- 无标题文档
查看论文信息

论文中文题名:

 陕北侏罗纪煤田北部直罗组古河道复合砂体及其控水机理    

姓名:

 孙魁    

学号:

 17109071001    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 矿井水害防治    

第一导师姓名:

 夏玉成    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-07-04    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Paleochannel sand bodies of Zhiluo Formation in northern Shaanxi Jurassic coalfield and their water control mechanism    

论文中文关键词:

 直罗组 ; 古河道复合砂体 ; 控水机理 ; 矿井涌水模式 ; 陕北侏罗纪煤田    

论文外文关键词:

 Zhiluo Formation ; Paleochannel sand bodies ; the mechanism of water control ; mode of water inflow of mine ; Jurassic coalfield in northern Shaanxi    

论文中文摘要:

煤矿水害是陕北侏罗纪煤田的主要灾害,直罗组地下水是主要突水水源之一。本文以陕北侏罗纪煤田北部为研究区,以层序地层学、沉积学、水文地质学、水害防治相关理论为指导,采用露头调查和钻孔分析相结合、宏观区域调查研究与微观实验室研究相结合、理论分析与数值模拟相结合的方法,确定了直罗组古河道复合砂体的空间位置及其形态,揭示了古河道复合砂体对地下水赋存和运移的控制机理,提出了古河道复合砂体下现阶段生产矿井涌水模式。

研究区直罗组在垂向上可分为3段。直罗组下段沉积相主要为辫状河三角洲,亚相主要为三角洲平原,沉积微相主要为分流河道、决口扇、分流间湾和三角洲间湾。下段的孔隙发育程度及其连通性相对较好,以中等孔隙度和中渗透率为主,整体属于承压中等透水孔隙含水岩组。中上段孔隙发育程度及其连通性相对较差,以低等孔隙度和超低~特低渗透率为主,整体属于承压低等透水孔隙含水岩组。砂体遭受风化后,微裂隙发育明显,孔隙度和渗透率相比正常基岩较大,储水空间发育,整体属于承压中等~强透水裂隙含水岩组。

本文研究的直罗组古河道复合砂体,是指在直罗组沉积期间,因河道沉积持续时间较长,并在同一区域或相邻区域多次出现而形成的规模较大、水理性质较好的叠置型多层砂岩组合体。通过层序地层对比、水理性质和直罗组底部冲刷接触关系分析,识别出直罗组下段为古河道复合砂体的发育层位。红碱淖、尔林兔井田以及锦界井田一线,为直罗组古河道复合砂体的主体发育区,宽度约25km。根据砂分散体系分析和隔水岩组发育特征,将直罗组古河道复合砂体分为三级。一级砂体厚度≥60m,砂地比0.8~1,隔水岩组厚度一般<10m,隔水岩组层数一般<2,为主河道复合砂体发育区;二级砂体厚度30~60m,砂地比0.4~0.8,隔水岩组厚度一般为10~30m,隔水岩组层数一般为2~4,为分支河道发育区;三级砂体厚度<30m,砂地比<0.4,隔水岩组厚度一般>30m,隔水岩组层数一般>4,为分流间湾和三角洲间湾发育区。

对于直罗组正常基岩而言,古河道复合砂体的厚度、砂地比和隔水岩组厚度从宏观尺度上控制着直罗组的富水性,物性条件和孔隙结构从微观尺度上控制着直罗组的富水性。一级砂体(主河道)、二级砂体(分支河道)以中粒、粗粒砂岩为主,物性条件和孔隙结构较发育,富水性较强,而三级砂体(分流间湾和三角洲间湾)以粉砂岩和细砂岩为主,物性条件和孔隙结构较差,富水性相对较弱。河道砂体沉积粒度较粗,整体胶结物含量较少,遭受风化后,上部网状裂隙发育,下部溶蚀裂隙发育,地下水储存能力明显增强,富水性强;直罗组古河道复合砂体的宏观几何连通性和微观渗透性控制着直罗组地下水的运移,而风化作用极大地改善了古河道复合砂体的渗透性能。西部直罗组未遭受风化区域,直罗组与其他含水层水力联系微弱,以侧向补给为主,径流滞缓,排泄不畅,主要以静储量为主;东部直罗组基岩风化区,直罗组与萨拉乌苏组地下水水力联系紧密,径流条件较好,排泄条件通畅,在西部地下水向东部的泄压释放,以及“天窗”区域第四系地下水的下渗补给作用下,形成了巨大的动储量;天然条件下,直罗组地下水排泄存在直接排泄和间接排泄2种模式,其中间接排泄包括顶托补给萨拉乌苏组、越流补给延安组和通过烧变岩间接排泄。采矿状态下直罗组向矿井充水存在直罗组下段含水层向矿井直接充水、第四系地下水通过直罗组裂隙网络向矿井充水、洛河组和安定组风化层地下水通过直罗组裂隙网络向矿井充水3种充水模式。

