国铁道出版社, 2014.

[168] 茅燕兵, 戴国亮, 龚维明. 基于单桩静荷载试验的群桩沉降预测研究[J]. 岩土工程学报, 2013, 35(S2): 627-631.

[169] 邸同宇, 吴文兵, 张云鹏, 等. 考虑反射波震荡的饱和土中大直径现浇混凝土管桩低应变测试解析解[J]. 振动与冲击, 2023, 42(1): 160-168.

[170] 田兴朝, 刘远明, 陶铁军, 等. 软弱破碎围岩隧道施工力学特性模型试验研究[J]. 现代隧道技术, 2020, 57(5): 200-209+231.

[171] 中华人民共和国住房与城乡建设部. JGJ/T 384-2016钻芯法检测混凝土强度技术规程[S]. 北京: 中国建筑工业出版社, 2016.

[172] 中华人民共和国住房与城乡建设部. GB/T 50081-2019混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.

[173] 程桦, 刘向阳, 曹如康, 等. 类砂质泥岩常规三轴浆压致裂起裂压力试验研究[J]. 岩土力学, 2022, 43(10): 2655-2664.

[174] 罗小博, 宋彧, 郭启明. 西北湿陷性黄土区劈裂注浆试验及地基加固应用[J]. 湖南大学学报(自然科学版), 2021, 48(9): 52-60.

[175] 邱珍锋, 王俊杰, 胡骏峰. 击实黏土Ⅰ型断裂韧度测试新方法研究[J]. 科学技术与工程, 2015, 15(23): 193-197.

[176] 白杨. 土体Ⅰ型断裂韧度试验及数值模拟研究[D]. 南京大学, 2020.

[177] 欧阳进武, 张贵金, 刘杰. 劈裂灌浆扩散机理研究[J]. 岩土工程学报, 2018, 40(7): 1328-1335.

[178] Deng Y S, Li L, Meng L Q, et al. Mode-I stress intensity factors for cracked R-fluted shells under complex loads[J]. International Journal of Pressure Vessels and Piping, 2021, 194: 1-13.

[179] 郭炎伟, 贺少辉, 管晓明, 等. 劈裂注浆复合土体平面等效弹性模型理论研究[J]. 岩土力学, 2015, 36(8): 2193-2200+2208.

[180] Saxena A . Basic fracture mechanics and its applications[M].CRC Press: 2022.

[181] 王腾, 周茗如, 马连生, 等. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.

[182] 吕龙龙, 廖红建, 伏映鹏, 等. 基于应变能密度映射的黄土结构性参数研究[J]. 岩石力学与工程学报, 2022, 41(2): 399-411.

[183] 魏永生, 于晓东, 李保民, 等. 用Mathematica处理和分析实验数据[J]. 实验室研究与探索, 2005(6): 62-64+87.

[184] 庄培芝, 张营超, 宋修广, 等. 考虑尺寸效应的桩侧摩阻力修正计算方法[J]. 山东大学学报(工学版), 2021, 51(5): 8-15+31.

[185] 吕亚茹, 丁选明, 刘汉龙, 等. 刚性荷载下现浇X形桩复合地基桩侧摩阻力数值分析[J]. 岩土工程学报, 2012, 34(11): 2134-2140.

[186] Zhang D D, Lv Y R, Liu H L, et al. An analytical solution for load transfer mechanism of XCC pile foundations[J]. Computers and Geotechnics, 2015, 67: 223-228.

[187] Janssen H A. Versuche über getreidedruck in Silozellen [J]. Zeitschrift, Verein Deutscher Ingenieure, 1895, (39): 1045-1049.

[188] Lam S Y. Effects of axial load, shielding and shape on negative skin friction on piles[D]. Hong Kong: Hong Kong University of Science and Technology, 2006.

[189] Raymond D. Mindlin. Force at a point in the interior of a semi-infinite solid[J]. Journal of Applied Physics, 1936, 7(5): 195-202.

[190] Geddes J D. The bearing capacity of piles [D]. London, UK: University of Durham, 1953.

[191] 王新泉, 陈永辉, 张世民, 等. 反拱曲面X形异形桩产生附加应力计算方法研究[J]. 工程力学, 2012, 29(12): 220-227.

[192] 陈永辉, 王新泉, 刘汉龙, 等. Y型桩桩侧摩阻力产生附加应力的分析计算[J]. 岩土力学, 2008, 155(11): 2905-2911+2918.

[193] 卢一为, 丁选明, 刘汉龙, 等. 均匀黏弹性地基中X形桩纵向振动响应简化解析方法[J]. 岩土力学, 2021, 42(9): 2472-2479+2488.

[194] Randolph M F, Wroth C P. Application of the failure state in undrained simple shear to the shaft capacity of driven piles. Géotechnique, 1981, 31(1): 143-157.

