- 无标题文档
查看论文信息

论文中文题名:

 二维BCN基异质结半导体器件的光电性质研究    

姓名:

 韩伟    

学号:

 22201104024    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070205    

学科名称:

 理学 - 物理学 - 凝聚态物理    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 物理学    

研究方向:

 纳米电子学    

第一导师姓名:

 解忧    

第一导师单位:

 西安科技大学    

第二导师姓名:

 郝丽梅    

论文提交日期:

 2025-06-25    

论文答辩日期:

 2025-05-23    

论文外文题名:

 Study on photoelectric properties of semiconductor devices based on two-dimensional BCN heterostructures    

论文中文关键词:

 二维范德瓦尔斯异质结 ; 光电器件 ; 电子结构 ; 光学性质 ; 光电转换效率 ; 第一性原理    

论文外文关键词:

 Two-dimensional van der Waals heterostructures ; Photoelectric devices ; Electronic structure ; Optical properties ; Photoelectric conversion efficiency ; First-principles    

论文中文摘要:

随着光电半导体行业的发展,传统的光电半导体材料逐渐暴露出机械性能差、界面效应复杂等问题。不仅如此,传统的光电半导体材料由于体积和厚度限制,以及带隙通常由材料本身决定,不仅难以构建超薄柔性器件,而且难以通过结构调控改变光学特性,从而限制了其在柔性光电半导体器件领域的应用。因此,寻找更高性能、更小尺寸、可调性更高的光电半导体材料成为当前光电半导体行业的焦点问题。二维半导体材料具有较好的机械性能、带隙可调性、高比表面积以及量子限域效应。基于二维材料的范德瓦尔斯异质,以其独特的结构及其界面电子特性,能够有效提高载流子分离效率,延长载流子寿命。因此,基于范德瓦尔斯异质结构建的二维光电子器件有望表现出优异光电性能。单层BC6N,作为一种新型碳基二维材料,以其优异的物理性质而被广泛关注。单层BC6N适宜的禁带宽度(约1.9 eV),能够与大部分宽带隙二维材料组成可调控的范德瓦尔斯异质结。为了探究BC6N基二维范德瓦尔斯异质结光电半导体器件的性能,本文使用第一性原理计算方法,研究了BC6N/ZnO和BC6N/MoSSe两种范德瓦尔斯异质结构的电子结构、光吸收率、光电转换及其应变调控的物理性质,研究结果有助于探索纳米光电半导体材料及预测新型二维材料在光电半导体器件领域的应用潜力。主要研究内容与结果如下:

(1)将单层BC6N与单层ZnO堆叠,构建了一种新型BC6N/ZnO范德瓦尔斯异质结。研究了BC6N/ZnO异质结构在面内拉伸应变下的电子特性、光吸收率和光电转换效率。研究结果表明,单轴和双轴拉伸应变显著影响BC6N/ZnO异质结的结构稳定性、电子结构、光吸收率和光电转换效率(PCE)。当拉伸应变大于10%时,BC6N/ZnO异质结不再稳定。BC6N/ZnO异质结的光吸收率强于单层BC6N和ZnO,吸收峰会出现红移现象。BC6N/ZnO异质结为I型直接带隙半导体,当拉伸应变达到10%时,它转变为II型间接带隙半导体。间接带隙的II型异质结有利于光生电子和空穴在不同层中聚集,增加光生电子和空穴的分离,能够显著提高BC6N/ZnO的PCE。在10%的双轴应变和单轴应变下,BC6N/ZnO异质结的PCE分别为22.5%和15.3%。

(2)将BC6N单层与两面非对称的Janus MoSSe单层堆叠,形成两种不同的异质结构:BC6N/SMoSe和BC6N/SeMoS范德瓦尔斯异质结。基于BC6N/SMoSe和BC6N/SeMoS异质结构,设计了两种非对称电极的光电探测器。利用第一原理密度泛函理论和非平衡格林函数方法,研究了这两个异质结光电探测器的结构稳定性、电子性质、光学吸收率、光电流和偏振消光比。BC6N/SMoSe和BC6N/SeMoS异质结在动力学和热力学上都是稳定的,且分别具有II型和I型能带排列。与BC6N和Janus MoSSe单层对比,范德瓦尔斯异质结构的形成显著提高了在可见光和紫外光区域的光吸收率。相较于BC6N/SeMoS异质结,BC6N/SMoSe异质结的吸收率峰曲线略有红移。基于BC6N/SeMoS和BC6N/SMoSe异质结所构建的光电探测器能够产生超高的最大光电流,且BC6N/SMoSe和BC6N/SeMoS异质结光电探测器的最大光电流明显高于BC6N和Janus MoSSe单层光电探测器的最大光电流。BC6N/SMoSe和BC6N/SeMoS异质结光电探测器表现出较强的各向异性,沿armchair方向的光电流比沿zigzag方向的光电流更强。消光比也在armchair方向和zigzag方向上表现出各向异性,说明BC6N/SMoSe和BC6N/SeMoS光电探测器具有出色的偏振灵敏度。研究结果证明,具有不对称接触的BC6N/Janus MoSSe异质结非常适合用来设计和制备先进的纳米光电器件。

(3)在BC6N/Janus MoSSe范德瓦尔斯异质结的研究基础上,进一步探讨了双轴应变对BC6N/Janus MoSSe异质结电子性质和光电转换效率的调控规律。研究发现,负双轴应变(–4%至–6%)可诱导BC6N/SeMoS由I型直接带隙半导体转变为II型间接带隙半导体。层间内建电场的形成,显著提升载流子分离效率,BC6N/SeMoS异质结的PCE在–6%应变下达到19.06%。而BC6N/SMoSe异质结在正向应变(6%)下从II型间接带隙半导体转变为I型直接带隙半导体,展现出更广泛的能带可调性。两种BC6N/Janus MoSSe异质结在应变下均有着较好的能带可调性,表现出较高且范围较广的光吸收率,并且不同的结构类型会表现出不同的PCE值。这些研究结果能够为BC6N/Janus MoSSe异质结在光电器件领域的应用提供重要理论指导。