采用层次分析法评价了直罗组古河道复合砂体富水性。基岩风化区富水性总体强于未风化区域,一级砂体(主河道)区域富水性强于二级砂体(分支河道)及三级砂体(三角洲间湾、分流间湾区域)区域;研究区现生产矿井位于东部基岩风化区,煤层首采区导水裂隙带高度预计结果表明,除小壕兔一号井田北部和大保当普查区的局部区域,导水裂隙带未导通至直罗组基岩外,其他区域均导通至直罗组古河道复合砂体。基于砂体分级、风化砂体厚度与矿井涌水关系的分析,提出了古河道复合砂体下生产矿井的3种最基本的涌水模式。强涌水模式,主要位于一级砂体分布区,风化砂体厚度一般>40m。中等涌水模式,主要位于一级砂体的边缘或二级砂体区域,风化砂体厚度一般10~30m。弱涌水模式,主要位于三级砂体区域,风化砂体厚度一般<10m。通过数值模拟对3种模式矿井涌水量进行了预计,锦界煤矿工作面1属于强涌水模式,最大矿井涌水量2309.2m3/h,红柳林煤矿工作面2属于中等涌水模式,最大矿井涌水量1037.29m3/h;柠条煤矿工作面3属于弱涌水模式,最大矿井涌水量367.97m3/h。

论文外文摘要:

The coal mine water hazard is the main disaster in Jurassic coal field in Northern Shaanxi. Zhiluo formation is one of the main water bursting sources of coal mine flood. Taking the north of Jurassic Coalfield in Northern Shaanxi as the research area, the paper is guided by the relevant theories of sequence stratigraphy, sedimentology, hydrogeology and mine water damage prevention. It explores the spatial position and shape of paleochannel sand bodies about Zhiluo formation, analyses the control mechanism of the groundwater storage and migration and puts forward the water inflow model of productive mine under the paleochannel sand bodies by the combining outcrop investigation and borehole analysis, macro regional investigation and micro laboratory research, theoretical analysis and numerical simulation. The main conclusions are as follows:

The Zhiluo Formation can vertically be divided into three sections in the study area. The sedimentary face of the lower member of the Zhiluo Formation is mainly braided river deltas. The subface is mainly delta plains and the sedimentary microfacies are mainly distributary channels, crevasse splays, interdistributary bays and interdeltaic bays. The pore development degree and connectivity of the lower member of Zhiluo formation are relatively good, mainly with medium porosity and medium permeability, and it belongs to the confined medium permeable pore water bearing formation as a whole. The pore development degree and connectivity of the middle and upper member of Zhiluo formation are relatively poor, mainly with low porosity and very low to super-low permeability. It belongs to the water bearing formation with low permeable pores under pressure as a whole.The micro-fractures are obviously developed, the porosity and permeability are more developed than the normal bedrock and the storage space is better when the paleochannel sand bodies is weathered. The whole section belongs to the confined medium-strong permeable fracture water-bearing rock group.

The paleochannel complex sand bodies of the Zhiluo Formation studied in this paper refer to the fact that during the deposition of the Zhiluo Formation, due to the long duration of channel deposition. Large-scale superposed multi-layered sand bodies assemblages with good hydraulic properties are formed in the same area or in adjacent areas. Through the analysis of sequence stratigraphic correlation, hydraulic properties and scour contact relationship at the bottom of Zhiluo Formation, it is identified that the lower member of Zhiluo Formation is the development layer of paleochannel sand bodies. Hongjiannao field, Erlintu field and Jinjie field are mainly developed by the paleochannel sand bodies of the Zhiluo Formation. The width is about 25km. According to the analysis of the sand dispersion system and the development characteristics of the aquiclude rock formation, the paleochannel sand bodies of the Zhiluo Formation is divided into three grades. The thickness of the first-grade sand bodies is greater than or equal to 60m, the sand ground ratio is 0.8-1, the thickness of the aquiclude rock group is generally less than 10m, and the number of layers of the aquiclude rock group is generally less than 2, which is the main channel sand bodies development area. The thickness of the secondary sand bodies is generally 30-60m, the sand ratio is 0.4-0.8, the thickness of the aquiclude rock group is 10-30m, and the number of layers of the aquiclude rock group is generally 2-4, which is the branch channel development area. The thickness of the tertiary sand bodies is less than 30m, the sand ratio is less than 0.4, the thickness of the aquiclude rock group is generally more than 30m, and the number of layers of the aquiclude rock group is generally more than 4, which is the concentrated on the interdistributary bay and the interdeltaic bay.

