- 无标题文档
查看论文信息

论文中文题名:

 基于CUDA并行加速的阵列雷达信号处理方法及实现    

姓名:

 冯磊    

学号:

 21208088018    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083500    

学科名称:

 工学 - 软件工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 计算机科学与技术学院    

专业:

 软件工程    

研究方向:

 雷达信号处理    

第一导师姓名:

 李洪安    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Array radar signal processing method and implementation based on CUDA parallel acceleration    

论文中文关键词:

 雷达信号处理 ; CUDA ; BRWL-CFAR ; 加速比 ; 脉冲压缩    

论文外文关键词:

 Radar signal processing ; CUDA ; BRWL-CFAR ; acceleration ratio ; pulse compression    

论文中文摘要:

CUDA作为一个被广泛应用的并行计算平台,支持CPU和GPU之间的协同工作,有效地结合了CPU在逻辑控制方面的优势和GPU在并行计算方面的特长。本文以CUDA并行计算平台为基础,着重探讨CPU与GPU相结合的雷达信号处理算法。

首先,本文介绍了CPU+GPU的并行计算架构。研究雷达信号处理关键算法在CPU和GPU协作运算下的可并行性,并给出了CUDA并行编程关键算法的综合优化策略,包括合理分配线程、对齐与合并全局内存访问、避免共享内存Bank冲突等。

其次,本文概述了脉冲多普勒雷达信号处理的关键技术,对线性调频信号、脉冲压缩、MTI处理、MTD处理、CFAR检测等核心算法展开了研究,并通过仿真实验验证了算法的有效性。其中,针对脉冲压缩并行化运算效率低的问题,本文提出了一种利用GPU实现优化杂波随机序列归一化与杂波幅度调制序列相乘的方法。通过使用随机函数生成随机地址偏移来保证序列的随机性,并对脉冲的数据进行归一化处理。通过在GPU上使用并行归约算法求解序列中的最大值,显著提高了运算效率。

然后,针对CFAR模块在复杂场景下可能出现的背景水平预测不准确和计算复杂度高等问题,本文提出了一种基于贝叶斯干扰控制的鲁棒加权似然恒虚警检测器(BRWL-CFAR)算法。该算法通过将杂波距离等分并优化选择决策,动态评估威布尔背景下的杂波水平,通过杂波电平反馈控制,提高了检测器的抗干扰能力,提高了CFAR模块的检测性能,并利用并行化加速CFAR模块提高了运算效率。

最后,本文设计并完成了雷达信号处理算法的并行化仿真实验。通过分析CPU+GPU并行算法的仿真结果和实测数据验证了该系统能够正确处理雷达回波数据,且在实验平台下,GPU的加速比达到约105倍,显示出良好的加速效果。同时,本文完成了整个阵列雷达信号处理系统的软件调试,满足系统需求,具有一定的工程应用价值。

论文外文摘要:

CUDA,  as a widely used parallel computing platform, supports the collaborative work between CPU and GPU, effectively combining the advantages of CPU in logic control and the speciality of GPU in parallel computing. Based on the CUDA parallel computing platform, this paper focuses on the radar signal processing algorithm combining CPU and GPU.

Firstly, this paper introduces the parallel computing architecture of CPU+GPU. It investigates the parallelizability of key algorithms for radar signal processing under the collaborative computing of CPU and GPU, and gives a comprehensive optimization strategy for key algorithms of CUDA parallel programming, including reasonable allocation of threads, aligning and merging global memory accesses, and avoiding shared memory Bank conflicts.

Secondly, this paper outlines the key technologies of pulse Doppler radar signal processing, and researches the core algorithms of linear FM signal, pulse compression, MTI processing, MTD processing and CFAR detection, and verifies the effectiveness of the algorithms through simulation experiments. Among them, for the problem of low efficiency of pulse compression parallelisation operation, this paper proposes a method of using GPU to achieve optimised clutter random sequence normalisation and clutter amplitude modulation sequence multiplication. The randomness of the sequence is ensured by generating random address offsets using a random function and normalising the data of the pulse. The computational efficiency is significantly improved by solving for the maximum value in the sequence using a parallel normalisation algorithm on the GPU.