论文外文摘要:

With the development of the optoelectronic semiconductor industry, traditional optoelectronic semiconductor materials are gradually exposed to problems such as poor mechanical properties and complex interfacial effects. Not only that, traditional optoelectronic semiconductor materials, due to the volume and thickness limitations, as well as the bandgap is usually determined by the material itself, it is not only difficult to build ultra-thin flexible devices, but also difficult to change the optical properties through structural tuning, thus limiting its application in the field of flexible optoelectronic semiconductor devices. Therefore, the search for higher performance, smaller size, and more tunable optoelectronic semiconductor materials has become the focus of the current optoelectronic semiconductor industry. Two-dimensional semiconductor materials have better mechanical properties, bandgap tunability, high surface-to-volume ratios, and quantum-limited domain effects. Van der Waals heterostructure based on 2D materials can effectively improve carrier separation efficiency and extend carrier lifetime with its unique structure and its interfacial electronic properties. Therefore, 2D optoelectronic devices built based on Van der Waals heterostructure are expected to exhibit excellent optoelectronic performance. Monolayer BC6N, as a new type of BCN-based 2D material, has attracted much attention for its excellent physical properties. The suitable forbidden bandwidth (~1.9 eV) of monolayer BC6N is capable of forming tunable van der Waals heterostructures with most wide bandgap 2D materials. In order to investigate the performance of BC6N-based two-dimensional van der Waals heterostructure optoelectronic semiconductor devices, this paper investigates the electronic structure, light absorbance, photoelectric conversion, and the physical properties of strain modulation of two van der Waals heterostructures, namely, BC6N/ZnO and BC6N/MoSSe, by using first-principle calculations, and the results are helpful for exploring the nano optoelectronic semiconductor materials and predicting the performance of the new 2D materials in the field of optoelectronic semiconductor devices. The results of the research can help to explore the potential of nano-optoelectronic semiconductor materials and predict the application of new two-dimensional materials in optoelectronic semiconductor devices. The main research contents and results are as follows:

(1) A novel BC6N/ZnO van der Waals heterostructure was constructed by stacking monolayer BC6N with monolayer ZnO. The electronic properties, optical absorptivity and photoelectric conversion efficiency of the BC6N/ZnO heterostructure under in-plane tensile strain were investigated. The results show that uniaxial and biaxial tensile strains significantly affect the structural stability, electronic structure, light absorbance and photoelectric conversion efficiency (PCE) of BC6N/ZnO heterostructures. The BC6N/ZnO heterostructure is no longer stable when the tensile strain is greater than 10%. The optical absorptivity of the BC6N/ZnO heterostructure is stronger than that of the monolayer BC6N and ZnO, and the absorptivity peak is red-shifted from the UV region to the vacuum UV region.The BC6N/ZnO heterostructure is a type I direct bandgap semiconductor, which transforms into a type II indirect bandgap semiconductor when the tensile strain reaches 10%. The indirect bandgap type II heterostructure facilitates the aggregation of photogenerated electrons and holes in different layers, increases the separation of photogenerated electrons and holes, and is able to significantly improve the PCE of BC6N/ZnO.At 10% biaxial and uniaxial strain, the PCE of the BC6N/ZnO heterostructure is 22.5% and 15.3%, respectively.

(2) BC6N monolayers were stacked with two-sided asymmetric Janus MoSSe monolayers to form two different heterostructures: the BC6N/SMoSe and BC6N/SeMoS van der Waals heterostructures. Based on the BC6N/SMoSe and BC6N/SeMoS heterostructures, photodetectors with two asymmetric electrodes were built. The structural stability, electronic properties, optical absorptivity, photocurrent, and extinction ratio of these two heterostructure photodetectors are investigated using first-principles density-functional theory and nonequilibrium Green's function methods.The BC6N/SMoSe and BC6N/SeMoS heterostructures are both kinetically and thermodynamically stable and have type II and type I energy band arrangements, respectively. The formation of van der Waals heterostructures significantly improves the optical absorptivity in the visible and UV regions compared to BC6N and Janus MoSSe monolayers. Compared with the BC6N/SeMoS heterostructure, the absorbance peak curve of the BC6N/SMoSe heterostructure is slightly red-shifted. The photodetectors constructed based on BC6N/SeMoS and BC6N/SeMoSe heterostructures were able to produce ultra-high maximum photocurrents, and the maximum photocurrents of the BC6N/SeMoSe and BC6N/SeMoS heterostructure photodetectors were significantly higher than those of the BC6N and Janus MoSSe single-layer photodetectors. The maximum photocurrents of BC6N/SeMoSe and BC6N/SeMoS heterostructure photodetectors exhibit strong anisotropy, with stronger photocurrents along the armchair direction than along the zigzag direction. The extinction ratios also exhibit anisotropy in the armchair and zigzag directions, indicating that the BC6N/SMoSe and BC6N/SeMoS photodetectors have excellent polarization sensitivity. The results demonstrate that BC6N/Janus MoSSe heterostructures with asymmetric contacts are well suited for the design and preparation of advanced nanophotonic devices.