[195] Randolph M F. Science and empiricism in pile foundation design[J]. Géotechnique, 2003, 53(10): 847-875.

[196] 李镜培, 李林, 孙德安, 等. 饱和软土地层静压沉桩阻力理论研究[J]. 岩土工程学报, 2015, 37(8): 1454-1461.

[197] 李雨浓, 曹锦楼, 王立伟, 等. 基于球孔扩张理论的静压桩桩端阻力解析解[J]. 沈阳工业大学学报, 2022, 44(2): 221-226.

[198] 胡永强, 汤连生, 李兆源. 静压桩桩-土界面滑动摩擦机制研究[J]. 岩土力学, 2015, 36(5): 1288-1294.

[199] 武崇福, 郭维超, 李雨浓, 等. 考虑负摩阻力的刚性桩复合地基中性面深度及桩土应力比计算[J]. 岩土工程学报, 2016, 38(2): 278-287.

[200] 陈昌富, 黎玉琪. 考虑桩土界面相对位移与界面外土体剪切变形抗拔桩荷载传递分析[J]. 公路工程, 2018, 43(3): 35-39.

[201] 贺成斌, 赵明华, 雷勇. 基于荷载传递法的嵌岩桩负摩阻力计算研究[J]. 工程力学, 2014, 31(11): 110-115.

[202] 张浩, 石名磊, 郭院成. 基于分段荷载传递法的桩网路堤结构荷载效应整体分析模型[J]. 岩土工程学报, 2016, 38(9): 1630-1639.

[203] 魏成国. 湿陷性黄土地基桩基湿陷负摩擦力计算与研究[D]. 西安理工大学, 2006.

[204] 董晓明. 基于黄土非均匀湿陷变形的桥梁群桩基础承载特性研究[D]. 西安: 长安大学, 2013.

[205] P. Terzaghi. Soil Mechanics in Engineering Practice[M]. New York: John Willey and sons, 2rd Edition, 1967.

[206] 孙更生, 郑大同. 软土地基与地下工程[M]. 北京: 中国建筑工业出版社, 1984.

[207] 中华人民共和国住房和城乡建设部. JGJ106-2012建筑基桩检测技术规范[S]. 北京: 中国建筑工业出版社, 2014.

[208] Johannessen I. J, Bjerrum. Measurement of the compression of a steel pile to rock due to settlement of the surrounding clay[A]. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering[C], Montreal: 1965, 2: 261-264.

[209] Tomlinson M J (1977). 桩的设计和施工[M], 朱世杰译. 北京:人民交通出版社, 1984.

[210] 张聪, 冯忠居, 王富春, 等. 基于离心模型试验的近断层桥梁桩基竖向承载特性研究[J]. 土木工程学报, 2023, 56(6): 108-116.

[211] Ling Y X, Wang D S, Ying Y X, et al. A simplified piecewise-hyperbolic softening model of skin friction for axially loaded piles[J]. Computers and Geotechnics, 2019, 108 : 7-16.

[212] Kazem Fakharian, Nasrin Vafaei. Effect of density on skin friction response of piles embedded in sand by simple shear interface tests[J]. Canadian Geotechnical Journal, 2020, 58(5) : 619-636.

[213] 日本建筑学会. 建筑基础构造设计标准[S]. 1974.

[214] Endo M, Minou A, Kawasaki T, et al. Negative skin friction acting on steel piles in clay[A]. Proceedings 7th International Conference on Soil Mechanics and Foundation Engineering[C], Mexico, 1969, 2: 85-92.

[215] 赵志明. 螺纹桩竖向承载特性及群桩效应研究[D]. 杭州: 浙江工业大学, 2019.

[216] 王国才, 束炜, 赵志明, 等. 竖向荷载作用下螺纹群桩承载特性和群桩效应研究[J]. 浙江工业大学学报, 2022, 50(3): 290-298.

[217] Ergun M. U. Negative skin friction from surface settlement measruements in model group tests[J]. Canadian Geotechnical Journal, 1995, 32(10): 1075-1079.

[218] 孙雅妮. 湿陷性黄土地基环保型桩压浆增强机理研究[D]. 西安: 西安科技大学, 2021.

[219] Lwti N K, Rashid A S A, Tamuri A R, et al. Assessment of disturbance impact of hydraulic jacked-in pile penetration in artificial clayey soil[J]. Marine Georesources & Geotechnology, 2021, 39(5): 631-637.

[220] Ads A, Iskander M, Bless S. Soil-projectile interaction during penetration of a transparent clay simulant[J]. Acta Geotechnica, 2020, 15(4): 815-826.

[221] Hu P, Stanier S A, Cassidy M J, et al. Predicting peak resistance of spudcan penetrating sand overlying clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2):1-12.