Then, for the problems of inaccurate background level prediction and high computational complexity that may occur in CFAR module in complex scenes, this paper proposes a robust weighted likelihood constant false alarm detector (BRWL-CFAR) algorithm based on Bayesian interference control. The algorithm dynamically evaluates the clutter level in the Weibull background by equidistributing the clutter distance and optimizing the selection decision, improves the anti-jamming ability of the detector through the feedback control of the clutter level, improves the detection performance of the CFAR module, and improves the computational efficiency by using parallelisation to accelerate the CFAR module.

Finally, this paper designs and completes the parallelisation simulation experiment of radar signal processing algorithm. By analysing the simulation results of the CPU+GPU parallel algorithm and the measured data, it is verified that the system can correctly process the radar echo data, and under the experimental platform, the acceleration ratio of GPU reaches about 105 times, which shows a good acceleration effect. At the same time, this paper completes the software debugging of the whole array radar signal processing system, which meets the system requirements and has certain engineering application value.

参考文献:

[1]Li F, Bao Z, Liu R, et al. Fast image inpainting and colorization by Chambolle’s dual method[J]. Journal of Visual Communication and Image Representation, 2011, 22(6): 529—542.

[2]Meng X. Rank sum nonparametric CFAR detector in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 57(1): 397-403.

[3]Detouche N, Laroussi T, Madjidi H. New log-t-based CFAR detectors for a non-homogeneous Weibull Background[J]. Physical Communication, 2023, 59: 102085.

[4]Yang X, Huo K, Su J, et al. An anti-FOD method based on CA-CM-CFAR for MMW radar in complex clutter background[J]. Sensors, 2020, 20(6): 1635.

[5]Liu K, LI Y, Wang P, et al. A CFAR Detection Algorithm Based on Clutter Knowledge for Cognitive Radar[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023, 106(3): 590-599.

[6]Sahed M, Kenane E, Khalfa A, et al. Exact Closed-Form P fa Expressions for CA-and GO-CFAR Detectors in Gamma-Distributed Radar Clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022: 1-11.

[7]Zebiri K, Mezache A. Triple-order statistics-based CFAR detection for heterogeneous Pareto type I background[J]. Signal, Image and Video Processing, 2023, 17(4): 1105-1111.

[8]Bouteldja M A, Baadeche M, Soltani F. Optimization of Distributed OS-CFAR and CMLD-CFAR Detectors using Differential Evolution Algorithm[J]. Arabian Journal for Science and Engineering, 2022: 1-11.

[9]Weinberg G V. Interference control in sliding window detection processes using a Bayesian approach[J]. Digital Signal Processing, 2020, 99: 102658.

[10]孙宾宾, 沈涛, 贾磊, 等. 基于环境噪声的毫米波雷达动态阈值计算[J]. 激光与光电子学进展, 2021, 35-62.

[11]Weinberg G V. Noncoherent radar detection in correlated Pareto distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2628-2636.

[12]Lin Y C, Lee T S, Pan Y H, et al. Low-complexity high-resolution parameter estimation for automotive MIMO radars[J]. IEEE Access, 2019, 8: 16127-16138.

[13]Lin Q, Zhao J, Du B, et al. MEDNet: Multiexpert detection network with unsupervised clustering of training samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.

[14]Wang X, Li Y, Zhang N. A robust constant false alarm rate detector based on the Bayesian estimator for the non-homogeneous Weibull clutter in HFSWR[J]. Digital Signal Processing, 2020, 106: 102831.

[15]龚昊, 刘莹, 冯建周等. 基于GPU加速的脉冲多普勒雷达信号处理[J]. 计算机工程与科学2021, 43(7): 1141-1149.

