- 无标题文档
查看论文信息

论文中文题名:

 接菌对紫花苜蓿根-土复合体力学特性的影响研究    

姓名:

 罗睿    

学号:

 20209071020    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 矿区生态修复与地质灾害防治    

第一导师姓名:

 毕银丽    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Effect of bacteriation on mechanical properties of alfalfa root-soil complex    

论文中文关键词:

 根-土复合体 ; 根系力学 ; 抗剪强度 ; 丛枝菌根真菌 ; 深色有隔内生真菌    

论文外文关键词:

 Root-soil complex ; Root mechanics ; Shear strength ; Arbuscular mycorrhizal fungi(AMF) ; Dark septate endophytes(DSE)    

论文中文摘要:

西部半干旱区是我国重要的生态屏障地带,该区气候干旱、水资源匮乏、土壤贫瘠,生境十分脆弱。随着我国煤炭开发的战略西移,西部地区已成为煤炭开发的主战场。煤炭开采形成的采煤沉陷地改变了原始地貌,导致植物根系损伤,造成植被退化,诱发大量地质灾害。相较于工程措施,植物护坡技术因其具有绿色、安全、经济等优点,被广泛应用于矿区。植物根系与土壤形成的根-土复合体,增加土体的抗剪强度,增强浅层土体的稳定性。随着微生物复垦技术在西部矿区应用,采煤沉陷地植被覆盖度大幅增加,具有改善土壤理化性状、促进植物根系发育和抗逆境等功能,然而微生物复垦技术对土壤理化性状改良、植物根系发育,以及根-土复合体的力学相关性能缺乏系统研究揭示。因此,本文选取陕北榆林柠条塔采煤沉陷地为研究区,以紫花苜蓿作为垦种植物,采用野外原位试验与室内测试相结合的研究方法,利用三轴剪切、原位拉拔及单根拉伸试验,研究丛枝菌根真菌(AMF)、深色有隔内生真菌(DSE)及两者联合对根-土复合体的土壤理化性质、根系特征,以及抗剪强度的影响,阐明接菌对紫花苜蓿根-土复合体力学性能的作用机理。主要研究结果如下:

(1)阐明AMF与DSE联合接菌对紫花苜蓿根-土复合体土壤理化性质的影响规律。与CK、AMF、DSE相比,AMF+DSE处理的0.5~2mm粒径的微团聚体所占比重最高,0.075~0.25mm粒径的微团聚体含量最低,说明AMF+DSE联合接菌更有利形成0.5~2mm粒径的微团聚体;且AMF+DSE处理的有效粒径到限制粒径(d10%~d60/%)之间颗粒含量最多,表明AMF+DSE联合接菌下的根-土复合体结构更稳定。各处理的含水率均无显著变化,且均在10~20cm深度的含水率最大,30~40cm含水率最低。接菌处理的土壤表面孔隙分布和孔径大小小于CK处理,其中AMF+DSE对孔隙分布的改善效果最优。CK、AME、DSE处理的pH均降低但变化幅度不显著,而AMF+DSE是显著降低。所有处理的电导率均表现随土壤深度增加而减小,AMF+DSE处理3倍降低。接菌后土壤的全氮、全磷、全钾含量显著低于未接菌土壤,双接菌含量最低;4种处理的速效磷、速效钾含量均为先降后增的规律且均在20~30cm深度含量最低,但接菌处理的速效磷、速效钾含量仍比对照处理高,AMF+DSE处理最高。接菌处理的土壤有机质均高于对照处理,AMF+DSE显著,表明AMF+DSE处理有助于提高土壤肥力。

(2)厘清AMF与DSE联合接菌对紫花苜蓿根-土复合体根系性状影响特征。接菌处理下紫花苜蓿平均根径显著大于CK处理(P<0.05),而不同接菌处理间未表现出显著差异。AMF+DSE处理的平均根长比CK、AMF、DSE处理的根长分别降低了10%、83%、135%,但黏聚力比上述3种处理分别增长了37.6%、25.65%、19.76%,表明双接菌能显著提高紫花苜蓿根-土复合体黏聚力。接菌处理下根-土复合体的含根量均大于CK,双接菌的含根量最大,而黏聚力又随含根量的增加而增大,表明双接菌处理可显著增强土体强度。紫花苜蓿根系单根抗拉力在四种处理下由大到小依次为AMF+DSE>DSE>AMF>CK,其中AMF+DSE的平均单根抗拉力显著高于其他3种处理。紫花苜蓿根系平均单根抗拉强度由大到小依次为AMF+DSE>CK>AMF>DSE,其中AMF+DSE的平均单根抗拉强度对比CK、AMF、DSE处理增长了20%、41%、52%,双接菌AMF+DSE根系平均单根抗拉强度与单接菌AMF、DSE处理有明显增强。

