- 无标题文档
查看论文信息

论文中文题名:

 酸性矿井水作用下煤岩压缩变形试验研究    

姓名:

 罗金志    

学号:

 19209071015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081803    

学科名称:

 工学 - 地质资源与地质工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 岩土体稳定及地质灾害防治    

第一导师姓名:

 唐皓    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-05-27    

论文外文题名:

 Experimental study on compression and deformation of coal rock under acid mine water    

论文中文关键词:

 酸性矿井水 ; 孔隙结构 ; 分子结构 ; 变形损伤 ; 能量耗散特征    

论文外文关键词:

 Acid mine water ; pore structure ; molecular structure ; deformation damage ; energy consumption characteristics    

论文中文摘要:

闭坑煤矿的采空区经过二次充水,井下预设安全煤柱长期受到酸性矿井水浸泡,煤柱的煤体物理力学性质发生改变,破坏了煤柱原有力学平衡,给采空区地下空间带来一定安全隐患。鉴于此,为研究酸性矿井水作用下煤岩变形力学特性,基于酸性矿井水的特点,在室内配制相似的酸性矿井水溶液,开展不同酸性环境的矿井水浸泡煤岩试验、扫描电镜(SEM)试验、低场核磁共振(NMR)试验、XRD试验、傅里叶红外光谱(FITR)试验、三轴压缩试验;研究煤岩微观孔隙结构特征、分子结构特征、煤岩宏观变形力学特征,结合微观结构特征及能量耗散理论分析煤岩压缩变形力学损伤特征规律,取得以下成果:

(1)酸性矿井水溶液与煤岩之间水岩相互作用,影响着溶液水质参数动态变化。随浸泡时间的增加,溶液pH值上升、氧化还原电位值降低,总溶解固体含量上升,电导率增加,铁元素、硫酸根含量增加。溶液水质参数变化及离子含量变化,表明煤岩与酸性矿井水之间存在较为明显水岩相互作用。

(2)SEM结果表明煤岩微观结构面产生了较大尺寸的孔隙及裂隙,并伴随着出现较多的颗粒物,由孔隙裂隙识别系统的统计(PCAS),煤岩微观结构面分形维数、概率密度熵出现较为明显增加,孔隙性增强;NMR结果显示强酸环境大孔径(1~100μm)的孔隙增加明显,小孔径的孔隙(<1μm)比例出现下降,呈负向增长,反映酸性的增强抑制小孔发育,促进大孔发育。XRD与FITR试验结果表明,随酸性增强,煤岩分子结构发生改变,芳香族层面网间距(d002)减小,芳香族缩合作用增强,羧酸基团含量增加,脂肪族化合物发生转变,直链的脂肪族,分解成多个分支的侧链脂肪链,芳碳率增加明显,碳环振动增强,芳香化作用有一定提高,但效果微弱仅有1%。

(3)煤岩三轴压缩试验结果表明,煤岩轴向应变、径向应变、峰值应力、软化应力均随酸性增强而降低,反映酸性增强煤岩压缩变形有明显劣化;压缩变形过程中,脆性指数随酸性增强而降低,反映煤岩由脆性破坏逐步向塑性破坏方式转变。

(4)煤岩轴向变形、径向变形随微观孔隙增多而减弱;分子结构的改变也对煤岩变形损伤有一定影响,随着芳香族层面网间距减小以及苯环三取代降低,煤岩轴向变形、径向变形均表现出一定减弱趋势,但规律性不明显,表明分子结构改变引起煤岩变形损伤效果微弱,微观结构孔隙的增多是引起煤岩变形损伤主要原因。此外,由煤岩压缩变形损伤能量耗散特征可知,酸性矿井水作用下煤岩轴向压缩能、径向扩散能、弹性应变能以及耗散能均随酸性的增强而降低,表明强酸性环境煤岩能量损耗也出现损伤;但耗散能与弹性应变能比值却随酸性增强而增大,表明强酸环境下煤岩压缩能量不仅出现降低,还出现能量由弹性应变能向耗散能转变的特征。

论文外文摘要:

After the second filling of the mining area in the closed pit coal mine, the underground pre-set safety coal pillars are soaked in acid mine water for a long time, and the physical and mechanical properties of the coal body of the posts are changed, which destroy the original mechanical equilibrium of the coal pillars and bring specific safety hazards to the underground space in the mining area. Because of this, to study the mechanical deformation properties of coal rock under the action of acid mine water, based on the characteristics of acid mine water, similar acid mine water solutions were prepared indoors, and mine water-soaked coal rock tests, scanning electron microscopy (SEM) tests, low-field nuclear magnetic resonance (NMR) tests, XRD tests, Fourier infrared spectroscopy (FITR) tests, and triaxial compression tests were carried out in different acidic environments; combining microstructure characteristics and energy dissipation theory to analyze the characteristic law of mechanical damage of coal rock compression deformation, the following results were obtained.