[16]Gouri A, Mezache A, Oudira H. Radar CFAR detection in Weibull clutter based on zlog (z) estimator[J]. Remote Sensing Letters, 2020, 11(6): 581-589.

[17]肖磊. 基于 CUDA 的宽带多信道校准算法的设计与实现[D]. 西安电子科技大学, 2011.

[18]赵进.基于 GPU 的遥感图像并行处理算法及其优化技术研究[D].长沙:国防科学技术大学,2011, 20-57.

[19]贾逢德,何子述,李军,等.机载雷达平面阵前视杂波距离依赖性补偿[J].现代雷达, 2018, 40(7):5.DOI:10.16592/j.cnki.1004-7859.2018.07.009.

[20]Weber P, Haykin S. Ordered statistic CFAR processing for two-parameter distributions with variable skewness[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985 (6): 819-821.

[21]Mehanaoui A, Laroussi T, Mezache A. Pietra index based processor for a heterogeneous Pareto background[J]. IET Radar, Sonar & Navigation, 2019, 13(8): 1225-1233.

[22]沈晓峰, 殷文昭, 杜龙飞, 邢川, 王军强, & 徐敦毅. (2017). 一种基于时延离散化的SAR回波仿真方法. CN104181533B.

[23]Weinberg G V. On the construction of CFAR decision rules via transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 1140-1146.

[24]C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe. Some early developments in synthetic aperture radar systems [J]. IRE Transactions on Military Electronics, 1962, 6(2): 111-115.

[25]Sjanic Z, Gustafsson F. Simultaneous navigation and synthetic aperture radar focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1253-1266.

[26]H. Sheng, M. Zhou, K. Wang, et al. SAR echo simulation from numerous scattering cells based on GPU[C]//Radar Conference 2013, IET International. IET, 2013: 1-5.

[27]Woollard M, Ritchie M, Griffiths H. Investigating the effects of bistatic SAR phenomenology on feature extraction[C]//2020 IEEE International Radar Conference (RADAR). IEEE, 2020: 906-911.

[28]Agarwal T, Sugavanam N, Ertin E. Sparse signal models for data augmentation in deep learning ATR[J]. Remote Sensing, 2023, 15(16): 4109.

[29]Fabian Z, Heckel R, Soltanolkotabi M. Data augmentation for deep learning based accelerated MRI reconstruction with limited data[C]//International Conference on Machine Learning. PMLR, 2021: 3057-3067.

[30]Li B, Wang S, Zhang J, et al. Ultra-fast accurate AoA estimation via automotive massive-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2021, 71(2): 1172-1186.

[31]Kim S, Kim B, Lee J. Low-complexity-based rd-music with extrapolation for joint toa and doa at automotive fmcw radar systems[J]. Journal of Sensors, 2020, 35-62.

[32]Zheng Q, Zhao P, Li Y, et al. Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification[J]. Neural Computing and Applications, 2021, 33(13): 7723-7745.

[33]戴金洲, 杜磊, 沙硕, 等. 环境感知毫米波雷达抗干扰算法研究[J]. 电子测量与仪器学报, 2023, 37(9): 126.

[34]孔文娇. 毫米波雷达无线电干扰测试方法研究[D]. 电子科技大学, 2022.

[35]梁步伟. 基于 GPU 的阵列雷达信号处理实现技术[D]. 西安电子科技大学, 2019.

[36]Li B, Wang S, Feng Z, et al. Fast pseudospectrum estimation for automotive massive MIMO radar[J]. IEEE Internet of Things Journal, 2021, 8(20): 15303-15316.

[37]Amani N, Jansen F, Filippi A, et al. Sparse automotive MIMO radar for super-resolution single snapshot DOA estimation with mutual coupling[J]. IEEE Access, 2021, 9: 146822-146829.

[38]Li Y, Long Q, Wu Z, et al. Low-complexity joint 3d super-resolution estimation of range velocity and angle of multi-targets based on FMCW radar[J]. Sensors, 2022, 22(17): 6474.