(3)揭示AMF与DSE联合接菌提升紫花苜蓿根-土复合体抗剪强度作用机理。随着侵染率的提高,生成的根外菌丝吸收大量养分促进根系发育,并分泌有机物改善根际周边土壤结构及孔隙分布,从而提高了紫花苜蓿根-土复合体的抗剪强度。通过皮尔逊相关性分析得出全氮、全磷、全钾与黏聚力是显著负相关的关系;速效磷、速效钾与黏聚力相关性不明显。通过主成分分析得出土壤养分及根系密度是影响根-土复合体黏聚力和内摩擦角的主要因素,而AMF+DSE对两者的提升效应是显而易见的。研究结果为矿区生态修复的背景下西部煤矿区植被恢复与生态修复提供新的研究思路和技术支持。

论文外文摘要:

The western semi-arid region is an important ecological barrier zone in China. The climate in this area is arid, water resources are scarce, soil is barren, and habitats are very fragile. With the strategic westward shift of the coal development of China, the western region has become the main battlefield of coal development.. The mining subsidence land formed by Coal mining has changed the original landform, leading to damage of plant roots, vegetation degradation and a lot of geological disasters. Compared to engineering measures, plant slope protection technology is widely used in mining areas due to its advantages of green, safety, and economy. The root soil complex formed by plant roots and soil increases the shear strength of the soil and enhances the stability of shallow soil. With the application of microbial reclamation technology in western mining areas, the vegetation coverage of coal mining subsidence areas has significantly increased, which has functions such as improving soil physical and chemical properties, promoting plant root development, and resisting stress. However, there is a lack of systematic research revealing the improvement of soil physical and chemical properties, plant root development, and mechanical related properties of root soil complexes by microbial reclamation technology. Therefore, this paper selects the mining subsidence area of Ningtiaota in Yulin, northern Shaanxi Province as the research area, takes Alfalfa as the cultivation plant, adopts the research method of combining field in-situ test and indoor test, and uses triaxial shear, in-situ pull and single root Tensile testing to study the soil physical and chemical properties and root characteristics of arbuscular mycorrhizal fungi (AMF), dark septate endophytic fungi (DSE) and their combination on the root soil complex, The effect of inoculation on the mechanical properties of Alfalfa root soil complex was clarified. The main research findings are as follows:

(1) To elucidate the effect pattern of combined AMF and DSE inoculation on soil physicochemical properties of alfalfa(Medicago sativa L) root-soil complex. Compared with CK, AMF and DSE, the AMF+DSE treatment had the highest proportion of 0.5~2mm size microagglomerates and the lowest content of 0.075~0.25mm size microagglomerates, indicating that the combined inoculation of AMF+DSE was more favourable to the formation of 0.5~2mm size microagglomerates; and the AMF+DSE treatment had the highest content of particles between d10 and d60/% The AMF+DSE treatment had the highest particle content between d10 and d60/%, indicating that the structure of the root-soil complex was more stable under the combined AMF+DSE inoculation. The water content of all treatments did not vary significantly and was greatest at 10-20cm depth and lowest at 30-40cm. The pore distribution and pore size of the soil surface in the inoculated treatments were smaller than in the CK treatment, with AMF+DSE showing the best improvement in pore distribution. pH decreased in the CK, AME and DSE treatments but the change was not significant, while AMF+DSE was significantly lower. Conductivity decreased with increasing soil depth in all treatments, with a 3-fold decrease in the AMF+DSE treatment. The total nitrogen, phosphorus and potassium contents of the inoculated soils were significantly lower than those of the non-inoculated soils, with the lowest contents in the double-inoculated soils. The fast-acting phosphorus and fast-acting potassium contents of all four treatments showed a pattern of decreasing before increasing and were lowest at 20-30 cm depth, but the fast-acting phosphorus and fast-acting potassium contents of the inoculated treatments were still higher than those of the control treatment, with the AMF+DSE treatment being the highest. Soil organic matter was higher in the inoculated treatments than in the control treatment, and AMF+DSE was significantly higher, indicating that AMF+DSE treatment helped to improve soil fertility.