[222] Lamens P, Askarinejad A, Sluijsmans R W, et al. Ground response during offshore pile driving in a sandy slope[J]. Géotechnique, 2020, 70(4): 281-291.

[223] Randolph M F, Carter J P, Wroth C P. Driven piles in clay-the effects of installation and subsequent consolidation[J]. Géotechnique, 1979, 29(4): 361-393.

[224] Gill D R, Lehane B M. Extending the strain path method analogy for modelling penetrometer installation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(5) : 477-489.

[225] 周火垚, 施建勇. 饱和软黏土中足尺静压桩挤土效应试验研究[J]. 岩土力学, 2009, 30(11): 3291-3296.

[226] Guan W J, Wu W B, Jiang G S, et al. Torsional dynamic response of tapered pile considering compaction effect and stress diffusion effect[J]. Journal of Central South University, 2020, 27(12): 3839-3851.

[227] Gue S S. Ground heave around driven piles in clay[D]. Oxford, United Kingdom: University of Oxford, 1984.

[228] Posadas D A N, Tannús A, Panepucci H, et al. Magnetic resonance imaging as a non-invasive technique for investigating 3-D preferential flow occurring within stratified soil samples[J]. Computers and Electronics in Agriculture, 1996, 14(4): 255-267.

[229] Lehane B M, Gill D R. Displacement fields induced by penetrometer installation in an artificial soil[J]. International Journal of Physical Modelling in Geotechnics, 2004, 4(1): 25-36.

[230] Hird C C, Ni Q, Guymer I. Physical modelling of deformations around piling augers in clay[J]. Géotechnique, 2011, 61(11): 993-999.

[231] 杜明芳, 遆永新, 徐志军, 等. 深部缩径缺陷桩的透明土模型试验研究[J]. 铁道科学与工程学报, 2021, 18(6): 1436-1446.

[232] 张建伟, 丁乐, 樊亚龙, 等. 基于透明土模型试验的卸载后土体变形分析[J]. 中国科技论文, 2022, 17(2): 127-132.

[233] White D J, Take W A, Bolton M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.

[234] Sadek S, Iskander M G, Liu J Y. Accuracy of digital image correlation for measuring deformations in transparent media[J]. Journal of Computing in Civil Engineering, 2003, 17(2): 88-96.

[235] Benson David J. Computational methods in lagrangian and Eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2-3): 235-394.

[236] Ko J Y, Jeong S S, Lee J K. Large deformation FE analysis of driven steel pipe piles with soil plugging[J]. Computers and Geotechnics, 2016, 71(1): 82-97.

[237] Zhou H, Liu H L, Yuan J R, et al. Numerical simulation of XCC pile penetration in undrained clay[J]. Computers and Geotechnics, 2019, 106: 18-41.

[238] Wang D, Bienen B, Nazem M, et al. Large deformation finite element analyses in geotechnical engineering[J]. Computers and Geotechnics, 2015, 65: 104-114.

[239] Teh C I, Houlsby G T. An analytical study of the cone penetration test in clay[J]. Géotechnique, 1992, 42(3): 529-532.

[240] Walker J, Yu H S. Analysis of the cone penetration test in layered clay[J]. Géotechnique, 2010, 60(12) : 939-948.

[241] Liyanapathirana D S. Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay[J]. Computers and Geotechnics, 2009, 36(5): 851-860.

[242] Wang D, O’Loughlin C.D. Numerical study of pull-out capacities of dynamically embedded plate anchors[J]. Canadian Geotechnical Journal, 2014, 51(11): 1263-1272.

[243] Mabsout ME, Tassoulas J. A finite element model for the simulation of pile driving[J]. Int Numer Anal Methods Eng, 1994, 37: 257-278.

[244] Jaky J. Pressure in silos[J]. In:Proc 2nd international conference on soil mechanics and foundation engineering 1949, 1: 103-107.

[245] Jardine R J, Zhu B T, Foray P, et al. Interpretation of stress measurements made around closed-ended displacement piles in sand[J]. Géotechnique, 2013, 63(8): 613-627.

[246] 中华人民共和国国家铁路局. TB10001-2016 铁路路基设计规范[S], 北京: 中国铁道出版社, 2016.

[247] 刘俊聪. 波纹套管煤矸石CFG桩复合地基承载机理研究[D]. 西安: 西安科技大学, 2022.

[248] Randolph M F. Design methods for pile groups and piled rafts[J]. Proc. 13th ICSMGE, 1994, 5: 61-82.

[249] Comodromos E M, Papadopoulou M C, Rentzeperis I K. Pile foundation analysis and design using experimental data and 3-D numerical analysis[J]. Computers and Geotechnics, 2009, 36(5): 819-836.