(1) The water-rock interaction between acid mine water solution and coal rock affects the dynamic changes of solution water quality parameters. With the increase of soaking time, the solution pH value rises, the oxidation-reduction potential value decreases, the total dissolved solids content of the solution increases, the conductivity increases, and the elemental iron and sulfate content of the saturated solution increases. Changes in solution water quality parameters and ion content indicate a more apparent water-rock interaction between coal rock and acid mine water.

(2) The SEM results show that the micro-structure surface of coal rocks produced more extensive dissolved pores. Based on Pores and Crack analyze system(PCAS) statistic, the micro-structure surface granular matter increased, porosity enhanced, and the fractal dimension and probability density entropy showed a more noticeable increase; the NMR results show that the pores of large pore size (1~100μm) increased significantly in the acidic solid environment, and the proportion of tiny pore size pores(<1μm)decreased with a negative growth, reflecting the enhancement of acidity inhibiting pore development. XRD and FITR test results show that the molecular structure of changes with the increase of acidity, the network spacing (d002) of aromatic levels in macro-molecules decreases, the aromatic condensation increases, the content of carboxylic acid groups increases, aliphatic compounds undergo transformation, and straight-chain aliphatic decomposed into multiple branching side-chain aliphatic chains, the aromatic carbon rate increased obviously, the carbon ring vibration was enhanced, and the aromatization effect was improved to some extent, but the result was only 1% weak.

(3) The results of the triaxial compression test of coal rocks show that the axial strain, radial strain, peak stress and softening stress of coal rocks decrease with the increase of acidity, reflecting the apparent deterioration of compression deformation of coal rocks with the rise of acidity; the brittleness index decreases with the growth of acidity in the process of compression deformation, reflecting the gradual transformation of coal rocks from brittle damage to plastic damage mode.

(4) The axial deformation and radial deformation of coal rocks weaken with the increase of microscopic pores; the change of molecular structure also has a particular influence on the deformation damage of coal rocks, with the decrease of aromatic level network spacing and the decrease of benzene ring tri-substitution, the axial deformation and radial deformation of coal rocks show a specific trend of weakening, but the regularity is not apparent, indicating that the effect of deformation damage caused by the change of molecular structure of coal rocks is weak, and the increase of microscopic structure pores is The increase of microstructure pores is the main cause of coal rock deformation damage. In addition, the energy dissipation characteristics of coal rock compression and deformation damage show that the axial compression energy, radial diffusion energy, elastic strain energy and dissipation energy of coal rock under the action of acidic mine water all decrease with the increase of acidity, indicating that the energy loss of coal rock in the strongly acidic environment also appears damage; however, the ratio of dissipation energy to elastic strain energy increases with the increase of acidity, indicating that the compression energy of coal rock in the strongly acidic environment not only decreases, but also appears energy; however, the ratio of dissipation energy to elastic strain energy increases with the increase of acidity, indicating that the compression energy of coal rocks not only decreases but also changes from elastic strain energy to dissipation energy.

参考文献:

[1] 何满潮, 郭鹏飞. “一带一路”中的岩石力学与工程问题及对策探讨[J]. 绍兴文理学院学报(自然科学), 2018, 38(02), 1-9.

[2] 董东林, 武强, 孙桂敏, 等. 临汾地裂缝灾害与地下水开采相关关系[J]. 中国矿业大学学报, 1999(01), 97-100.

[3] 董东林, 武强, 钱增江, 等. 临汾地面沉降数值模拟及其与地裂缝灾害关系研究[J], 工程地质学报, 2001(02), 218-222.

[4] 武强, 李松营. 闭坑矿山的正负生态环境效应与对策[J], 煤炭学报. 2018, 43(01), 21-32.

[5] 钱鸣高, 缪协兴, 许家林. 资源与环境协调(绿色)开采及其技术体系[J], 采矿与安全工程学报, 2006(01), 1-5.

[6] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(05), 1283-1305.

[7] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(01), 304-316.