(3) Based on the study of BC6N/Janus MoSSe van der Waals heterostructures, the modulation law of biaxial strain on the electronic properties and photoelectric conversion efficiency of BC6N/Janus MoSSe heterostructures is further investigated. It is found that negative biaxial strain (-4% to -6%) induces the transformation of BC6N/SeMoS from a type I direct bandgap semiconductor to a type II indirect bandgap semiconductor. The formation of interlayer built-in electric field significantly enhances the carrier separation efficiency, and the PCE of BC6N/SeMoS heterostructure reaches 19.06% at -6% strain. And the BC6N/SMoSe heterostructure transforms from a type II indirect bandgap semiconductor to a type I direct bandgap semiconductor under forward strain (6%), exhibiting a wider range of energy band tunability. Both BC6N/Janus MoSSe heterostructures have better energy band tunability under strain, exhibit a higher and wider range of optical absorptivity, and show different PCE values for different structure types. These results can provide important theoretical guidance for the application of BC6N/Janus MoSSe heterostructures in optoelectronic devices.

参考文献:

[1] M. Irfan, S.A. Ehsan, W.H. Pang, A. Sattar, H. Mustafa, H. Latif, S.Y. Qin, Bandgap engineering and tuning of optoelectronic properties of 2D NbSe/MoS2 heterostructure using first principle computations [J]. Phys. Scr., 2024, 99(1): 015928.

[2] A. Bafekry, M. Faraji, M.M. Fadlallah, H.R. Jappor, S. Karbasizadeh, M. Ghergherehchi, D. Gogova, Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: A first-principles study [J]. J. Phys.-Condes. Matter, 2022, 34(1): 015001.

[3] M.L. Sun, M.R. Fiorentin, U. Schwingenschlogl, M. Palummo, Excitons and light-emission in semiconducting MoSi2X4 two-dimensional materials [J]. Npj 2D Mater. Appl., 2022, 6(1): 81.

[4] Z. Cui, H. Wu, K.F. Bai, X.W. Chen, E.L. Li, Y. Shen, M.J. Wang, Fabrication of a g-C3N4/MoS2 photocatalyst for enhanced RhB degradation [J]. Physica E, 2022, 144: 115361.

[5] J.Q. Qi, Q. Li, M.Y. Huang, J.J. Ni, Y.W. Sui, Q.K. Meng, F.X. Wei, L. Zhu, W.Q. Wei, First-principles investigation of Boron-doped graphene/MoS2 heterostructure as a potential anode material for Mg-ion battery [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2024, 683: 132998.

[6] T.X. Wang, Y.H. Qi, M.X. Li, X. Zhao, C.X. Xia, Y.P. An, S.Y. Wei, First-principles study of penta-graphene/MoS2 vdW heterostructure as anode material for lithium-ion batteries [J]. Diam. Relat. Mat., 2023, 136: 109928.

[7] A. Bafekry, M. Naseri, M. Faraji, M.M. Fadlallah, D.M. Hoat, H.R. Jappor, M. Ghergherehchi, D. Gogova, H. Afarideh, Theoretical prediction of two-dimensional BC2X (X = N, P, As) monolayers: ab initio investigations [J]. Sci. Rep., 2022, 12(1): 22269.

[8] Z. Cui, K.Q. Yang, Y. Shen, Z.H. Yuan, Y.B. Dong, P. Yuan, E.L. Li, Toxic gas molecules adsorbed on intrinsic and defective WS2: gas sensing and detection [J]. Appl. Surf. Sci., 2023, 613: 155978.

[9] L.Y. Chen, B.Y. Yu, Y. Xie, S.F. Wang, J.M. Zhang, Tuning gas-sensitive properties of the twin graphene decorated with transition metal via small electrical field: A viewpoint of first principle [J]. Diam. Relat. Mat., 2023, 133: 109707.

[10] Z. Cui, K. Bai, Y. Ding, X. Wang, E. Li, J. Zheng, S. Wang, Electronic and optical properties of janus MoSSe and ZnO vdWs heterostructures [J]. Superlattices Microstruct., 2020, 140: 106445.

[11] S.Y. Wakhare, M.D. Deshpande, Electronic, transport and optical properties of ZnO/GaN heterostructures: first-principles study [J]. J. Phys. D Appl. Phys., 2023, 56(45): 455303.

[12] L. Li, J. Wang, P. Yang, Graphene/Janus ZnO heterostructure to build highly efficient photovoltaic properties [J]. Diam. Relat. Mat., 2023, 136: 110037.

[13] S. Wang, C. Ren, H. Tian, J. Yu, M. Sun, MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study [J]. Phys. Chem. Chem. Phys., 2018, 20(19): 13394-13399.

[14] G. Li, H.R. Bao, Y.E. Peng, X. Fu, W.H. Liao, C.Q. Xiang, Strain controllable band alignment and the interfacial and optical properties of tellurene/GaAs van der Waals heterostructures [J]. Phys. Chem. Chem. Phys., 2024, 26(22): 16327-16336.

[15] Y. Yang, Z. Wang, A two-dimensional MoS2/C3N broken-gap heterostructure, a first principles study [J]. RSC Adv., 2019, 9(34): 19837-19843.

[16] J.E. Padilha, A. Fazzio, A.J.R. da Silva, van der Waals heterostructure of Phosphorene and Graphene: Tuning the Schottky barrier and doping by electrostatic gating [J]. Phys. Rev. Lett., 2015, 114(6): 066803.

[17] A. Bafekry, C. Stampfl, Band-gap control of graphenelike borocarbonitride g-BC6N bilayers by electrical gating [J]. Phys. Rev. B, 2020, 102(19): 195411.