(2) To clarify the characteristics of the effect of combined AMF and DSE inoculation on the root traits of alfalfa root-soil complex. The mean root diameter of alfalfa under the inoculation treatment was significantly larger than that of CK treatment (P < 0.05), while no significant difference was shown between the inoculation treatments. the mean root length of AMF+DSE treatment was 10%, 83% and 135% lower than that of CK, AMF and DSE treatments respectively, but the cohesion increased by 37.6%, 25.65% and 19.76% compared to the above three treatments respectively This indicates that double inoculation significantly increased the cohesion of the alfalfa root-soil complex. The root content of the root-soil complex under the inoculation treatment was greater than that of CK, and the root content of the double-inoculated bacteria was the largest, while the cohesion increased with the increase in root content, indicating that the double-inoculation treatment could significantly enhance the strength of the soil. The average single root tensile strength of the alfalfa root system was AMF+DSE > DSE > AMF > CK in descending order under the four treatments, with the average single root tensile strength of AMF+DSE being significantly higher than the other three treatments. The average single root tensile strength of alfalfa root system was AMF+DSE > CK > AMF > DSE in descending order, among which the average single root tensile strength of AMF+DSE increased by 20%, 41% and 52% compared with CK, AMF and DSE treatments, and the average single root tensile strength of double-inoculated bacterial AMF+DSE root system was significantly enhanced compared with single-inoculated bacterial AMF and DSE treatments.

(3) To reveal the mechanism of the effect of combined AMF and DSE inoculation on enhancing the shear strength of alfalfa root-soil complex. As the infestation rate increased, the extra-root mycelium produced absorbed large amounts of nutrients to promote root development and secreted organic matter to improve the soil structure and pore distribution around the roots, thus increasing the shear strength of the alfalfa root-soil complex. Pearson correlation analysis showed that total N, total P and total K were significantly negatively correlated with cohesion; fast-acting P and fast-acting K were not significantly correlated with cohesion. Principal component analysis revealed that soil nutrients and root density were the main factors influencing the cohesion and internal friction angle of the root-soil complex, and the enhancement effect of AMF+DSE on both was obvious. The results of the study provide new research ideas and technical support for the restoration of vegetation in western coal mining areas in the context of ecological restoration of mining areas.

参考文献:

[1]李凤明, 丁鑫品, 孙家恺. 我国采煤沉陷区生态环境现状与治理技术发展趋势[J]. 煤矿安全, 2021, 52(11): 232-239.

[2]王双明, 杜麟, 宋世杰. 黄河流域陕北煤矿区采动地裂缝对土壤可蚀性的影响[J]. 煤炭学报, 2021, 46(9): 3027-3038.

[3]毕银丽, 彭苏萍, 王淑惠. 西部煤矿区深色有隔内生真菌修复机理与生态应用模式[J]. 煤炭学报, 2022, 47(1): 460-469.

[4]毕银丽, 彭苏萍, 杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报, 2021, 46(05): 1355-1364.

[5]王元战, 刘旭菲, 张智凯, 等. 含根量对原状与重塑草根加筋土强度影响的试验研究[J]. 岩土工程学报, 2015, 37(8): 1405-1410.

[6]高岩, 党晓宏, 蒙仲举, 等. 采煤沉陷区植物根系损伤及修复研究进展[J]. 内蒙古林业科技, 2020, 46(4): 50-55.

[7]陈春晖. 生物聚合物对土体强度影响的研究[D]. 中国地质大学, 2019.

[8]Katarzyna W, Piotr R, Katarzyna T. Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste[J]. Mycorrhiza, 2017, 27: 499-511.

[9]Bagdatli M C, Oktay E. Effects of different irrigation levels and arbuscular mycorrhizal fungi (AMF), photosynthesis activator, traditional fertilizer on yield and growth parameters of dry bean (Phaseolus vulgaris L.) in arid climatic conditions[J]. Communications in Soil Science and Plant Analysis, 2019, 50(20): 2521-2533.

[10]Yooongwech S, Samphumphuang T, Tisarum R, et al. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments viasoluble sugar and free proline[J]. Scientia Horticulturae, 2016, 198: 107-117.

[11]Pablo R Hardoim, Leonard S van Overbeek, Gabriele Berg, et al. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes[J]. Microbiology & Molecular Biology Reviews Mmbr, 2015, 79(3): 293-320.