[8] 许光泉, 岳梅, 严家平, 等. 四台煤矿酸性矿井水化学特征分析与防治[J]. 煤炭科学技术, 2007(09), 106-108.

[9] 王立艳, 王璐, 张云剑, 等. 微生物在酸性矿井水形成过程中的作用[J]. 洁净煤技术, 2010, 16(03), 104-107.

[10] Edwards K J, Gihring T M, Banfield J F. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment[J], Apply Environment Microbiology, 1999, 65(8): 3627-3632.

[11] 李向东, 蔡洁莹, 冯启言, 等. 分散碱性基质法处理闭坑煤矿酸性矿井水试验研究[J], 煤炭科学技术, 2020, 48(09), 160-165.

[12] 李梅. 酸性矿井水对煤矿安全煤柱影响的探讨[J]. 枣庄学院学报, 2020, 37(05), 5-10.

[13] 李昌存, 苑永健, 赵蓓蓓, 等. 采空区建高层可行性分析[J]. 四川建筑科学研究, 2012, 38(2), 134-138.

[14] 钱自卫, 吴慧蕾, 姜振泉. 老采空区高层建筑物地基稳定性综合评价[J]. 湖南科技大学学报(自然科学版), 2011, 26(01), 58-62.

[15] 赵苏启, 武强, 尹尚先. 广东大兴煤矿特大突水事故机理分析[J]. 煤炭学报, 2006, 31(05), 618-622.

[16] Tang H, Luo J, Zheng L, et al. Characteristics of pores in coals exposed to acid mine drainage[J]. Energy Reports, 2021, 7(7): 8772-8783.

[17] Chen A, Lin C, Lu W, et al. Well water contaminated by acidic mine water from the Dabaoshan Mine, South China: Chemistry and toxicity[J]. Chemosphere, 2007, 70(2): 248-255.

[18] Liu P, Gao Y, Shang M, et al. Predicting water level rises and their effects on surrounding karst water in an abandoned mine in Shandong, China[J]. Environmental Earth Sciences, 2020, 79(1): 51.

[19] Skousen J G, Ziemkiewicz P F, McDonald L M. Acid mine drainage formation, control and treatment: Approaches and strategies[J]. The Extractive Industries and Society, 2019, 6(1): 241-249.

[20] Herlihy A T, Kaufmann P R, Mitch M E, et al. Regional estimates of acid mine drainage impact on streams in the mid-atlantic and Southeastern United States[J]. Water, Air, and Soil Pollution, 1990, 50(1): 91-107.

[21] Masindi V, Chatzisymeon E, Kortidis I, et al. Assessing the sustainability of acid mine drainage (AMD) treatment in South Africa[J]. Science of The Total Environment, 2018, 635(4): 793-802.

[22] Masindi V, Gitari M W, Tutu H, et al. Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage[J]. Journal of Water Process Engineering, 2015, 8(15): 227-240.

[23] Ana, Duarte L, Kátia, et al. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area[J]. Geoscience Frontiers, 2019, 10(3): 927-939.

[24] Civeira M S, Ramos C G, Oliveira M, et al. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill[J]. Chemosphere, 2016, 145(2): 142-147.

[25] Civeira M, Oliveira M, Hower J C, et al. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: examples from copper mining refuse, Touro, Spain[J]. Environmental Science & Pollution Research, 2016, 23(7): 6535-6545.

[26] Rodriguez-Iruretagoiena A, Vallejuelo F, Diego A D, et al. The mobilization of hazardous elements after a tropical storm event in a polluted estuary[J]. Science of the Total Environment, 2016, 565(15): 721-729.

[27] Galhardi J A, Bonotto D M. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil[J]. Environmental Science and Pollution Research, 2016, 23(18): 18911-18927.

[28] Verburg R, Bezuidenhout N, Chatwin T, et al. The Global Acid Rock Drainage Guide (GARD Guide)[J], Mine Water and the Environment, 2009, 28(4):1037-1045.

[29] Ochieng G M, Seanego E S, Nkwonta O I. Impacts of mining on water resources in South Africa: A review[J]. Scientific Research and Essays, 2017, 22(5): 3351-3357.

[30] Moodley I, Sheridan C M, Kappelmeyer U, et al. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products[J]. Minerals Engineering, 2018, 126: 207-220.

[31] Acharya B S, Kharel G. Acid mine drainage from coal mining in the United States – An overview[J]. Journal of hydrology (Amsterdam), 2020, 588: 125061-125075.