[18] J.H. Yu, Y.C. Jin, M.L. Hu, W. Ren, Y.Q. Xie, Y. Wang, BC6N as a promising sulfur host material for lithium-sulfur batteries [J]. Appl. Surf. Sci., 2022, 577: 151843.

[19] N.R. Abdullah, H.O. Rashid, C.S. Tang, A. Manolescu, V. Gudmundsson, Modeling electronic, mechanical, optical and thermal properties of graphene-like BC6N materials: Role of prominent BN-bonds [J]. Phys. Lett. A, 2020, 384(32): 126807.

[20] L.B. Shi, M. Yang, S. Cao, Q. You, Y.J. Zhang, M. Qi, K.C. Zhang, P. Qian, Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations [J]. J. Mater. Chem. C, 2020, 8(17): 5882-5893.

[21] N.R. Abdullah, B.J. Abdullah, C.S. Tang, V. Gudmundsson, Properties of BC6N monolayer derived by first-principle computation: Influences of interactions between dopant atoms on thermoelectric and optical properties [J]. Mater. Sci. Semicond. Process, 2021, 135: 106073.

[22] S. Ahmadi, M. Raeisi, L. Eslami, A. Rajabpour, Thermoelectric Characteristics of Two-Dimensional Structures for Three Different Lattice Compounds of B-C-N and Graphene Counterpart BX (X = P, As, and Sb) Systems [J]. J. Phys. Chem. C, 2021, 125(27): 14525-14537.

[23] Y. Yu, G.G. Liu, C. Luo, W.H. Yang, X.B. Xiao, T. Chen, First-Principles Studies of Strain-Adjustable Janus WSSe Monolayer/g-GeC Monolayer Heterojunctions: Implications for Photoelectric and Switching Devices [J]. ACS Appl. Nano Mater., 2024, 7(16): 18299-18308.

[24] M.Y. Shi, Y.H. Lv, G. Wu, J. Cho, M. Abid, K.M. Hung, C.O. Coileain, C.R. Chang, H.C. Wu, Band Alignment Transition and Enhanced Performance in Vertical SnS2/MoS2 van der Waals Photodetectors [J]. ACS Appl. Mater. Interfaces, 2024, 16(17): 22622-22631.

[25] C. Luo, J.F. Wu, X.L. Zhang, Q. Fu, W.H. Wang, Y.F. Yu, P.Y. Zeng, Z.H. Ni, J.L. Zhang, J.P. Lu, Broadband mid-infrared photodetectors utilizing two-dimensional van der Waals heterostructures with parallel-stacked pn junctions [J]. Nanotechnology, 2024, 35(36): 365203.

[26] K. Tang, C.Y. Yan, X.C. Du, G.F. Rao, M. Zhang, Y. Wang, X.F. Wang, J. Xiong, Asymmetric Contacts on Narrow-Bandgap Black Phosphorus for Self-Driven Broadband Photodetectors [J]. Adv. Opt. Mater., 2024, 12(2): 2301350.

[27] Y.Z. Luo, Y.B. Hu, Y.Q. Xie, Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: a theoretical prediction [J]. J. Mater. Chem. A, 2019, 7(48): 27503-27513.

[28] J.M. Hao, J. Wu, D.H. Wang, C.D. Wang, M.Q. Luo, L.J. Xie, F. Zhu, X.Q. Yan, Y.S. Gu, High-Sensitivity Polarized Light Detector of 2D WS2/Mo2CF2 Van Der Waals Heterostructure [J]. Phys. Status Solidi A-Appl. Mat., 2023, 220(6): 2200686.

[29] S.D. Huo, H.Z. Qu, F.Y. Meng, Z. Zhang, Z.Y. Yang, S.L. Zhang, X.D. Hu, E.X. Wu, Negative Differential Resistance with Ultralow Peak-to-Valley Voltage Difference in Td-WTe2/2H-MoS2 Heterostructure [J]. Nano Lett., 2024, 24(38): 11937-11943.

[30] Y.K. Xiao, S.X. He, X.F. Fan, Y.A. Du, Y.X. Li, L.C. Zhao, L.M. Gao, Realizing enhanced photoresponse for self-powered broadband photodetector with asymmetric contacts based MoTe2/WSe2 van der Waals heterostructure [J]. J. Alloys Compd., 2024, 1006: 176358.

[31] B.H. Xie, J.X. Wu, J.N. Mei, S.X. Zhu, R. Zhang, F.F. Gu, K. Watanabe, T. Taniguchi, X.H. Cai, Resonant Tunneling-Enhanced Photoresponsivity in a Twisted Graphene van der Waals Heterostructure [J]. Nano Lett., 2024, 24(9): 2870-2875.

[32] C. Lu, S.H. Zhang, M.L. Chen, H.T. Chen, M.J. Zhu, Z.W. Zhang, J. He, L. Zhang, X.M. Yuan, Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications [J]. Front. Phys., 2024, 19(5): 53206.

[33] Y. Wang, Z. Cui, C.L. Zhang, Vertical heterojunction photodetector of In2Se3/PtS2 with high polarization sensitivity and tunable electronic characteristics [J]. Mater. Today Commun., 2024, 40: 109857.

[34] D. Das, P. Nandi, ZnO/g-C3N4 heterostructures: Synthesis, characterization and application as photoanode in dye sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells, 2022, 248: 112002.

[35] G. Wang, Y. Li, L. Zhang, J. Chang, Y. Li, L. Xia, S. Xiao, S. Dang, C. Li, Two dimensional ZnO/AlN composites used for photocatalytic water-splitting: a hybrid density functional study [J]. RSC Adv., 2019, 9(62): 36234-36239.