For the normal bedrock of the Zhiluo Formation, the thickness of the paleochannel sand bodies, the sand ratio, and the thickness of the aquiclude rock formation control the water-abundance of the Zhiluo Formation from the macroscopic scale. The physical properties and pore structure control the water-abundance of the Zhiluo Formation from the microscopic scale. The primary sand bodies (main channel) and the secondary sand bodies (branch channel) are mainly medium-grained and coarse-grained sand bodies. The physical properties and the pore structures are relatively developed and the water-abundance is strong. Then the third-grade sand bodies (interdistributary bay and interdeltaic bay) are mainly siltstone and fine sand bodies. The physical properties and the pore structures are poor and the water-abundance is relatively weak. The sedimentary grain size of the channel sand body is coarser and the overall cement content is less. After weathering, the upper network fractures develop and the lower dissolution fractures develop. The groundwater storage capacity is significantly enhanced and the water-abundance is strong. The macroscopic geometric connectivity and microscopic permeability of the paleochannel sand bodies of the Zhiluo Formation control the migration of groundwater. The weathering greatly improves the permeability of the paleochannel sand bodies. For the unweathered area of the Zhiluo Formation in the west, the Zhiluo Formation has weak hydraulic connections with other aquifers, and is dominated by the lateral supplement. The runoff has slowed to a crawl and the river has poor drainage. It is mainly dominated by the static reserves. For the weathering bedrock area of the Zhiluo Formation in the east, the groundwater is closely hydraulically connected between the Zhiluo Formation and the Salawusu Formation. The runoff conditions are good and it has smooth drainage conditions. With the relief of groundwater from the west to the east and under the action of infiltration and recharge of groundwater, the huge dynamic reserves are formed. Under the natural state, there are two modes of groundwater discharge in Zhiluo Formation: direct discharge and indirect discharge. Among them, the indirect drainage includes the recharge from the top to the Salawusu Formation, the leakage recharge to the Yan'an Formation from, and by the burnt rocks to excrete. In the mining state, the Zhiluo Formation fills the mine with water. The lower aquifer of the Zhiluo Formation directly fills the mine with water, the Quaternary groundwater fills the mine with water through the fissure network of the Zhiluo Formation, and the groundwater from the weathered layers of the Luohe Formation and Anding Formation passes through the Zhiluo Formation. There are 3 water filling modes for filling the mine with fissure network.

The water-richness of the paleochannel sand bodies was evaluated by the Analytic Hierarchy Process in the Zhiluo Formation. The water-richness of the weathering bedrock area is generally stronger than that of the unweathered area. Meanwhile, the water-richness of the first-grade sand bodies (main channel) area is stronger than that of the second-grade sand bodies (branch channel) and the third-grade sand bodies (interdeltaic bay and interdistributary bay) area. The calculation of the height of the water flowing fracture zone in the first coal seam shows that the water flowing fracture zone is not connected to the bedrock of the Zhiluo Formation except for the northern of the Xiaohaotu No. 1 mine field and the Dabaodang general prospecting local area. The other areas are connected to the paleochannel sand bodies of the Zhiluo Formation. Based on the analysis of the relationship between sand body classification, weathered sand body thickness, and mine water inflow, three basic water inflow modes for production mines under paleochannel sand bodies are proposed. The strong water inflow mode is mainly located in the distribution area of the first-grade sand body, and the thickness of the weathered sand body is generally greater than 40m. Moderate water inflow mode, mainly located at the edge of the primary sand body or in the area of the secondary sand body, and the thickness of the weathered sand body is generally 10-30m. The weak water inflow mode is mainly located in the tertiary sand body area, and the thickness of the weathered sand body is generally less than 10m. Through numerical simulation, the mine water inflow volume of the three modes is estimated, Jinjie coal mine working face 1 belongs to the strong water inflow mode, the maximum mine water inflow volume is 2309.2 m3/h, Hongliulin coal mine working face 2 belongs to the medium water inflow mode, the maximum mine water inflow volume is 1037.29 m3/h; Ningtiao Coal Mine Working face 3 belongs to the weak water inflow mode, and the maximum mine water inflow is 367.97 m3/h.