[32] 蔡昌风, 孙敬, 罗飞翔, 等. 基于不同形式 MFC 的 PRB 对 AMD 处理效果影响[J]. 煤炭学报, 2016, 41(05), 1301-1308.

[33] Pat-Espadas A, Loredo Portales R, Amabilis-Sosa L, et al. Review of Constructed Wetlands for Acid Mine Drainage Treatment[J]. Water, 2018, 10(11): 1685-1710.

[34] Kirby D. Effective Treatment Options for Acid Mine Drainage in the Coal Region of West Virginia[D]. Huntington: Marshall University, 2014.

[35] 徐则民. 路基边坡水岩相互作用机理及病害防治[M]. 成都:西南交通大学出版社,2000:3.

[36] Feucht L J, Logan J M. Effects of chemically active solutions on shearing behavior of a sandstone[J], Tectonophysics, 1990, 175(1): 159-176.

[37] 汤连生, 张鹏程, 王思敬. 水-岩化学作用的岩石宏观力学效应的试验研究[J]. 岩石力学与工程学报, 2002(04), 526-531.

[38] 丁梧秀, 冯夏庭. 渗透环境下化学腐蚀裂隙岩石破坏过程的CT试验研究[J]. 岩石力学与工程学报, 2008(09), 1865-1873.

[39] 韩铁林, 师俊平, 陈蕴生. 砂岩在化学腐蚀和冻融循环共同作用下力学特征劣化的试验研究[J]. 水利学报, 2016, 47(5), 644-655.

[40] 陈有亮, 王朋, 张学伟, 等. 花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J]. 岩土工程学报, 2014(12), 2226-2235.

[41] 丁梧秀, 徐桃, 王鸿毅, 等. 水化学溶液及冻融耦合作用下灰岩力学特性试验研究[J], 岩石力学与工程学报, 2015(5), 979-985.

[42] 张继周, 缪林昌, 杨振峰. 冻融条件下岩石损伤劣化机制和力学特性研究[J]. 岩石力学与工程学报, 2008, 27(8), 1688-1694.

[43] Cai Y, Yu J, Fu G, et al. Experimental investigation on the relevance of mechanical properties and porosity of sandstone after hydrochemical erosion[J]. Journal of Mountain Science, 2016, 13(11): 2053-2068.

[44] ZHOU K, LI B, LI J, et al. Microscopic damage and dynamic mechanical properties of rock under freeze–thaw environment[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1254-1261.

[45] LI J, ZHOU K, LIU W, et al. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze–thaw cycles[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2997-3003.

[46] 陈明义. 煤-气-水耦合作用下低阶烟煤力学损伤及渗透率演化机制研究[D],徐州:中国矿业大学,2017.

[47] Kuvaev N N, Panchenko D F. Effect of moisture on the dynamic strength of brown coals[J]. Soviet mining science, 1975, 11(3): 220-222

[48] White J M, Mazurkiewicz M. Effect of moisture content on mechanical properties of Nemo coal, Moberly, Missouri U.S.A.[J]. Mining Science and Technology, 1989, 9(2): 181-185

[49] Vishal V, Ranjith P G, Singh T N. An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 428-436

[50] 郭海防. 水压力作用下煤岩损伤弱化规律研究[D].西安:西安科技大学,2010.

[51] 汪亦显, 曹平. 水化学腐蚀下岩石损伤力学效应研究[J]. 南华大学学报(自然科学版), 2009, 23(01), 27-30.

[52] 闫立宏, 吴基文, 刘小红. 水对煤的力学性质影响试验研究[J]. 建井技术, 2002, 23(03), 30-32.

[53] 袁梅, 陈恋, 吕晴, 等. 酸化下无烟煤化学结构响应及吸附性能影响研究[J]. 安全与环境学报, 2022, 22(01), 132-141.

[54] 苏现波, 汤友谊, 盛建海. 河南省煤层气开发工艺初探[J]. 焦作工学院学报, 1998(06), 406-408.

[55] 李瑞, 王坤, 王于健. 提高煤岩渗透性的酸化处理室内研究[J]. 煤炭学报, 2014, 39(5), 913-917.

[56] 刘炎杰, 刘超, 马兵, 等. 提高煤储层渗透率的酸化实验[J]. 煤田地质与勘探, 2016, 44(2), 46-49.

[57] Balucan R D, Turner L G, Steel K M. X-ray μCT investigations of the effects of cleat demineralization by HCl acidizing on coal permeability[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 206-218.