[250] Miura K, Otsuka N, Kohama E, et al. The size effects of earth pressure cells on measurement in granular materials[J]. Soils and foundations, 2003, 43(5): 133-147.

[251] 齐昌广, 刘汉龙, 陈永辉, 等. 塑料套管混凝土桩承载试验及沉降计算方法研究[J]. 岩土工程学报, 2016, 38(12): 2302-2308.

[252] 牛婷婷, 刘汉龙, 丁选明, 等. 高铁列车荷载作用下桩网复合地基振动特性模型试验[J]. 岩土力学, 2018, 39(3): 872-880.

[253] 邓友生, 李龙, 刘俊聪, 等. 波纹塑料套管煤矸石CFG桩复合路基承载试验[J]. 中国公路学报, 2023, 36(4): 48-57.

[254] Abdrabbo F M, El-wakil A Z. Behavior of pile group incorporating dissimilar pile embedded into sand[J]. Alexandria Engineering Journal, 2015, 54(2): 175-182.

[255] Zhu X J, Liu J. Analysis of the load sharing behaviour and cushion failure mode for a disconnected piled raft[J].Advances in Materials Science and Engineering, 2017, 2017 : 1-13.

[256] 邓友生, 李文杰, 张克钦, 等. 刚度差异桩组合桩网结构路基承载特性[J]. 中国铁道科学, 2024, 45(1): 26-35.

[257] 蔡璟珞. 长短桩复合地基室内模型试验研究及其作用机理分析[D]. 太原: 太原理工大学, 2017.

[258] 孙广超, 刘汉龙, 孔纲强, 等. 振动波型对X形桩桩-筏复合地基动力响应影响的模型试验研究[J]. 岩土工程学报, 2016, 38(6): 1021-1029.

[259] 彭文哲, 赵明华, 杨超炜, 等. 斜坡桩水平循环特性模型试验及有限杆单元解[J]. 岩土力学, 2023, 44(2): 381-391.

[260] 曹卫平, 石玉斌, 高帅鹏. 上拔力-水平力-扭矩组合荷载作用下斜桩承载特性模型试验[J]. 水资源与水工程学报, 2022, 33(6): 145-150.

[261] Feng S Y, Xu R Q, Cheng K, et al. Centrifuge model test on the performance of geogrid-reinforced and pile-supported embankment over soft soil[J]. Soil Mechanics and Foundation Engineering, 2020, 57(3) : 244-251.

[262] 佟建兴, 孙训海, 杨新辉, 等. 长短刚性桩复合地基桩、土承载性状与厚径比相关关系试验研究[J]. 岩土工程学报, 2013, 35(5): 955-960.

[263] 侯思强. 刚性长短桩复合地基传力机制及设计理论研究[D]. 郑州: 郑州大学, 2020.

[264] Tomlinson M, Woodward J. Pile design and construction practice[M]. CRC press, 2007.

[265] 中华人民共和国住房和城乡建设部. GB/T 50123-2019土工试验方法标准[S], 北京: 中国计划出版社, 2019.

[266] 叶三霞, 徐光黎. 桩网复合地基承载力公式参数β取值分析[J]. 土工基础, 2010, 24(1): 58-61.

[267] 李振菲. 陕北黄土地基承载力确定新方法及其工程评价[D]. 西安: 西安理工大学, 2018.

[268] 尧俊凯. 高速铁路刚性桩桩网复合地基沉降特性研究[D]. 成都: 西南交通大学, 2016.

[269] 刘家易. 珊瑚砂地基中X形桩竖向承载特性试验研究[D]. 重庆: 重庆大学, 2019.

[270] 费康, 彭劫. ABAQUS岩土工程实例详解[M]. 北京:人民邮电出版社, 2017.

[271] 郎瑞卿. 深厚软弱地基中预制刚性桩-网复合地基承载机制及固结特性研究[D]. 天津: 天津大学, 2018.

[272] 张连文, 郑佳星, 王怀文, 等. 切应力互等定理的证明[C]//中国力学学会.力学与工程应用(第十六卷). 郑州大学出版社, 2016, 16: 470-472.

[273] 许胜才, 范秋雁, 崔峰. 基于ABAQUS的特殊双排桩支护结构三维有限元模拟[J]. 地下空间与工程学报, 2015, 11(6): 1514-1521.

[274] 王向军, 吴江斌, 黄茂松. 桩的泊松效应对抗拔系数λ的影响[J]. 地下空间与工程学报, 2009, 5(S2):1545-1548.

[275] Fleming K, Weltman A, Randolph M, et al. Piling engineering[M]. 3rd ed. London: CRC Press, 2009: 95-118.

中图分类号:

 TU473    

开放日期:

 2026-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式