论文中文题名: | 基于CUDA并行加速的阵列雷达信号处理方法及实现 |
姓名: | |
学号: | 21208088018 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083500 |
学科名称: | 工学 - 软件工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 雷达信号处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-05-30 |
论文外文题名: | Array radar signal processing method and implementation based on CUDA parallel acceleration |
论文中文关键词: | |
论文外文关键词: | Radar signal processing ; CUDA ; BRWL-CFAR ; acceleration ratio ; pulse compression |
论文中文摘要: |
CUDA作为一个被广泛应用的并行计算平台,支持CPU和GPU之间的协同工作,有效地结合了CPU在逻辑控制方面的优势和GPU在并行计算方面的特长。本文以CUDA并行计算平台为基础,着重探讨CPU与GPU相结合的雷达信号处理算法。 首先,本文介绍了CPU+GPU的并行计算架构。研究雷达信号处理关键算法在CPU和GPU协作运算下的可并行性,并给出了CUDA并行编程关键算法的综合优化策略,包括合理分配线程、对齐与合并全局内存访问、避免共享内存Bank冲突等。 其次,本文概述了脉冲多普勒雷达信号处理的关键技术,对线性调频信号、脉冲压缩、MTI处理、MTD处理、CFAR检测等核心算法展开了研究,并通过仿真实验验证了算法的有效性。其中,针对脉冲压缩并行化运算效率低的问题,本文提出了一种利用GPU实现优化杂波随机序列归一化与杂波幅度调制序列相乘的方法。通过使用随机函数生成随机地址偏移来保证序列的随机性,并对脉冲的数据进行归一化处理。通过在GPU上使用并行归约算法求解序列中的最大值,显著提高了运算效率。 然后,针对CFAR模块在复杂场景下可能出现的背景水平预测不准确和计算复杂度高等问题,本文提出了一种基于贝叶斯干扰控制的鲁棒加权似然恒虚警检测器(BRWL-CFAR)算法。该算法通过将杂波距离等分并优化选择决策,动态评估威布尔背景下的杂波水平,通过杂波电平反馈控制,提高了检测器的抗干扰能力,提高了CFAR模块的检测性能,并利用并行化加速CFAR模块提高了运算效率。 最后,本文设计并完成了雷达信号处理算法的并行化仿真实验。通过分析CPU+GPU并行算法的仿真结果和实测数据验证了该系统能够正确处理雷达回波数据,且在实验平台下,GPU的加速比达到约105倍,显示出良好的加速效果。同时,本文完成了整个阵列雷达信号处理系统的软件调试,满足系统需求,具有一定的工程应用价值。 |
论文外文摘要: |
CUDA, as a widely used parallel computing platform, supports the collaborative work between CPU and GPU, effectively combining the advantages of CPU in logic control and the speciality of GPU in parallel computing. Based on the CUDA parallel computing platform, this paper focuses on the radar signal processing algorithm combining CPU and GPU. Firstly, this paper introduces the parallel computing architecture of CPU+GPU. It investigates the parallelizability of key algorithms for radar signal processing under the collaborative computing of CPU and GPU, and gives a comprehensive optimization strategy for key algorithms of CUDA parallel programming, including reasonable allocation of threads, aligning and merging global memory accesses, and avoiding shared memory Bank conflicts. Secondly, this paper outlines the key technologies of pulse Doppler radar signal processing, and researches the core algorithms of linear FM signal, pulse compression, MTI processing, MTD processing and CFAR detection, and verifies the effectiveness of the algorithms through simulation experiments. Among them, for the problem of low efficiency of pulse compression parallelisation operation, this paper proposes a method of using GPU to achieve optimised clutter random sequence normalisation and clutter amplitude modulation sequence multiplication. The randomness of the sequence is ensured by generating random address offsets using a random function and normalising the data of the pulse. The computational efficiency is significantly improved by solving for the maximum value in the sequence using a parallel normalisation algorithm on the GPU. Then, for the problems