[58] Yoo H, Park J, Lee Y, et al. An experimental investigation into the effect of pore size distribution on the acid-rock reaction in carbonate acidizing[J]. Journal of Petroleum Science and Engineering, 2019, 180: 504-517.

[59] Jingna X, Guanhua N, Hongchao X, et al. The effect of adding surfactant to the treating acid on the chemical properties of an acid-treated coal[J]. Powder Technology, 2019, 356: 263-272.

[60] Huang Z, Zhao X, Gao Y, et al. The Influence of Water Immersion on the Physical and Chemical Structure of Coal[J]. Combustion science and technology, 2020: 1-19.

[61] Xu D, Shi L, Qu X, et al. Leaching Behavior of Heavy Metals from the Coal Gangue under the Impact of Site Ordovician Limestone Karst Water from Closed Shandong Coal Mines, North China[J]. Energy & Fuels, 2019, 33(10): 10016-10028.

[62] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005(17), 3003-3010.

[63] 谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9), 1729-1740.

[64] 张志镇, 高峰. 3种岩石能量演化特征的试验研究[J]. 中国矿业大学学报, 2015, 44(03), 416-422.

[65] Zhang Z, Gao F. Experimental investigation on the energy evolution of dry and water-saturated red sandstones[J]. International Journal of Mining Science and Technology, 2015, 25(3): 383-388.

[66] 张志镇, 高峰. 单轴压缩下岩石能量演化的非线性特性研究[J]. 岩石力学与工程学报, 2012, 31(06), 1198-1207.

[67] 张志镇, 高峰. 受载岩石能量演化的围压效应研究[J]. 岩石力学与工程学报, 2015, 34(01), 1-11.

[68] 张媛, 许江, 杨红伟, 等. 循环荷载作用下围压对砂岩滞回环演化规律的影响[J]. 岩石力学与工程学报, 2011, 30(02), 320-326.

[69] 许江, 张媛, 杨红伟, 等. 循环孔隙水压力作用下砂岩变形损伤的能量演化规律[J]. 岩石力学与工程学报, 2011, 30(01), 141-148.

[70] 苏承东, 张振华. 大理岩三轴压缩的塑性变形与能量特征分析[J]. 岩石力学与工程学报, 2008(02), 273-280.

[71] 许国安, 牛双建, 靖洪文, 等. 砂岩加卸载条件下能耗特征试验研究[J]. 岩土力学, 2011, 32(12), 3611-3617.

[72] 彭瑞东, 鞠杨, 高峰, 等. 三轴循环加卸载下煤岩损伤的能量机制分析[J]. 煤炭学报, 2014, 39(02), 245-252.

[73] 李子运, 吴光, 黄天柱, 等. 三轴循环荷载作用下页岩能量演化规律及强度失效判据研究[J]. 岩石力学与工程学报, 2018, 37(03), 662-670.

[74] 谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21), 3564-3570.

[75] 盛益之, 王广才, 刘莹, 等. 煤矿酸性矿井水主动式生物修复中铁的行为与归宿[J]. 地学前缘, 2018, 25(04), 299-306.

[76] Feng Q, Li T, Qian B, et al. Chemical Characteristics and Utilization of Coal Mine Drainage in China[J]. Mine Water & the Environment, 2014, 33(3): 287-288.

[77] 岳梅, 赵峰华, 任德贻. 煤矿酸性水水化学特征及其环境地球化学信息研究[J]. 煤田地质与勘探, 2004(03), 46-49.

[78] 刘强, 张永波, 张志祥, 等. 煤矿酸性老空水形成机制及其处置技术研究[J]. 煤炭技术, 2017, 36(10), 163-165.

[79] 毕大园, 尹国勋. 酸性矿井水防治现状与发展趋势[J]. 焦作工学院学报(自然科学版), 2003(01), 35-38.

[80] 白国良, 梁冰, 唐晓楠. 酸性矿井水入渗过程中的水岩作用[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(S1), 162-164.

[81] 许光泉, 岳梅, 严家平, 等. 四台煤矿酸性矿井水化学特征分析与防治[J]. 煤炭科学技术, 2007(09), 106-108.

[82] 李波, 刘国, 聂宇晗, 等. 西南典型废弃硫铁矿水化学特征及环境同位素分析[J]. 环境科学与技术, 2020, 43(10), 10-17.

[83] 白国良, 梁冰, 煤炭开发中相关渗流力学问题研究[J]. 西安石油大学学报(自然科学版), 2007(02), 153-156.