[12]Chen E, Blaze J A, Smith R S, et al. Freeze-tolerance of poleward﹕preading mangrove species weakened by soil properties of resident salt marsh competitor[J]. Journal of Ecology, 2020, 108(4).

[13]Brundrett M C, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. New Phytologist, 2018, 220: 1108-1115.

[14]Vasconcellos R L, Bonfim J A, Baretta D, et al. Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of the atlantic forest in Brazil[J]. Land Degradation & Development, 2016, 27(2): 325-334.

[15]Barea J, Palenzuela J, Cornejo P, et al. Ecological and functional roles of mycorrhizas in semiarid ecosystems of Southeast Spain[J]. Journal of Arid Environments, 2011, 75(12): 1292-1301.

[16]Choi J, Summers W, Paszkowski U. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses[J]. Annual Review of Phytopathology, 2018, 56(1): 135–160.

[17]常勃, 李建华, 卢朝东, 等. 2012. 微生物复垦技术在矿区生态重建中的应用[J]. 山西农业科学, 40(10): 1071-1074

[18]NoydRK, PflegerFL, NorlandMR. Fieldresponses to added organic matter, arbuscularmycorrhizal fungi, andfertilizer in reclaimation of taconite iron oretailing[J]. PlantandSoil, 1996, 179: 87-97.

[19]S. M. Frost, P. D. Stahl, Stephen E. Williams. Long-term reestablishment of arbuscular mycorrhizal fungi in a drastical disturbed semiarid surface mine soil[J]. Arid Land Research and Management, 2001, 15(1): 3-12

[20]Channasava A, Lakshman HC. Diversity and efficacy of AM fungi on Jatropa curcas L, and Panicum miliacaeum L. in mine spoils[J]. Journal of Agricultural Technology, 2013, 9(1): 103-113

[21]Feng G, Zhang YF, Li XL. Effect of external hyphae of arbuscular mycorthizal plant on wate-r stable aggregates in sandy soil[J]. Journal of Soil and Water Conservation, 2001, 15(4): 99~102.

[22]Chang, I., Cho, GC. Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay[J]. Acta Geotechnica, 2019, 14: 361-375.

[23]Wang JL, Li T, Liu GY, Smith JM, Zhao ZW. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects[J]. Scientific Reports, 2016, 6: 22028.

[24]Barrow JR, Osuna P, 2002. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt[J]. Journal of Arid Environments, 51(3): 449-459

[25]Della Mónica IF, Saparrat MCN, Godeas AM, Scervino JM. The co-existence between DSE a-nd AMF symbionts affects plant P pools through P mineralization and solubilization processes[J]. Fungal Ecology, 2015, 17: 10-17.

[26]Santos, Paula Renata, et al. Dark septate endophyte decreases stress on rice plants[J]. Brazilian Journal of Microbiology, 2017, 48(2): 333-341.

[27]Berthelot C, Perrin Y, Leyval C, Blaudez D. Melanization and ageing are not drawbacks for successful agro-transformation of dark septate endophytes[J]. Fungal Biology, 2017, 121(8): 652-663.

[28]吴强盛, 周开兵, 夏仁学,等. 柑桔丛枝菌根发育状况田间调查[J]. 亚热带植物科学, 2004, 33(2): 39-40.

[29]黄咏明, 宋放,等. 根系修剪和接种丛枝菌根真菌对枳实生苗根系形态的影响[J]. 中国南方果树, 2019, 48(2): 5-10.

[30]Cruz C, Green J J, Watson CA, et al. Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity[J]. Mycorrhiza, 2004, 14(3): 177-184

[31]Wu QS, He XH, Zou YN, et al.Arbuscular mycorrhizas alter root system architecture of Citrus- tangerine through regulating metabolism of endogenous polyamines[J]. Plant Growth Regulation, 2012, 68: 27-35

[32]陈洁敏, 姜德锋, 刘树堂, 等. 丛枝菌根真菌对玉米生长生态效应的影响[J]. 生态农业研究, 20-00, 8(3): 25-27.

[33]Chandrasekaran, M. A meta-analytical approach on arbuscular mycorrhizal fungi inoculation eff-iciency on plant growth and nutrient uptake[J]. Agriculture, 2020: 370.

[34]Alhadidi, N., Pap, Z., Ladányi, M., Szentpéteri, V., and Kappel, N. (2021). Mycorrhizal inoculation effect on sweet potato (Ipomoea batatas (L.) Lam) seedlings[J]. Agronomy, 2019.