[36] S. Ahmad, K. Sohail, L. Chen, H. Xu, H.U. Din, Z. Zhou, Type-II van der Waals heterostructures of GeC, ZnO and Al2SO monolayers for promising optoelectronic and photocatalytic applications [J]. Int. J. Hydrog. Energy, 2023, 48(65): 25354-25365.

[37] N.K. Sharma, A. Kapila, V. Vivek, H. Sharma, Hydrogen production from water using MoX2/ZnO (X:S,Se) heterostructures as photocatalysts [J]. Mater. Today, 2022, 20: 100248.

[38] F.F. Hu, L.Q. Tao, H.Y. Ye, X.D. Li, X.P. Chen, ZnO/WSe2 vdW heterostructure for photocatalytic water splitting [J]. J. Mater. Chem. C, 2019, 7(23): 7104-7113.

[39] C. Lan, C. Li, S. Wang, Y. Yin, H. Guo, N. Liu, Y. Liu, ZnO-WS2 heterostructures for enhanced ultra-violet photodetectors [J]. RSC Adv., 2016, 6(72): 67520-67524.

[40] D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures [J]. Nat Mater, 2017, 16(2): 170-181.

[41] W.Y. Du, X. Cheng, Z.H. Zhang, Z.X. Cheng, X.L. Xu, W.J. Xu, Y.P. Li, K.H. Liu, L. Dai, Overall High-Performance Near-Infrared Photodetector Based on CVD-Grown MoTe2 and Graphene Vertical vdWs Heterostructure [J]. Appl Sci-Basel, 2022, 12(7): 3622.

[42] T. Han, H.X. Liu, S.P. Chen, Y.N. Chen, S.L. Wang, Z.D. Li, Fabrication and Characterization of MoS2/h-BN and WS2/h-BN Heterostructures [J]. Micromachines-Basel, 2020, 11(12): 1114.

[43] J.Q. Chen, R. Guo, X.W. Wang, C. Zhu, G.M. Cao, L. You, R.H. Duan, C. Zhu, S.S. Hadke, X. Cao, T. Salim, P.J.S. Buenconsejo, M.Z. Xu, X.X. Zhao, J.D. Zhou, Y. Deng, Q.S. Zeng, L.H. Wong, J.S. Chen, F.C. Liu, Z. Liu, Solid-Ionic Memory in a van der Waals Heterostructure [J]. Acs Nano, 2022, 16(1): 221-231.

[44] B. Mortazavi, M. Shahrokhi, M. Raeisi, X.Y. Zhuang, L.F.C. Pereira, T. Rabczuk, Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors [J]. Carbon, 2019, 149: 733-742.

[45] X.S. Jiang, X. Luo, BC6N Monolayer as a Potential VOC Adsorbent in Mitigation of Environmental Pollution: A Theoretical Perspective [J]. Acs Omega, 2023, 8(49): 46841-46850.

[46] S. Karmakar, A.A. Pillai, S. Dutta, Pristine BC6N monolayer as highly efficient reversible hydrogen storage material under ambient temperature and pressure [J]. Hydrog. Energy, 2024, 53: 193-199.

[47] F. Tumino, C.S. Casari, M. Passoni, C.E. Bottani, A. Li Bassi, Pulsed laser deposition of two-dimensional ZnO nanocrystals on Au(111): growth, surface structure and electronic properties [J]. Nanotechnology, 2016, 27(47): 0957-4484.

[48] J. Lee, D.C. Sorescu, X.Y. Deng, Tunable Lattice Constant and Band Gap of Single- and Few-Layer ZnO [J]. J. Phys. Chem. Lett., 2016, 7(7): 1335-1340.

[49] S. Latif, B. Akram, C.S. Saraj, B.A. Khan, M. Ali, J. Akhtar, A single step wet chemical approach to bifunctional ultrathin (ZnO) 62 (Fe2 O3 ) 38 dendritic nanosheets [J]. RSC Adv., 2023, 13(33): 23038-23042.

[50] D.D. Zhang, Z. Fang, L. Wang, H. Yu, X.L. Lu, K. Song, J. Teng, W.Y. Yang, Controllable growth of single-crystalline zinc oxide nanosheets under ambient condition toward ammonia sensing with ultrahigh selectivity and sensitivity [J]. J. Adv. Ceram., 2022, 11(8): 1187-1195.

[51] C.F. Fu, Q.J. Zheng, X.X. Li, J.L. Yang, Vertical Dipole Dominates Charge Carrier Lifetime in Monolayer Janus MoSSe [J]. Nano Lett., 2024, 24(21): 6425-6432.

[52] J.X. Guo, S.Y. Wu, G.J. Zhang, L. Yan, J.G. Hu, X.Y. Li, Single noble metals (Pd, Pt and Ir) anchored Janus MoSSe monolayers: Efficient oxygen reduction/evolution reaction bifunctional electrocatalysts and harmful gas detectors [J]. J. Colloid Interf. Sci., 2022, 616: 177-188.

[53] Y.P. He, S.Y. Wu, J.X. Guo, T.H. Guo, X.Y. Li, A study on the single atom Cu adsorbed Janus MoSSe monolayer as the catalyst for reduction of CO2 to HCOOH [J]. Mol. Catal., 2023, 549: 113511.

[54] Y. Xu, A.Y. Bao, Z.Y. Xiong, F. Liu, W. Sheng, Constructing diatomic catalyst on MoSSe achieves ultra-low overpotential for nitrogen fixation: First-principles study [J]. Appl. Phys. Lett., 2024, 124(9): 093901.

[55] N. Zhao, S. Tyagi, U. Schwingenschlögl, Design of ohmic contacts between Janus MoSSe and two-dimensional metals [J]. NPG Asia Mater., 2023, 15(1): 71.