[84] Zhang W, Noble A, Yang X, et al. Lithium leaching recovery and mechanisms from density fractions of an Illinois Basin bituminous coal[J]. Fuel, 2020, 268: 117319-117330.

[85] Pan J, Nie T, Vaziri Hassas B, et al. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching[J]. Chemosphere, 2020, 248: 126112-126121.

[86] 罗金志, 唐皓, 隋智力. 煤样浸水过程中水化学效应研究[J]. 科学技术与工程, 2021, 29(21), 12431-12437.

[87] 鲁祖德, 丁梧秀, 冯夏庭, 等. 裂隙岩石的应力-水流-化学耦合作用试验研究[J]. 岩石力学与工程学报, 2008, 27(4), 796-804.

[88] Fabiańska M J, Kurkiewicz S, Biomarkers. aromatic hydrocarbons and polar compounds in the Neogene lignites and gangue sediments of the Konin and Turoszów Brown Coal Basins (Poland)[J], International Journal of Coal Geology, 2013, 107: 24-44.

[89] Carroll S A, McNab W W, Dai Z, et al. Reactivity of Mount Simon Sandstone and the Eau Claire Shale Under CO2 Storage Conditions[J]. Environmental Science & Technology, 2012, 47(1): 252-261.

[90] Lin H, Li G, Dong Y, et al. Effect of pH on the release of heavy metals from stone coal waste rocks[J]. International Journal of Mineral Processing, 2017, 165: 1-7.

[91] Fu T, Wu Y, Ou L, et al. Effects of thin Covers on the Release of Coal Gangue Contaminants[J]. Energy procedia, 2012, 16: 327-333.

[92] Chuncai Z, Guijian L, Dun W, et al. Mobility behavior and environmental implications of trace elements associated with coal gangue: A case study at the Huainan Coalfield in China[J]. Chemosphere, 2014, 95: 193-199.

[93] 蒋群. 煤矿酸性矿井水特征、机理实验及防治研究[D].淮南:安徽理工大学, 2007.

[94] Blowes D W, Ptacek C J, Jambor J L, et al. 9.05 - The Geochemistry of Acid Mine Drainage, Treatise on Geochemistry, Holland H D, Turekian K K, Oxford, Pergamon, 2003, 149-204.

[95] Nie B, Liu X, Yang L, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917

[96] 赵政, 倪小明, 韩文龙, 等. 不同破坏程度煤的孔隙特征差异对比研究[J]. 煤矿安全, 2021, 52(07), 9-14.

[97] Green U, Aizenstat Z, Gieldmeister F, et al. CO2 Adsorption Inside the Pore Structure of Different Rank Coals during Low Temperature Oxidation of Open Air Coal Stockpiles[J]. Energy & Fuels, 2011, 25(9): 4211-4215.

[98] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001(01), 40-44.

[99] 谢凯楠, 姜德义, 孙中光, 等. 基于低场核磁共振的干湿循环对泥质砂岩微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(02), 653-659.

[100]贾海梁, 韩力, 孙强, 等. 微波照射冻结石英砂岩热融软化特性及损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(09), 1884-1893.

[101]刘堂晏, 肖立志, 傅容珊, 等. 球管孔隙模型的核磁共振(NMR)弛豫特征及应用[J]. 地球物理学报, 2004(04), 663-671.

[102]谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(06), 1566-1572.

[103]苏现波, 司青, 王乾. 煤变质演化过程中的XRD响应[J]. 河南理工大学学报(自然科学版), 2016, 35(4), 1673-1987.

[104]刘钦甫, 袁亮, 李阔, 等. 不同变质程度煤系石墨结构特征[J]. 地球科学, 2018, 43(05), 1663-1669.

[105]Song D, Yang C, Zhang X, et al. Structure of the organic crystallite unit in coal as determined by X-ray diffraction[J]. Mining Science and Technology (China), 2011, 21(5): 667-671.

[106]齐晓, 韩建国, 李曼莉. 近红外光谱分析仪器的发展概况[J]. 光谱学与光谱分析, 2007, 27(10), 2022-2026.

[107]崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(04), 704-717.

[108]刘春, 许强, 施斌, 等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报, 2018, 40(05), 925-931.

[109]谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992(01), 14-24.

[110]谢和平, 周宏伟. 基于分形理论的岩石节理力学行为研究[J]. 中国科学基金, 1998(04), 17-22.