of inaccurate background level prediction and high computational complexity that may occur in CFAR module in complex scenes, this paper proposes a robust weighted likelihood constant false alarm detector (BRWL-CFAR) algorithm based on Bayesian interference control. The algorithm dynamically evaluates the clutter level in the Weibull background by equidistributing the clutter distance and optimizing the selection decision, improves the anti-jamming ability of the detector through the feedback control of the clutter level, improves the detection performance of the CFAR module, and improves the computational efficiency by using parallelisation to accelerate the CFAR module. Finally, this paper designs and completes the parallelisation simulation experiment of radar signal processing algorithm. By analysing the simulation results of the CPU+GPU parallel algorithm and the measured data, it is verified that the system can correctly process the radar echo data, and under the experimental platform, the acceleration ratio of GPU reaches about 105 times, which shows a good acceleration effect. At the same time, this paper completes the software debugging of the whole array radar signal processing system, which meets the system requirements and has certain engineering application value. |
参考文献: |
[10]孙宾宾, 沈涛, 贾磊, 等. 基于环境噪声的毫米波雷达动态阈值计算[J]. 激光与光电子学进展, 2021, 35-62. [15]龚昊, 刘莹, 冯建周等. 基于GPU加速的脉冲多普勒雷达信号处理[J]. 计算机工程与科学2021, 43(7): 1141-1149. [17]肖磊. 基于 CUDA 的宽带多信道校准算法的设计与实现[D]. 西安电子科技大学, 2011. [18]赵进.基于 GPU 的遥感图像并行处理算法及其优化技术研究[D].长沙:国防科学技术大学,2011, 20-57. [22]沈晓峰, 殷文昭, 杜龙飞, 邢川, 王军强, & 徐敦毅. (2017). 一种基于时延离散化的SAR回波仿真方法. CN104181533B. [33]戴金洲, 杜磊, 沙硕, 等. 环境感知毫米波雷达抗干扰算法研究[J]. 电子测量与仪器学报, 2023, 37(9): 126. [34]孔文娇. 毫米波雷达无线电干扰测试方法研究[D]. 电子科技大学, 2022. [35]梁步伟. 基于 GPU 的阵列雷达信号处理实现技术[D]. 西安电子科技大学, 2019. [40]罗扬静,夏添,丁勇,等.基于GPU并行分块的二维恒虚警检测算法的实现方法[J].国外电子测量技术, 2023, 42(10):12-18. [41]耿昭说, 朱虎明, 寺旭明, 等. 基于高性能计算的雷达信号处理研究综述[J]. Electronic Science & Technology, 2021, 34(9). [42]火静斌,张晓滨,田泽.基于CPU-GPU的有序统计类恒虚警检测优化[J].计算机技术与发展, 2023, 33(4):40-45. [44]赵帮, 武旭, 赵浩然. 一种分层并行计算的软件化雷达系统[J]. Telecommunication Engineering, 2022, 62(1). [50]汤俊, 岑宗骏. 软件化雷达技术发展思考与展望[J]. 信号处理, 2022, 38(10): 1999-2008. [51]沈齐, 吴洪. 软件化雷达技术体制分析[J]. Journal of Signal Processing, 2024, 40(1). [52]邓玉成,王峰,汪浩,等.一种捷变频雷达距离速度超分辨-恒虚警-自适应重构参数估计算法[J].现代雷达, 2024(002):046. [53]全英汇,高霞,沙明辉,等.基于期望最大化算法的捷变频联合正交频分复用雷达高速多目标参数估计[J].电子与信息学报, 2021, 43(7):8.DOI:10.11999/JEIT190474. [58]陈龙.基于CUDA和OpenGL的多图层叠加的雷达终端显示技术[J].空天预警研究学报, 2023, 37(3):194-197. [59]牛轶杰, 柳兴, 乔灵博. 毫米波全息成像快速反向传播算法研究[J]. Chinese Journal of Lasers, 2020, 47(9): 909002-1. [60]韩丰,高嵩,薛峰,et al.基于CUDA的并行雷达拼图算法研究[J].气象, 2023, 49(10):1246-1253. [61]潘丰,高伟,罗俊,等.基于NVIDIA GPU后向投影FFBP算法的加速研究[J].电子测量技术, 2023(022):046. [69]俞惊雷,柳彬,王开志,等.一种基于GPU的高效合成孔径雷达信号处理器[J].信息与电子工程, 2022(4).DOI:10.3969/j.issn.1672-2892.2010.04.010. [70]刘国鹏, 鄢社锋, 毛琳琳, 等. 多异构阵列归一化数据融合被动定位方法[J]. 信号处理, 2022, 38(8): 1642-1655. |
中图分类号: | TN911.7 |
开放日期: | 2024-06-18 |