参考文献:

[1] 范立民,孙魁.基于保水采煤的煤炭开采带与泉带错位规划问题[J].煤炭科学技术,2019,47(1):173-178.

[2] 王双明.鄂尔多斯盆地聚煤规律及煤炭资源评价[M].北京:煤炭工业出版社,1996.

[3] 董书宁,姬亚东,王皓,等.鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J].煤炭学报,2020,45(7):2367-2375.

[4] 李建文.柠条塔矿区南翼S1210工作面涌水机制分析[J].中州煤炭,2016(7):14-19+29.

[5] 范立民,孙魁,李成,等.榆神矿区煤矿防治水的几点思考[J].煤田地质与勘探,2021,49(1):182-188.

[6] 靳德武,刘基,许峰,等.榆神矿区浅埋煤层减水开采中预疏放标准确定方法[J].煤炭学报,2021,46(1):220-229.

[7] 夏玉成,代革联.生态潜水流场的采煤扰动与优化调控[M].北京:科学出版社,2015.

[8] 范立民,马雄德.保水采煤的理论与实践[M].北京:科学出版社,2019.

[9] 焦养泉,陈安平,杨琴,等.砂体非均质性是铀成矿的关键因素之一—鄂尔多斯盆地东北部铀成矿规律探讨.铀矿地质,2005,21(1):8~15.

[10] JIAO Yangquan,WU Liqun,RONG Hui,et al.The relationship between Jurassic coal measures and sandstone-type uranium deposits in the northeastern Ordos basin,China[J].Acta Geologica Sinica(English Edition),2016,90(6):2117-2132.

[11] 曹跃,银晓,赵谦平,等.鄂尔多斯盆地南部延长探区上古生界烃源岩特征与勘探方向[J].中国石油勘探,2015,20(3):13-21.

[12] 焦养泉,陈安平,王敏芳,等.鄂尔多斯盆地东北部直罗组底部砂体成因分析—砂岩型铀矿床预测的空间定位基础[J].沉积学报,2005,23(3),371-379.

[13] Jaireth S,Roach I C,Bastrakov E,et al.Basin-related uranium mineral systems in Australia:A review of critical features[J].Ore Geology Reviews,2015,76:360-394.

[14] Hall S M,Mihalasky M J,Tureck K R,et al.Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits,Texas Coastal Plain,USA[J].Ore Geology Reviews,2017,80:716-753.

[15] 赵俊峰.鄂尔多斯盆地直罗—安定期原盆恢复[D].西安:西北大学,2007.

[16] 赵俊峰,刘池洋,赵建设,等.鄂尔多斯盆地侏罗系直罗组沉积相及其演化[J].西北大学学报(自然科学版),2008(3):480-486.

[17] 赵俊峰,刘池洋,梁积伟,等.鄂尔多斯盆地直罗组—安定组沉积期原始边界恢复[J].地质学报,2010,84(4):553-569.

[18] 吴仁贵,陈安平,余达淦,等.沉积体系分析与河道砂岩型铀矿成矿条件讨论—以鄂尔多斯中新生代盆地东胜地区为例[J].铀矿地质,2003(2):94-99.

[19] 薛锐.鄂尔多斯盆地北部直罗组沉积特征及其与铀成矿关系[D].西安:西北大学,2017.

[20] 焦养泉,吴立群,荣辉,等.铀储层地质建模:揭示成矿机理和应对“剩余铀”的地质基础[J].地球科学,2018,43 (10):3568-3583.

[21] 焦养泉,吴立群,苗爱生,等.鄂尔多斯盆地铀储层预测评价研究[R].武汉:中国地质大学,2011.

[22] 焦养泉,吴立群,荣辉,等.铀储层结构与成矿流场研究:揭示东胜砂岩型铀矿床成矿机理的一把钥匙[J].地质科技情报,2012,31(5):94-104.