[56] X. Zhang, Z.C. Lai, Q.L. Ma, H. Zhang, Novel structured transition metal dichalcogenide nanosheets [J]. Chem. Soc. Rev., 2018, 47(9): 3301-3338.

[57] J. Schmeink, V. Musytschuk, E. Pollmann, S. Sleziona, A. Maas, P. Kratzer, M. Schleberger, Evaluating strain and doping of Janus MoSSe from phonon mode shifts supported by DFT calculations [J]. Nanoscale, 2023, 15(25): 10834-10841.

[58] A. Strasser, H. Wang, X.F. Qian, Nonlinear Optical and Photocurrent Responses in Janus MoSSe Monolayer and MoS2-MoSSe van der Waals Heterostructure [J]. Nano Lett., 2022, 22(10): 4145-4152.

[59] Kresse, Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54(16): 11169-11186.

[60] J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices [J]. Phys. Rev. B, 2001, 63(24): 245407.

[61] D. Waldron, P. Haney, B. Larade, A. MacDonald, H. Guo, Nonlinear Spin Current and Magnetoresistance of Molecular Tunnel Junctions [J]. Phys. Rev. Lett., 2006, 96(16): 166804-166804.

[62] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential [J]. J. Chem. Phys., 2003, 118(18): 8207-8215.

[63] T. Bucko, J. Hafner, S. Lebegue, J.G. Angyan, Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections [J]. J. Phys. Chem. A, 2010, 114(43): 11814-11824.

[64] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13(12): 5188-5192.

[65] Henrickson, E. Lindor, Nonequilibrium photocurrent modeling in resonant tunneling photodetectors [J]. J. Appl. Phys., 2002, 91(10): 6273-6281.

[66] A. Aasi, S.M. Aghaei, B. Panchapakesan, Outstanding performance of transition-metal-decorated single-layer graphene-like BC6N nanosheets for disease biomarker detection in human breath [J]. Acs Omega, 2021, 6(7): 4696-4707.

[67] S. Karmakar, S. Dutta, Strain-tuneable photocatalytic ability of BC6N monolayer: A first principle study [J]. Comput. Mater. Sci., 2022, 202: 111002.

[68] X.W. Jin, Y. Xie, W. Han, Z.Y. Chen, X.S. Xiao, J.Y. Hao, S.F. Wang, L.Y. Chen, Y.L. Song, Biaxial strain-modulated power conversion efficiency, electronic structures, and optical properties of type-II MoS2/BC6N vdW heterostructure: A density functional theory study [J]. Mater. Today Commun., 2024, 40: 110012.

[69] W. Han, Y. Xie, Y.L. Song, N.N. Jiang, X.W. Jin, S.F. Wang, L.Y. Chen, X.S. Xiao, Z.Y. Chen, J.J. Gan, Effect of tensile strain on the electronic structure, optical absorptivity, and power conversion efficiency of the BC6N/ZnO van der Waals heterostructure [J]. Physica E, 2024, 158: 115908.

[70] N.N. Jiang, Y. Xie, S.F. Wang, Y.L. Song, L.Y. Chen, W. Han, X.W. Jin, Z.X. Zhou, Z.X. Yan, Electronic structure and carrier mobility of BC6N/BN van der Waals heterostructure induced by in-plane strains [J]. Appl. Surf. Sci., 2023, 623: 157007.

[71] Q. Wu, W. Wei, F.P. Li, B.B. Huang, Y. Dai, Computational screening of MX (M = Ga, Ge, Sn, In; X = As, Se) van der Waals heterostructures as suitable candidates for solar cells [J]. J. Phys. D Appl. Phys., 2019, 52(33): 335303.

[72] A.K. Sibhatu, T. Teshome, O. Akin-Ojo, A. Yimam, G.A. Asres, DFT investigation of the electronic and optical properties of hexagonal MX2/ZrXO (M = W, Mo and X = S, Se) van der Waals heterostructures for photovoltaic solar cell application [J]. RSC Adv., 2022, 12(47): 30838-30845.

[73] X.Y. Huang, L.J. Zhou, L. Yan, Y. Wang, W. Zhang, X.M. Xie, Q. Xu, H.Z. Song, HfX2 (X = Cl, Br, I) monolayer and type II heterostructures with promising photovoltaic characteristics [J]. Chin. Phys. Lett., 2020, 37(12): 127101.

[74] Y. Guo, J. Min, X. Cai, L. Zhang, C. Liu, Y. Jia, Two-dimensional type-II BP/MoSi2P4 vdW heterostructures for high-performance solar cells [J]. J. Phys. Chem. C, 2022, 126(9): 4677-4683.

[75] M. Bikerouin, O. Chdil, M. Balli, Solar cells based on 2D Janus group-III chalcogenide van der Waals heterostructures [J]. Nanoscale, 2023, 15(15): 7126-7138.

[76] A.N. Gong, T. Shen, Y. Feng, J.J. Chen, Z.J. Wang, Van der Waals heterostructure of graphene defected&doped X(X = Au, N) composite ZnO monolayer: a first principle study [J]. Mater. Sci. Semicond. Process, 2022, 138: 106247.

[77] J. Wang, H. Yang, P. Yang, Photoelectric properties of 2D ZnO, graphene, silicene materials and their heterostructures [J]. Compos. Pt. B-Eng., 2022, 233: 109645.

[78] J.J. Ding, M.Y. Yang, H.X. Chen, H.W. Fu, J.H. Peng, First-principles investigation on electrical and adsorption properties of the ZnO/Silicene heterostructures: The role of Ag and N co-doping and external electric field [J]. FlatChem, 2022, 33: 100369.