[39]Guo Y, Shen Q, Deng Z, et al. Research on a super-resolution and low-complexity positioning algorithm using FMCW radar based on OMP and FFT in 2D driving scene[J]. Sensors, 2023, 23(9): 4531.

[40]罗扬静,夏添,丁勇,等.基于GPU并行分块的二维恒虚警检测算法的实现方法[J].国外电子测量技术, 2023, 42(10):12-18.

[41]耿昭说, 朱虎明, 寺旭明, 等. 基于高性能计算的雷达信号处理研究综述[J]. Electronic Science & Technology, 2021, 34(9).

[42]火静斌,张晓滨,田泽.基于CPU-GPU的有序统计类恒虚警检测优化[J].计算机技术与发展, 2023, 33(4):40-45.

[43]Kallenborn F , Schmidt B .CAREx: context-aware read extension of paired-end sequencing data[J].BMC Bioinformatics, 2024, 25(1).DOI:10.1186/s12859-024-05802-w.

[44]赵帮, 武旭, 赵浩然. 一种分层并行计算的软件化雷达系统[J]. Telecommunication Engineering, 2022, 62(1).

[45]Rahayu E S, Ariananda D D, Hidayat R. Compressive Range and Velocity Estimation Using Frequency-Modulated Continuous Wave Radar[C]//2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA). IEEE, 2023: 448-453.

[46]Wang Y, Shui Y, Yang X, et al. Multi-target vital signs detection using frequency-modulated continuous wave radar[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021: 1-19.

[47]Bae C, Lee S, Jung Y. High-speed continuous wavelet transform processor for vital signal measurement using frequency-modulated continuous wave radar[J]. Sensors, 2022, 22(8): 3073.

[48]Ding Y, Guo S, Wu H, et al. Dual-chirp photonics-based radar for distance and velocity measurement based on compressive sensing[J]. IEEE Photonics Journal, 2022, 14(4): 1-7.

[49]高源, 王晋宇, 张长弓, 等. SAR 图像仿真方法研究综述[J]. Journal of Computer Engineering & Applications, 2021, 57(15).

[50]汤俊, 岑宗骏. 软件化雷达技术发展思考与展望[J]. 信号处理, 2022, 38(10): 1999-2008.

[51]沈齐, 吴洪. 软件化雷达技术体制分析[J]. Journal of Signal Processing, 2024, 40(1).

[52]邓玉成,王峰,汪浩,等.一种捷变频雷达距离速度超分辨-恒虚警-自适应重构参数估计算法[J].现代雷达, 2024(002):046.

[53]全英汇,高霞,沙明辉,等.基于期望最大化算法的捷变频联合正交频分复用雷达高速多目标参数估计[J].电子与信息学报, 2021, 43(7):8.DOI:10.11999/JEIT190474.

[54]Yang W, Dou Y, Zhao B, et al. Inversion for the density–depth profile of Dome A, East Antarctica, using frequency-modulated continuous wave radar[J]. Journal of Glaciology, 2021, 67(266): 1213-1227.

[55]Zhu L, Liu Y, He D, et al. An efficient target detection algorithm via Karhunen‐Loève transform for frequency modulated continuous wave (FMCW) radar applications[J]. IET Signal Processing, 2022, 16(7): 800-810.

[56]Toledo F, Delanoë J, Haeffelin M, et al. Absolute calibration method for frequency-modulated continuous wave (FMCW) cloud radars based on corner reflectors[J]. Atmospheric Measurement Techniques, 2020, 13(12): 6853–6875.

[57]Rahayu E S, Hidayat R, Ariananda D D. Sequential-compressive-range azimuth estimation in radar signal processing[C]//2021 13th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE, 2021: 189-195.

[58]陈龙.基于CUDA和OpenGL的多图层叠加的雷达终端显示技术[J].空天预警研究学报, 2023, 37(3):194-197.