[23] 焦养泉,王双明,王华.含煤岩系矿产资源[M].武汉:中国地质大学出版社,2020.

[24] 胡元现,李思田,杨士恭.鄂尔多斯盆地东北缘神木地区浅湖三角洲沉积作用及煤聚集[J].地球科学,1989(4):379-390.

[25] 李思田,林畅松,解习农,等.大型陆相盆地层序地层学研究—以鄂尔多斯中生代盆地为例[J].地学前缘,1995(4):133-136.

[26] 黄克兴,侯恩科.鄂尔多斯盆地北部早、中侏罗世古气候[J].煤田地质与勘探,1988(3):3-8.

[27] TAO Zhenpeng,JIAO Yangquan,WU Liqun,et al.Architecture of a sandstone uranium reservoir and the spatial distribution of its internal carbonaceous debris:A case study of the Zhiluo Formation,eastern Ordos Basin,northern China[J].Journal of Asian Earth Sciences,2019,191(6):104219.

[28] 焦养泉,吴立群,荣辉,等.鄂尔多斯盆地直罗组聚煤规律及其对古气候和铀成矿环境的指示意义[J].煤炭学报,2021,46(7):2331-2345.

[29] 侯光才,张茂省.鄂尔多斯盆地地下水勘查研究[M].北京:地质出版社,2005.

[30] 侯光才.鄂尔多斯白垩系盆地地下水系统及其水循环模式研究[D].吉林:吉林大学,2008.

[31] 焦养泉,吴立群,杨生科,等.铀储层沉积学—砂岩型铀矿勘查与开发的基础[M].北京:地质出版社,2006.

[32] JIAO Yangquan,WU Liqun,WANG Minfang,et al.Forecasting the occurrence of sandstone-type uranium deposits by spatial analysis:An example from the northeastern Ordos Basin,China[A].MAOJingwen,BIERLEIN FRANK P.Mineral Deposit Research:Meeting the Global Challenge[C].Berlin Heidelberg:SpringerVerlag,2005:273-275.

[33] 煤炭部煤炭科学院地质勘探分院.陕西北部侏罗纪含煤地层及聚煤特征[M].西安:西北大学出版社,1987.

[34] 陕西省煤田地质勘探公司185 队.陕北早侏罗世含煤岩系及沉积环境[M].西安:陕西科学技术出版社,1989.

[35] 晋香兰,张慧.鄂尔多斯盆地东北部侏罗系含铀矿主岩的沉积环境分析[J].西北地质,2013,46(2):153-158.

[36] 焦养泉,王双明,范立民,等.鄂尔多斯盆地侏罗纪含煤岩系地下水系统关键要素与格架模型[J].煤炭学报,2020,45(7):2411-2422.

[37] Norbisrath J H,Weger R J,Eberli G P. Complex resistivity spectra and pore geometry for predictions of reservoir properties in carbonate rocks[J]. Journal of Petroleum Science and Engineering,2017,151:455-467.

[38] Lima Neto I A,Ceia M A R,Misságia R M,et al. Testing and evaluation of 2D/3D digital image analysis methods and inclusion theory for microporosity and S-wave prediction in carbonates[J]. Marine and Petroleum Geology,2018,97:592-611.

[39] Xi K,Cao Y,Haile B G,et al. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin,China[J]. Marine and Petroleum Geology,2016,76:1-15.

[40] Zhao H,Ning Z,Wang Q,et al. Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry[J]. Fuel,2015,154:233-242.

[41] Fournier F,Pellerin M,Villeneuve Q,et al. The equivalent pore aspect ratio as a tool for pore type prediction in carbonate reservoirs[J]. AAPG Bulletin,2018,102(07):1343-1377.

[42] Medina C R,Mastalerz M,Rupp J A. Characterization of porosity and pore-size distribution using multiple analytical tools:Implications for carbonate reservoir characterization in geologic storage of CO2[J]. Environmental Geosciences,2017,24(1):51-72.

[43] 王燕,杨少春,吴力耘,等.辫状河三角洲水下分流河道储层构型研究[J].物探化探计算技术,2014,36(5):613-618.

[44] 林克湘,张昌民,雷卞军,等.柴达木盆地油砂山上新统分流河道砂体储集特征[J].江汉石油学院学报,1992(2):1-8.