[35]孔佩佩, 杨树华, 贾瑞冬, 等. 不同丛枝菌根真菌对切花菊矿质营养和抗氧化酶的影响[J]. Agri-cultural Science & Technology, 2011, 12(10): 1477-1480.

[36]Oussouf FM, EssahibiA, QaddouryA. Effect of arbuscular mycorrhizal fungi(AMF)on growth, water statuts and oxidative metabolism inolive plant let sunder water deficit[J]. In:the first international American Moroccan Agricultural Sciences Conference (AMASconferenceI), 2013.

[37]马通, 刘润进, 李敏. 丛枝菌根真菌对生菜耐热性的效应[J]. 植物生理学报, 2015, 51(11): 1919-1926.

[38]Maya MA, Matsubara YI. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in Cyclamenunder heatstress[J]. Mycorrhiza, 2013, 23(5): 381-390.

[39]Zhu XC, Song FB, Liu SQ, et al. Effects of arbuscular mycorrhizal fungu sonphotosyn thesis and water status of maize under high temperature stress[J]. Plant and Soil, 2011, 346(2): 189-199.

[40]Liu AR, Chen SC, Chang R, et al. Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterationsin H2O2 accumulation and ATPase activity[J]. Journal of Plant Research, 2014, 127(6): 775-785.

[41]王园园. 丛枝菌根真菌和钾调控宁夏枸杞耐盐及钾吸收机制[D]. 西北农林科技大学, 2020.

[42]Liu XM, Xu QL, Li QQ, Zhang H, Xiao JX. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress[J]. Journal of Plant Nutrition, 2017, 40(18): 2562–2570.

[43]毕银丽, 解琳琳. 丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用[J]. 微生物学报, 202-1, 61(1): 58-67.

[44]Liu Y, Wei XL. Dark septate endophyte improves drought tolerance of Ormosia hosiei Hemsley & E. H. Wilson by modulating root morphology, ultrastructure, and the ratio of root hormones[J]. Forests, 2019, 10(10): 830.

[45]González-Teuber M, Urzúa A, Plaza P, Bascuñán-Godoy L. Effects of root endophytic fungi on response of Chenopodium quinoa to drought stress[J]. Plant Ecology, 2018, 219(3): 231–240.

[46]Li X, He XL, Hou LF, Ren Y, Wang SJ, Su F. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition[J]. Sc-ientific Reports, 2018, 8(1): 7896.

[47]Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes on plant growth: a meta-analysis[J]. Mycorrhiza, 2013, 23(2): 119–128.

[48]Waldron L J. The Shear Resistance of Root-Permeated Homogeneous and Stratified Soil[J]. Soil Science Society of America Journal, 1977, 41(5): 843-849.

[49]陈飞, 施康, 钱乾, 等. 根土复合体材料的抗剪强度特性研究进展[J]. 有色金属科学与工程: 1-14.

[50]杨亚川, 莫永京, 王芝芳, 等. 土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J]. 中国农业大学学报, 1996(2): 31-38.

[51]虎啸天, 余冬梅, 付江涛, 等. 柴达木盆地盐湖区盐生植物根-土复合体抗剪强度试验研究[J]. 冰川冻土,2 015, 37(6): 1579-1590.

[52]孔纲强, 文磊. 刘汉龙, 等. 植物根系分布形态及含根复合土强度特性试验[J]. 岩土力学, 2019, 40(10): 3717-3723.

[53]余芹芹, 胡夏嵩, 李国荣, 等. 寒旱环境灌木植物根–土复合体强度模型试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1020-1031.

[54]吴鹏, 谢朋成, 宋文龙, 等. 基于根系形态的植物根系力学与固土护坡作用机理[J]. 东北林业大学学报, 2014, 42(5): 139-142.

[55]Shakir A, Yhaya M F, Ahmad M I, et al. Preparation and Characterization of Mycelium as ABio-Matrix in Fabrication of Bio-Composite[J]. 2020, 304.

[56]Ghanbari F, Costanzo F, Hughes D P, et al. Phase-field modeling of constrained interactive fungal networks[J]. Journal of the Mechanics and Physics of Solids, 2020, 145(3): 104-160.