[59]牛轶杰, 柳兴, 乔灵博. 毫米波全息成像快速反向传播算法研究[J]. Chinese Journal of Lasers, 2020, 47(9): 909002-1.

[60]韩丰,高嵩,薛峰,et al.基于CUDA的并行雷达拼图算法研究[J].气象, 2023, 49(10):1246-1253.

[61]潘丰,高伟,罗俊,等.基于NVIDIA GPU后向投影FFBP算法的加速研究[J].电子测量技术, 2023(022):046.

[62]宋佩涛,张志俭,张乾,等.CPU-GPU协同计算在MOC中子输运异构并行计算中的应用研究[J].核动力工程, 2020, 41(4):5.DOI:10.13832/j.jnpe.2020.04.0017.

[63]Liao B, Liu W, Cheng Z, et al. Guest editorial: Advanced signal processing for integration of radar and communication (IRC)[J]. IET Signal Processing, 2022, 16(7): 733-736.

[64]He D, Guan K, Ai B, et al. Channel measurement and ray-tracing simulation for 77 GHz automotive radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2022: 6-16.

[65]Senigagliesi L, Ciattaglia G, Disha D, et al. Classification of human activities based on automotive radar spectral images using machine learning techniques: a case study[C]//2022 IEEE Radar Conference (RadarConf22). IEEE, 2022: 1-6.

[66]Hu Y, Wang K, Wang L, et al. Specific Identification of Radar Emitters Based on Manifold Learning Method[C]//2021 4th International Conference on Information Communication and Signal Processing (ICICSP). IEEE, 2021: 91-98.

[67]时晨光,唐志诚,丁琳涛,等.非理想检测下面向异步多目标跟踪的异构多雷达网络功率时间联合优化算法[J].雷达学报, 2023, 12(3):563-575.DOI:10.12000/JR23044.

[68]Tian Q , Xu C .An Optimization Algorithm of Software radar Constant False-Alarm Rate detection based on GPU[J]. 2020.

[69]俞惊雷,柳彬,王开志,等.一种基于GPU的高效合成孔径雷达信号处理器[J].信息与电子工程, 2022(4).DOI:10.3969/j.issn.1672-2892.2010.04.010.

[70]刘国鹏, 鄢社锋, 毛琳琳, 等. 多异构阵列归一化数据融合被动定位方法[J]. 信号处理, 2022, 38(8): 1642-1655.

[71]J. D. Owens, M. Houston, D. Luebke, et al. GPU Computing [J]. Proceedings of the IEEE, 2008, 96(5): 879-899.

[72]Hu Y, Wang K, Wang L, et al. Specific Identification of Radar Emitters Based on Manifold Learning Method[C]//2021 4th International Conference on Information Communication and Signal Processing (ICICSP). IEEE, 2021: 91-98.

[73]Ran X, Zhu W. Radar emitter identification based on weighted local and global consistency[C]//2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2019: 2133-2137.

[74]Shi Y, Wang C, Li P, et al. A Multi-Kemel Discriminant Analysis Framework for Specific Radar Emitter Identification[C]//2021 China Automation Congress (CAC). IEEE, 2021: 7244-7249.

[75]Wu J, Wu B, Niu H, et al. A Novel Support Vector Machine Based Radar Individual Recognition Algorithm Under Inconsistent Noise Condition[C]//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020: 2847-2850.

[76]Zhu M, Zhang X, Qi Y, et al. Compressed sensing mask feature in time-frequency domain for civil flight radar emitter recognition[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 2146-2150.

[77]Tom K, Ranney K. Survey of Methodology and Features for Radar Waveform Modulation Classification[J]. 2020: 1-8.

[78]Ranney K, Tom K, Tadas D, et al. An efficient pulse detector and pulse width estimator for waveform characterization[C]//Radar sensor technology XXV. SPIE, 2021, 11742: 226-236.

中图分类号:

 TN911.7    

开放日期:

 2024-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式