[45] 马立驰.曲流河河道砂体油气选择性充注原因——以济阳坳陷新近系为例[J].油气地质与采收率,2013,20(04):17-19+111-112.

[46] 秦旗.河道砂体大孔道特征及识别与划分方法[D].大庆:东北石油大学,2015.

[47] 陈晨.乌审旗—横山地区中侏罗世沉积特征与控水规律研究[D].北京:煤炭科学研究总院,2018.

[48] 张康,李子颖,易超,等.鄂尔多斯盆地北东部直罗组下段砂体物质来源及沉积环境[C]//.《铀矿地质》2015增刊1,2015:134-142+158.

[49] Wang H,Liu Y,Song Y,et al. Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging[J]. Journal of Applied Geophysics,2012,86:70-81.

[50] Chen X,Yao G,Cai J,et al. Fractal and multifractal analysis of different hydraulic flow units based on micro-CT images[J]. Journal of Natural Gas Science and Engineering,2017,48:145-156.

[51] Katz A J,Thompson A H. Fractal sandstone pores:Implications for conductivity and pore formation[J]. Physical Review Letters,1985,54(12):1325-1328.

[52] Cao T,Song Z,Wang S,et al. Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,35:882-895.

[53] Zhou L,Kang Z. Fractal characterization of pores in shales using NMR:A case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform,Southwest China[J]. Journal of Natural Gas Science and Engineering,2016,35(A):860-872.

[54] Zhao Y,Zhu G,Dong Y,et al.. Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores[J]. Fuel,2017,210:217-226.

[55] Zhu F,Hu W,Cao J,et al. Micro/nanoscale pore structure and fractal characteristics of tight gas sandstone:A case study from the Yuanba area,northeast Sichuan Basin,China[J]. Marine and Petroleum Geology,2018,98:116-132.

[56] 沈畅,欧阳传湘,阮迪,等.致密砂岩储层孔隙结构的分形特征—以新立油田扶杨油层为例[J].中国科技论文,2019,14(12):1334-1340.

[57] 郭晓丹.内蒙古新街西部侏罗系直罗组砂岩孔隙结构特征及其意义[D].西安:长安大学,2018.

[58] 刘瑞,郭少斌,王继远.南华北盆地太康-蚌埠隆起山西组致密砂岩储层孔隙特征及演化[J].长江大学学报(自然科学版),2021,18(3):1-13.

[59] 杨水胜.鄂尔多斯盆地延长探区中侏罗统直罗组成藏条件分析[D].西安:长安大学,2020.

[60] 孔祥熙.鄂尔多斯盆地延长探区中侏罗统直罗组储层综合评价[D].西安:长安大学,2020.

[61] 魏博,赵建斌,魏彦巍,等.福山凹陷白莲流二段储层分类方法[J].吉林大学学报(地球科学版),2020,50(6):1639-1647.

[62] 鲍琪凤.浅水三角洲平原分流河道砂体连通性表征[D].北京:中国地质大学(北京),2015.

[63] 谢渊,王剑,殷跃平,等.鄂尔多斯盆地白垩系含水层沉积学初探[J].地质通报,2003(10):818-828.

[64] 李立尧.相控含水层三维构型建模及富水机理研究[D].青岛:山东科技大学,2019.

[65] 王继垚,李彦志,张宗浩,等.唐口煤矿深井砂岩微孔隙渗流研究[J].煤矿安全,2019,50(10):58-61.

[66] 刘亚萍,姬程飞,齐亚丽.砂岩的细观结构扫描与孔隙量化表征研究[J].化工矿物与加工,2019,48(1):12-15.

[67] 武超,王生全,蔡玥,等.基于压汞法的彬长矿区直罗组砂岩孔喉分区[J].煤矿安全,2019,50(3):31-34.

[68] 王苏健,冯洁,侯恩科,等.砂岩微观孔隙结构类型及其对含水层富水性的影响—以柠条塔井田为例[J].煤炭学报,2020,45(9):3236-3244.

[69] 杨鹏,杨伟峰,马荣坤.锦界煤矿侏罗系砂岩微观孔隙结构类型及其富水性研究[J/OL].煤炭科学技术:1-7[2020-12-14].

[70] 冯洁,侯恩科,王苏健,等.陕北侏罗系沉积控水规律与沉积控水模式[J].煤炭学报,2021,46(5):1614-1629.