[57]Hao Tang , Huahua Li , Zhao Duan , et al. Direct Shear Creep Characteristics and Microstructure of Fiber-Reinforced Soil[J]. Advances in Civil Engineering, 2021, (1): 1-12

[58]冯固, 张玉凤, 李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响[J]. 水土保持学报, 2001, 15(4): 99-102.

[59]毕银丽, 罗睿, 王双明. 接菌对紫花苜蓿根系抗拉性及根菌复合土体抗剪强度影响[J]. 煤炭学报, 2022, 47(6): 2182-2192.

[60]中华人民共和国水利部. 土工试验方法标准[S]. 北京:中国计划出版社: 2019: 110-117.

[61]Marie Genet, Nomessi Kokutse, Alexia Stokes, et al. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability[J]. Forest Ecology and Management, 2008, 256(8): 1517-1526.

[62]张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩石力学与工程学报, 2015, 34(S1): 3597-3603.

[63]唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560-565.

[64]王宝军, 施斌, 刘志彬, 等. 基于GIS的黏性土微观结构的分形研究[J]. 岩土工程学报, 2004, 26(2): 244-247.

[65]朱海丽, 胡夏嵩, 毛小青, 等. 青藏高原黄土区护坡灌木植物根系力学特性研究[J]. 岩石力学与工程学报, 2880, 27(S2): 3445-3452.

[66]李可, 朱海丽, 宋路, 等. 青藏高原两种典型植物根系抗拉特性与其微观结构的关系[J]. 水土保持研究, 2018, 25(2): 240-249.

[67]管世烽, 夏振尧, 张伦, 等. 水平荷载作用下多花木蓝根系拉拔试验研究[J]. 长江科学院院报, 2016, 33(6): 24-28.

[68]刘秀萍,陈丽华,宋维峰. 林木根系与黄土复合体的抗剪强度试验研究[J]. 北京林业大学学报, 2006, (05): 67-72.

[69]毕银丽,王瑾,冯颜博,等.菌根对干旱区采煤沉陷地紫穗槐根系修复的影响[J]. 煤炭学报, 2014, 39(08): 1758-1764.

[70]Ji J, Kokutse N, Genet M, et al. Effect of spatial variation of tree root characteristics on slope stability. A case study on Black Locust (Robinia pseudoacacia) and Arborvitae (Platycladus orientalis) stands on the Loess Plateau, China[J]. Catena, 2012, 92: 139-154.

[71]宗全利, 冯博, 蔡杭兵, 等. 塔里木河流域河岸植被根系护坡的力学机制[J]. 岩石力学与工程学报, 2018, 37(5) 1290-1300.

[72]赵丽兵, 张宝贵. 紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J]. 农业工程学报, 2007, (9): 7-12.

[73]祁兆鑫, 余冬梅, 刘亚斌, 等. 寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究[J]. 工程地质学报, 2017, 25(6): 1438-1448.

[74]吕春娟, 陈丽华, 周硕, 等. 不同乔木根系的抗拉力学特性[J]. 农业工程学报, 2011, 27(S1): 329-335.

[75]武艺儒, 刘静, 张欣, 等. 3种灌木直根抗剪特性及其与化学组分的关系[J]. 干旱区资源与环境, 2019, 33(4): 129-133.

[76]付江涛, 余冬梅, 李晓康, 等. 柴达木盆地盐湖区盐生植物根-土复合体物理力学性质指标概率统计分析[J]. 岩石力学与工程学报, 2020, 39(8): 1696-1709.

[77]Ye C, Guo Z, Li z, et al. The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China[J]. Geomorphology, 2017, 285(15): 82-93.

[78]申紫雁, 刘昌义, 胡夏嵩, 等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究, 2021, 38(2): 392-401.

[79]毕银丽. 丛枝菌根真菌在煤矿区沉陷地生态修复应用研究进展[J]. 菌物学报, 2017, 36(7): 800-806.

[80]欧阳瑞培. 内蒙古艾蒿丛枝菌根真菌和深色有隔内生真菌的研究[D]. 包头: 内蒙古农业大学, 2021.

[81]Docker B B, Hubble T. Quantifying root-reinforcement of river bank soils by four Australian tree species[J]. Geomorphology, 2008, 100(3-4): 401-418.

[82]Duckett N., Knappett, et al. Modelling the seismic performance of rooted slopes from individual root-soil interaction to global slope behaviour[J]. Geotechnique, 2015, 65(12): 995-1009.

[83]RITZK. Microbes, Habitat Space, and Transport in Soil[J]. Springer Netherlands, 2011: 472-475.