[79] M.M. Slepchenkov, D.A. Kolosov, I.S. Nefedov, O.E. Glukhova, Band gap opening in borophene/GaN and Borophene/ZnO van der Waals heterostructures using axial deformation: first-principles study [J]. Materials, 2022, 15(24): 8921.

[80] M.M. Slepchenkov, D.A. Kolosov, O.E. Glukhova, Novel van der Waals heterostructures based on Borophene, graphene-like GaN and ZnO for nanoelectronics: A first principles Study [J]. Materials, 2022, 15(12): 4084.

[81] B. Li, S.F. Zhang, W.X. Ji, C.W. Zhang, P. Li, P.J. Wang, The electric-field and strain inducing electronic and optical properties of the blue phosphorene/ZnO heterostructures [J]. Physica E, 2020, 115: 113650.

[82] Z.C. Zhao, C.L. Yang, Z.X. Cao, Y.Q. Bian, B.W. Li, Y.W. Wei, Two-dimensional ZnO/BlueP van der Waals heterostructure used for visible-light driven water splitting: A first-principles study [J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022, 278: 121359.

[83] Y.Guan, Y. Du, Two-dimensional ZnO/MoSe2 van der Waals heterostructure used as promising photocatalyst for water splitting: A DFT study [J]. Chem. Phys. Lett., 2022, 803: 139828.

[84] E.A. Peterson, T.T. Debela, G.M. Gomoro, J.B. Neaton, G.A. Asres, Electronic structure of strain-tunable Janus WSSe-ZnO heterostructures from first-principles [J]. RSC Adv., 2022, 12(48): 31303-31316.

[85] S.Q. Feng, J.K. Liu, J. Chen, L. Su, F. Guo, C.M. Tang, C.S. Yuan, X.R. Cheng, First-principles study on electronic and optical properties of van der Waals heterostructures stacked by g-ZnO and Janus-WSSe monolayers [J]. Appl. Surf. Sci., 2022, 604: 154620.

[86] G.Z. Wang, D.F. Li, Q.L. Sun, S.H. Dang, M.M. Zhong, S.Y. Xiao, G.S. Liu, Hybrid density functional study on the photocatalytic properties of two-dimensional g-ZnO based heterostructures [J]. Nanomaterials, 2018, 8(6): 374.

[87] M. Idrees, H.U. Din, S.U. Rehman, M. Shafiq, Y. Saeed, H.D. Bui, C.V. Nguyen, B. Amin, Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides [J]. Phys. Chem. Chem. Phys., 2020, 22(18): 10351-10359.

[88] P. Wang, Y.X. Zong, H. Liu, H.Y. Wen, Y.Y. Liu, H.B. Wu, J.B. Xia, Vertical strain and electric field tunable band alignment in type-II ZnO/MoSSe van der Waals heterostructures [J]. Phys. Chem. Chem. Phys., 2021, 23(2): 1510-1519.

[89] S.S. Ullah, H.U. Din, S. Ahmad, Q. Alam, S. Sardar, B. Amin, M. Farooq, C.Q. Nguyen, C.V. Nguyen, Theoretical prediction of the electronic structure, optical properties and photocatalytic performance of type-I SiS/GeC and type-II SiS/ZnO heterostructures [J]. RSC Adv., 2023, 13(11): 7436-7442.

[90] M. Seyedmohammadzadeh, C. Sevik, O. Guelseren, Two-dimensional heterostructures formed by graphenelike ZnO and MgO monolayers for optoelectronic applications [J]. Phys. Rev. Mater., 2022, 6(10): 104004.

[91] J.Q. Ng, Q.Y. Wu, L.K. Ang, Y.S. Ang, Tunable electronic properties and band alignments of MoSi2N4/GaN and MoSi2N4/ZnO van der Waals heterostructures [J]. Appl. Phys. Lett., 2022, 120(10): 103101.

[92] A. Gong, Y. Feng, C. Liu, J. Chen, Z. Wang, T. Shen, A promising ZnO/Graphene van der Waals heterojunction as solar cell devices: A first-principles study [J]. Energy Rep., 2022, 8: 904-910.

[93] Y. Gao, Y. Xie, S.F. Wang, S. Li, L.Y. Chen, J.M. Zhang, Electronic and Optical Properties of Twin T-Graphene Co-Doped with Boron and Phosphorus [J]. Materials, 2022, 15(8): 2876.

[94] L. Matthes, O. Pulci, F. Bechstedt, Influence of out-of-plane response on optical properties of two-dimensional materials: First principles approach [J]. Phys. Rev. B, 2016, 94(20): 205408.

[95] V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code [J]. Comput. Phys. Commun., 2021, 267: 108033.

[96] H.Y. Wu, K. Yang, Y. Si, W.Q. Huang, W.Y. Hu, G.F. Huang, Two-dimensional GaX/SnS2 (X=S, Se) van der Waals heterostructures for photovoltaic application: heteroatom doping strategy to boost power conversion efficiency [J]. Phys. Status Solidi RRL, 2019, 13(5): 1800565.

[97] L. Ngamwongwan, P. Moontragoon, W. Jarernboon, C. Mondal, B. Pathak, T. Kaewmaraya, Novel BCN-phosphorene bilayer: Dependence of carbon doping on band offsets for potential photovoltaic applications [J]. Appl. Surf. Sci., 2020, 504: 144327.

[98] F.H. Alharbi, S.N. Rashkeev, F. El-Mellouhi, H.P. Luthi, N. Tabet, S. Kais, An efficient descriptor model for designing materials for solar cells [J]. Npj Comput. Mater., 2015, 1: 15003.