[71] 杨建,刘洋,刘基.基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J].煤矿安全,2018,49(4):34-37.

[72] 张天福,张云,金若时,等.鄂尔多斯盆地东北缘侏罗系层序界面特征对砂岩型铀矿成矿环境的制约[J].中国地质,2020,47(2):278-299.

[73] 侯恩科,闫鑫,郑永飞,等.Bayes判别模型在风化基岩富水性预测中的应用[J].西安科技大学学报,2019,39(6):942-949.

[74] 侯恩科,纪卓辰,车晓阳,等.基于改进AHP和熵权法耦合的风化基岩富水性预测方法[J].煤炭学报,2019,44(10):3164-3173.

[75] 侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016,41(9):2312-2318.

[76] 武强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法——富水性指数法[J].煤炭学报,2011,36(7):1124-1128.

[77] Wu Q,Fan S K,Zhou W F,et al.Application of the analytic hierarchy process to assessment of water inrush:A case study for the No.17 coal seam in the sanhejian coal mine,China[J].Mine Water and the Environment,2013,32(3):229-238.

[78] Wu Q,Liu Y Z; Zhou W F,et al.Assessment of water inrush vulnerability from overlying aquifer using GIS-AHP-based “three maps-two predictions” method:a case study in Hulusu coal mine,China [J].Quarterly Journal of Engineering Geology and Hydrogeology,2015,48(3-4):234-243.

[79] Wu Q,Liu Y Z; Zhou W F,et al.Evaluation of water inrush vulnerability from aquifers overlying coal seams in the menkeqing coal mine,China[J].Mine Water and the environment,2015,34(3):258-269.

[80] 曾一凡,武强,杜鑫,等.再论含水层富水性评价的“富水性指数法”[J].煤炭学报,2020,45(7):2423-2431.

[81] 刘基,杨建,王强民.基于沉积规律的煤层顶板含水层富水性研究[J].煤矿安全,2018,49(1):69-72.

[82] 王洋.煤矿充水含水层富水规律与分区评价及疏降水量动态预测[D].北京:中国矿业大学(北京),2017.

[83] 方刚,刘柏根.基于巴拉素井田多孔抽水试验的含水层特征及水力联系研究[J].水文,2019,39(3):36-40+67.

[84] 代革联,杨韬,周英,等.神府矿区柠条塔井田直罗组地层富水性研究[J].安全与环境学报,2016,16(4):144-147.

[85] 杜鑫,吴章涛.基于沉积相分布规律的含水层富水性研究[J].能源与环保,2020,42(4):16-21.

[86] 张康,魏久传,李立尧,等.营盘壕井田侏罗系直罗组相控砂体展布与富水规律研究[J].煤矿安全,2019,50(9):61-65

[87] 王朝引.基于陆相沉积控制的主充水含水层富水性三维展布特征[J].煤炭科学技术,2020,48(12):198-204.

[88] 方刚,刘柏根.基于巴拉素井田多孔抽水试验的含水层特征及水力联系研究[J].水文,2019,39(3):36-40+67.

[89] 彭涛,龙良良,刘凯祥,等.基于煤层顶板抽水试验的含水层水力联系研究[J].矿业安全与环保,2019,46(3):66-69+73.

[90] 缪协兴,王长申,白海波.神东矿区煤矿水害类型及水文地质特征分析[J].采矿与安全工程学报,2010,27(3):285-291+298.

[91] 崔杰,刘洋,王振荣.锦界煤矿水文地质条件分析及探查技术研究[J].煤炭工程,2009(9):72-74.

[92] 姬中奎.柠条塔矿S1210工作面突水条件分析[J].煤矿安全,2014,45(8):188-191.

[93] 王生全,牛建立,刘洋,等.锦界煤矿矿井涌水规律及其控制因素分析[J].煤矿安全,2014,45(2):145-147+150.

[94] 梁向阳,杨建,曹志国.呼吉尔特矿区矿井涌水特征及其沉积控制[J].煤田地质与勘探,2020,48(1):138-144.

[95] 陈丽.东胜矿区侏罗系含水层富水性特征及其影响因素分析[D].淮南:安徽理工大学,2016.

[96] 王良忱.沉积环境与沉积相[M].北京:石油工业出版社.1996.

[97] 赵澄林.沉积岩石学[M].石油工业出版社,2001.