[84]Linlin X, Yinli B, Shaopeng M, et al. Combined inoculation with dark septate endophytes and arbuscular mycorrhizal fungi: synergistic or competitive growth effects on maize?[J]. BMC Plant Biology, 2021, 21(1): 498.

[85]苟乐宇, 刘西周, 李飒, 等. 菌丝复合轻质土的制备及力学特性研究[J]. 岩土工程学报, 2021, 43(10): 1933-1958.

[86]Oades J M. The role of biology in the formation, stabilization and degradation of soil structure - ScienceDirect[J]. Soil Structure/Soil Biota Interrelationships, 1993: 377-400.

[87]A, carminati, M Zarebanadkouki, E Kroener, et al. Biophysical rhizosphere processes affecting root water uptake[J]. Annals of Botany, 2016, 118(4): 561-571.

[88]Oleghe E, Naveed M, Baggs E M, et al. Plant exudates improve the mechanical conditions for root penetration through compacted soils[J]. Plant and Soil, 2017, 421(1-2): 19-30.

[89]P G Roots, rhizosphere and soil: the route to a better understanding of soil science?[J]. Eur J Soil, 2006,2-12.

[90]Hinsinger P B A G, Vetterlein D, et al. Rhizosphere: biophysics, biogeochemistry and ecological relevance[J]. Plant and soil, 2009, 321(1): 117-152.

[91]李珍玉, 欧阳淼, 肖宏彬, 等. 基于根系构型的调控提高植物边坡根系固土能力[J]. 岩土力学, 2021(12): 1-11.

[92]Ghestem M, Veylon G, Bernard A, et al. Imfluence of plant root system orphology and architectural traits on soil shear resistance[J]. Plant & Soil, 2014, 377(1-2): 43-61.

[93]Philippe Hinsinger, Glyn Bengough, Doris Vetterlein, et al.Rhizosphere: biophysics, biogeochemistry and ecological relevance[J]. Plant and soil, 2009, 321(1): 117-52.

[94]Mickovski S B, Van L B. Test data from pullout experiments on vetiver grass ( Vetiveria zizanioides) grown in semi-arid climate[J]. Data in Brief, 2018, 17(7): 463-468.

[95]Frei M, Boll A, Graf F, et al. Quantification of the influence of vegetation on soil stability[J]. Proceedings of theInternational Conference on Slope Engineering, 2003, 3(4): 872-877.

[96]Fattet M, Fu Y, Ghestem M, et al. Effects of vegetation type on soil resistance to erosion:Relationship betweenaggregate stability and shear strength[J]. Catena, 2011, 87(1): 60-69

[97]Daleo P, Alberti J, Canepuccia A, et al. Mycorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply[J]. Journal of Ecology, 2008, 96(3):431-437.

[98]毕银丽, 李向磊, 彭苏萍, 等. 露天矿区植物多样性与土壤养分空间变异性特征[J]. 煤炭科学技术, 2020, 48(12): 205-213.

[99]栗岳洲, 付江涛, 余冬梅, 等. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J]. 岩石力学与工程学报, 2015, 34(7): 1370-1383.

[100]Waldron L J, Dakessian S. Soil reinforcement by roots:calculation of increased soil shear resistance from root properties[J]. Soil Sci, 1981, 132(6): 427-435.

[101]祁兆鑫, 余冬梅, 刘亚斌, 等. 寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究[J]. 工程地质学报, 2017, 25(6): 1438-1448.

[102]吕春娟, 陈丽华, 周硕, 等. 不同乔木根系的抗拉力学特性[J]. 农业工程学报, 2011, 27(S1): 329-335.

[103]管世烽, 夏振尧, 张伦, 等. 水平荷载作用下多花木蓝根系拉拔试验研究[J]. 长江科学院院报, 2016, 33(6): 24-28.

[104]刘丽娜. 水曲柳根系径级和序级结构特性分析[J]. 山西林业科技, 2015, 44(1): 18-23.

[105]田青青. 林草混交根土复合体力学特性研究[D]. 中南林业科技大学, 2014.

[106]赵倩. 不同根系类型组合模式根系生态位及护坡性能研究[D]. 北京林业大学, 2020.

杨文辉, 章定文, 闫茜, 等. 深浅根混种法加固边坡稳定性的数值分析[J]. 东南大学学报, 2020, 50(1): 161-168.

中图分类号:

 P642.11    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式