[111]赵鲁庆, 杨更社, 吴迪, 等. 冻融黄土微观结构变化规律及分形特性研究[J]. 地下空间与工程学报, 2019, 15(06), 1680-1690.

[112]方祥位, 申春妮, 李春海, 等. 陕西蒲城黄土微观结构特征及定量分析[J]. 岩石力学与工程学报, 2013, 32(09), 1917-1925.

[113]Liu C, Shi B, Zhou J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.

[114]何雨丹, 毛志强, 肖立志, 等. 核磁共振T2分布评价岩石孔径分布的改进方法[J]. 地球物理学报, 2005, 48(02), 373-378.

[115]曹玉召, 郝慧丽, 王海超, 等. H2S水溶液对低阶煤渗透性的影响实验研究[J], 煤矿安全, 2021, 52(09), 29-35.

[116]李胜, 罗明坤, 范超军, 等. 基于核磁共振和低温氮吸附的煤层酸化增透效果定量表征[J]. 煤炭学报, 2017, 42(07), 1748-1756.

[117]孟祥喜. 水岩作用下岩石损伤演化规律基础试验研究[D]. 青岛:山东科技大学,2018.

[118]Zhang Z, Shi Y, Li H, et al. Experimental study on the pore structure characteristics of tight sandstone reservoirs in Upper Triassic Ordos Basin China[J]. Energy Exploration & Exploitation, 2016, 34(3): 418-439.

[119]王瑞飞, 沈平平, 宋子齐, 等. 特低渗透砂岩油藏储层微观孔喉特征[J]. 石油学报, 2009, 30(4), 560-569.

[120]王凯, 乔鹏, 王壮森, 等. 基于二氧化碳和液氮吸附、高压压汞和低场核磁共振的煤岩多尺度孔径表征[J], 中国矿业, 2017, 26(04), 146-152.

[121]孔星星, 肖佃师, 蒋恕, 等. 联合高压压汞和核磁共振分类评价致密砂岩储层——以鄂尔多斯盆地临兴区块为例[J]. 天然气工业, 2020, 40(03), 38-47.

[122]Furmann A, Mastalerz M, Brassell S C, et al. Extractability of biomarkers from high- and low-vitrinite coals and its effect on the porosity of coal[J]. International Journal of Coal Geology, 2013, 107: 141-151.

[123]贾廷贵, 李璕, 曲国娜, 等. 不同变质程度煤样化学结构特征FITR表征[J]. 光谱学与光谱分析, 2021, 41(11), 3363-3369.

[124]Zhang L, Li Z, Yang Y, et al. Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal[J]. Fuel, 2016, 184: 418-429.

[125]张小蕊, 邹冲, 赵俊学, 等. XRD和Raman法评估热解气氛中H2和CO对半焦化学结构的影响[J]. 燃料化学学报, 2019, 47(11), 1288-1297.

[126]赵洪宇, 李玉环, 舒元锋, 等. CaO对褐煤和无烟煤热解产物分布及煤焦结构的影响[J]. 煤炭科学技术, 2016, 44(03), 177-183.

[127]林雄超, 王彩虹, 田斌, 等. 脱灰对两种烟煤半焦碳结构及CO2气化反应性的影响[J]. 中国矿业大学学报, 2013, 42(6), 1040-1046.

[128]郝盼云, 孟艳军, 曾凡桂, 等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析, 2020, 40(03), 787-792.

[129]谭波, 徐斌, 胡明明, 等. 不同变质程度煤在氧化过程中的表面官能团红外光谱定量分析[J]. 中南大学学报(自然科学版), 2019, 50(11), 2886-2895.

[130]葛涛, 李洋, Meng Wang, 等. 高硫肥煤碳结构研究与光谱学表征[J]. 光谱学与光谱分析, 2021, 41(01), 45-51.

[131]梁虎珍, 王传格, 曾凡桂, 等. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报, 2014, 42(02), 129-137.

[132]梁昌鸿, 梁伟强, 李伍. 基于傅里叶红外光谱不同煤阶煤的官能团研究[J]. 煤炭科学技术, 2020, 48(S1), 182-186.

[133]韩峰, 张衍国, 蒙爱红, 等. 云南褐煤结构的FTIR分析[J]. 煤炭学报, 2014, 39(11), 2293-2299.

[134]马亚亚, 马凤云, 莫文龙, 等. 酸洗脱灰处理对新疆和丰低阶煤结构和萃取性能的影响[J]. 燃料化学学报, 2019, 47(06), 649-660.

[135]Geng W, Nakajima T, Takanashi H, et al. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144.