[98] 陈钢花,王中文.河流相沉积微相与测井相研究[J].测井技术,1996(5):335-340.

[99] Li S T,Yang S G,Tom J.Upper Triassic- Jurassic Foreland Sequences of the Ordos Basin in China [J].In:Dorobek SL(ed).Stratigraphic Evolution of Foreland and Basin.SEPM,1995,(52):233- 241.

[100] SY/T 6285-2011,油气储层评价方法[S].

[101] Giri A,Tarafdar S,Gouze P,et al.Fractal pore structure of sedimentary rocks:Simulation in 2-d using a relaxed bidisperse ballistic deposition model[J].Journal of Applied Geophysics,2012,87:40-45.

[102] 赖锦,王贵文,郑懿琼,等.低渗透碎屑岩储层孔隙结构分形维数计算方法:以川中地区须家河组储层41块岩样为例[J].东北石油大学学报,2013,37(1):1-8.

[103] 刘凯,石万忠,王任,等.鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J].地质科技通报,2021,40(1):57-68.

[104] 李振宏,董树文,冯胜斌,等.鄂尔多斯盆地中—晚侏罗世构造事件的沉积响应[J].地球学报,2015,36(01):22-30.

[105] 宫彦双,谷坛,安超,等.基于Pearson相关系数的集输管道流动腐蚀主控因素分析[J].石油与天然气化工,2021,50(2):93-99.

[106] CRAIG H.Isotopic Variations in Meteoric Waters.[J].Science (New York,N.Y.),1961,133(3465):1702-1703.

[107] 王力,卫三平,张青峰,等.榆神府矿区土壤-植被-大气系统中水分的稳定性同位素特征[J].煤炭学报,2010,35(8):1347-1353.

[108] 王恒纯.同位素水文地质概论[M].北京:地质出版社,1991.

[109] DANSGAARD W.Stable Isotopes in Precipitation[J].Tellus,1964,16:436-468.

[110] LIAO D W,PANG Z H,XIAO W Y,et al.Constraining the Water Cycle Model of an Important Karstic Catchment in Southeast Tibetan Plateau Using Isotopic Tracers (2H,18O,3H,222Rn)[J].Water,2020,12(12):3306.

[111] Lucas L L,Unterweger M P.Comprehensive review and critical evaluation of the half-time of tritium[J].Journal of Research of the National Institute of Standards and Technology,2000,105(4):541-549.

[112] 许蓬,王明.环境同位素技术在判定矿井含水层间水力联系的应用[J].煤炭科学技术,2018,46(S1):227-230.

[113] 赵振华,吴吉春,袁革新,等.塔里木盆地东北部大气降水氚浓度的恢复及应用[J].水文地质工程地质,2017,44(1):16-22.

[114] 王强民,王皓,杨建,等.西部侏罗系矿区充水含水层水文地球化学特征及矿井水来源综合识别[J].工程地质学报,2021,29(4):1084-1093.

[115] 黄磊,侯泽明,韩萱,等.采煤驱动下复杂井田含水层化学特征与水力联系辨识[J/OL].中国环境科学:1-9.

[116] Han G,Liu C.Water geochemistry controlled by carbonate dissolution:A study of the river waters draining karst-dominatedterrain,Guizhou province.China Chemical Geology,2004,204(1-2):1-21.

[117] 高宗军,徐军祥,王世臣,等.济南岩溶水微量元素分布特征及其水文地质意义[J].地学前缘,2014,21(4):135-146.

[118] 张云峰,刘宗堡,赵容生,等.三角洲平原亚相储层砂体静态连通性定量表征—以松辽盆地肇州油田扶余油层为例[J].中国矿业大学学报,2017,46(6):1314-1322.

[119] 张云峰,刘宗堡.源外简单斜坡区砂体的连通性及其控油作用[J].黑龙江科技大学学报,2021,31(5):578-584.

[120] 雷裕红,罗晓容,张立宽,等.东营凹陷南斜坡东段沙河街组砂岩输导层连通性量化表征[J].石油学报,2013,34(4):692-700.

[121] 赵健,罗晓容,张宝收,等.塔中地区志留系柯坪塔格组砂岩输导层量化表征及有效性评价[J].石油学报,2011,32(6):949-958.

中图分类号:

 TD745    

开放日期:

 2023-07-04    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式