[99] F. Alsubaie, M. Muraykhan, L. Zhang, D.C. Qi, T. Liao, L.Z. Kou, A.J. Du, C. Tang, Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material [J]. Front. Phys., 2024, 19(1): 13201.

[100] P.H. Nha, C.V. Nguyen, N.N. Hieu, H.V. Phuc, C.Q. Nguyen, Theoretical prediction of electronic properties and contact barriers in a metal/semiconductor NbS2/Janus MoSSe van der Waals heterostructure [J]. Nanoscale Adv., 2024, 6(4): 1193-1201.

[101] D.H. Wei, E. Zhou, J.Y. Xu, A.L. Chen, H.P. Xie, F.Q. Duan, H.M. Wang, Z.Z. Qin, G.Z. Qin, Asymmetrical regulation of thermal transport in BAs/MoSSe van der Waals heterostructures with applied electric field [J]. Phys. Rev. B, 2024, 109(20): 205408.

[102] F. Yang, P. Boulet, M.C. Record, Electronic structure and photocatalytic performance of Janus MoSSe/Ga2SSe van der Waals heterostructures [J]. Int. J. Hydrog. Energy, 2024, 73: 536-546.

[103] Z. Cui, H.T. Meng, C.L. Zhang, L. Zhang, S. Zhang, L. Wang, MoSSe/Si9C15 heterojunction photodetectors with ultrahigh photocurrent and carrier mobility [J]. Mater. Sci. Semicond. Process, 2024, 182: 108705.

[104] Q.H. Wang, H. Li, K. An, F.B. Liu, J. Lu, Effective self-power photodetector based on photogalvanic effect: A case study for Janus MoSSe-CrSSe lateral heterojunction [J]. Mod. Phys. Lett. B, 2024, 38(35): 2450357.

[105] J.Q. Yu, S.S. Ke, H.F. Lu, Electronic properties and tunable Schottky barrier of non-Janus MoSSe/graphene heterostructures [J]. J. Phys. D Appl. Phys., 2022, 55(3): 035104.

[106] H. Lin, N. Lou, D.D. Yang, R.C. Jin, Y. Huang, Janus MoSSe/graphene heterostructures: Potential anodes for lithium-ion batteries [J]. J. Alloys Compd., 2021, 854: 157215.

[107] V.I. Belinicher, B.I. Sturman, The photogalvanic effect in media lacking a center of symmetry [J]. Sov. Phys. Usp., 1980, 23(3): 199-223.

[108] S.D. Ganichev, H. Ketterl, W. Prettl, E.L. Ivchenko, L.E. Vorobjev, Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells [J]. Appl. Phys. Lett., 2000, 77(20): 3146–3148.

[109] Z. Cui, X. Gao, S. Zhang, L. Wang, High carrier mobility and polarization sensitivity of AlN/Hf2CO2 heterojunction photodetector [J]. Chinese J. Phys, 2024, 91: 421-431.

[110] Z.H. Xu, B. Luo, M.Y. Chen, W.Z. Xie, Y.B. Hu, X.B. Xiao, Enhanced photogalvanic effects in the two-dimensional WTe2 monolayer by vacancy- and substitution-doping [J]. Appl. Surf. Sci., 2021, 548: 148751.

[111] X. Fu, J. Lin, X.L. Cheng, W.H. Liao, J.Y. Guo, X.W. Li, L.M. Li, Enhanced photogalvanic effect in the B3C2P3 photodetector by vacancy, substitution-doping and interstitial atom [J]. Mater. Today Commun., 2023, 35: 106175.

[112] X.X. Sun, S.Q. Yin, H. Yu, D. Wei, Y.Q. Ma, X.Q. Dai, A direction-sensitive photodetector based on the two-dimensional WSe2/MoSe2 lateral heterostructure with enhanced photoresponse [J]. Results Phys., 2023, 46: 106271.

[113] K. Qin, E.L. Li, Y. Shen, D.M. Ma, P. Yuan, H.X. Wang, Z. Cui, High-efficiency photocatalyst and high-response ultraviolet photodetector based on the Ga2SSe@GaN heterojunctions [J]. Surf. Interfaces, 2024, 52: 104996.

[114] H.X. Wang, Z. Cui, E.L. Li, Y. Shen, K. Qin, P. Yuan, Heterojunction photoelectric device with fast response speed and low power consumption composed of WSSe and AlN [J]. J. Phys.-Condes. Matter, 2024, 36(48): 485701.

[115] Z. Cui, G.Q. Zhang, S. Zhang, L. Wang, GaN/Sc2CF2 heterostructure photodetector with exceptional polarization sensitivity [J]. Micro Nanostructures, 2024, 193: 207922.

[116] C.X. Liu, Z. Cui, S. Zhang, L. Wang, High sensitivity photodetectors of PtS2/AlN2/AlN and PtSe2/AlN2/AlN heterostructures [J]. J. Phys. Chem. Solids, 2024, 194: 112255.

[117] A. Michail, J.A. Yang, K. Filintoglou, N. Balakeras, C.A. Nattoo, C.S. Bailey, A. Daus, J. Parthenios, E. Pop, K. Papagelis, Biaxial Strain Transfer in Monolayer MoS2 and WSe2 Transistor Structures [J]. ACS Appl. Mater. Interfaces, 2024, 16(37): 49602-49611.

[118] X. Peng, L. Chen, Y. Liu, C. Liu, H. Huang, J. Fan, P. Xiong, J. Zhu, Strain engineering of two-dimensional materials for energy storage and conversion applications [J]. Chem. Synth., 2023, 3(4): 47.

中图分类号:

 O469    

开放日期:

 2025-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式