[136]Wijaya N, Zhang L. A Critical Review of Coal Demineralization and Its Implication on Understanding the Speciation of Organically Bound Metals and Submicrometer Mineral Grains in Coal[J]. Energy & Fuels, 2011, 25(1): 1-16.

[137]严敏, 岳敏, 林海飞, 等. 中低阶煤官能团对煤润湿性影响实验研究[J]. 煤炭科学技术, 2022, 11-24.

[138]王越, 马亚亚, 莫文龙, 等. 和丰次烟煤逐级萃取物和萃余物官能团组成FTIR分析[J], 燃料化学学报, 2021, 49(07), 890-901.

[139]Liwei Z, Dong S, Tang S, et al. Molecular structure characterization of coal under the water–rock interaction in acid mine drainage (AMD)[J]. Journal of Molecular Structure, 2022, 1251: 132043-132052.

[140]安文博, 王来贵, 刘向峰, 等. 基于FITR和XRD法分析阜新长焰煤结构特征[J]. 高分子通报, 2018, 09(3), 67-74.

[141]Wang S, Tang Y, Schobert H H, et al. FTIR and13C NMR Investigation of Coal Component of Late Permian Coals from Southern China[J]. Energy & Fuels, 2011, 25(12): 5672-5677.

[142]谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(07), 1067-1074.

[143]谢晶, 高明忠, 张盛, 等. 深部煤岩三轴破断行为与能量释放的加载率效应试验研究[J]. 中南大学学报(自然科学版), 2021, 52(08), 2713-2724.

[144]杨永杰, 宋扬, 陈绍杰. 三轴压缩煤岩强度及变形特征的试验研究[J]. 煤炭学报, 2006(02), 150-153.

[145]刘泉声, 刘恺德, 朱杰兵, 等. 高应力下原煤三轴压缩力学特性研究[J]. 岩石力学与工程学报, 2014, 33(01), 24-34.

[146]杨永杰, 宋扬, 陈绍杰. 三轴压缩煤岩强度及变形特征的试验研究[J]. 煤炭学报, 2006(02), 150-153.

[147]张宇, 任金虎, 陈占清. 三轴压缩下不同岩性煤岩体的强度及变形特征[J]. 西安科技大学学报, 2015, 35(06), 708-714.

[148]左建平, 宋洪强, 陈岩, 等. 煤岩组合体峰后渐进破坏特征与非线性模型[J]. 煤炭学报, 2018, 43(12), 3265-3272.

[149]高美奔, 李天斌, 孟陆波, 等. 岩石变形破坏各阶段强度特征值确定方法[J]. 岩石力学与工程学报, 2016, 35(S2), 3577-3588.

[150]张千贵, 梁永昌, 范翔宇, 等. 基于能量守恒定律对西原模型的改进与验证[J]. 重庆大学学报, 2016, 39(3), 117-124.

[151]Brown, Ed E T. Rock characterization, testing and monitoring : ISRM suggested methods[M]. Oxford: Pergamon Press, 1981.

[152]张美长. 含水煤样静动断裂力学特性及机理实验研究[D].阜新;辽宁工程技术大学,2020.

[153]刘文彬, 唐春安, 唐烈先. 残余强度特性对岩石宏观破坏的影响[J]. 岩土工程技术, 2004(02), 59-63.

[154]史贵才, 陈冠, 刘勇, 等. 脆塑性岩石破坏后区应力跌落效应数值模拟[J]. 应用力学学报, 2020, 37(01), 427-433.

[155]张俊文, 宋治祥. 深部砂岩三轴加卸载力学响应及其破坏特征[J]. 采矿与安全工程学报, 2020, 37(02), 409-418.

[156]孙琦, 于阳. 化学腐蚀作用下黑云片岩峰后应变软化特性研究[J]. 铁道科学与工程学报, 2019, 16(01), 100-106.

[157]陈国庆, 赵聪, 魏涛, 等. 基于全应力–应变曲线及起裂应力的岩石脆性特征评价方法[J]. 岩石力学与工程学报, 2018, 37(1), 51-59.

[158]Hucka V, Das B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 389-392.

[159]夏英杰, 李连崇, 唐春安, 等. 储层砂岩破坏特征与脆性指数相关性影响的试验及数值研究[J]. 岩石力学与工程学报, 2017, 36(01), 10-28.

[160]赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报(工程科学版), 2008(02), 26-31.

中图分类号:

 P642.3    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式