- 无标题文档
查看论文信息

论文中文题名:

 可磁分离MIL-100(Fe)复合催化剂的合成与光芬顿性能调控    

姓名:

 王慧    

学号:

 21211025021    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 光芬顿催化    

第一导师姓名:

 刘俊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Synthesis and modulation of photo-Fenton performance of magnetically separable MIL-100(Fe) composited catalysts    

论文中文关键词:

 MIL-100(Fe) ; 局域表面等离激元共振 ; 核壳结构 ; 光芬顿 ; 磁分离    

论文外文关键词:

 MIL-100(Fe) ; localized surface plasmon resonance ; core-shell structure ; photo-Fenton ; magnetic separation    

论文中文摘要:

金属有机骨架MIL-100(Fe)高的铁氧簇含量、大的比表面积、合适的光响应能级,使其可作为理想的非均相光芬顿催化剂,但MIL-100(Fe)的应用容易受光吸收能力弱、电荷分离效率低和粉体回收困难的限制。本论文提出基于单分散的Ag/Fe3O4(AF)核壳纳米颗粒,分别采用连续离子层吸附反应(SILAR)和水热法,简便快速构建可磁分离、高光芬顿活性AgCl/Fe3O4@MIL-100(Fe)(ACFM)和Ag/Fe3O4@MIL-100(Fe)(AFM)的新方法。在此基础上,通过巧妙调控水热反应中Fe3+用量,可控制备了MIL-100(Fe)比例更高、光芬顿性能更优的F/Ag/Fe3O4@MIL-100(Fe)和中空Fe3O4@MIL-100(Fe)催化剂(F/AFM和HFM)。主要研究内容和结果如下:

(1)通过SILAR一步合成AgCl和MIL-100(Fe),构建了可磁分离ACFM异质结。此合成方法过程简单,ACFM中MIL-100(Fe)含量可控。由于AgCl和MIL-100(Fe)异质结界面有效的电荷分离,制备的ACFM-15具有优异的光芬顿活性,在30 min光芬顿反应后对RhB的降解率达92.9%,高于sFM-15的光芬顿活性。

(2)通过AF与H3btc的直接水热反应,制备了可磁分离的单分散AFM核壳结构。此方法可有效避免Ag纳米颗粒的聚集,通过H3btc的用量调控MIL-100(Fe)的负载量。得益于Ag纳米颗粒对光吸收和电荷分离的增强作用,所制备的AFM-2具有优异的光芬顿性能,30 min光芬顿反应后可降解88.5%的RhB,远高于hFM的光芬顿活性。

(3)在AF与H3btc的水热反应中引入Fe3+,并通过调控Fe3+用量合成了F/AFM和HFM两种结构。Fe3+的引入增加了催化剂中MIL-100(Fe)的沉积量和比表面积,所制备的F/AFM-1和F/AFM-2在30 min光芬顿反应后对RhB的降解率分别为97.1%和95.9%,均优于AFM-2。

论文外文摘要:

Metal-organic framework MIL-100(Fe) has high iron-oxygen cluster content, large specific surface area and suitable energy level to response light, which make it great potential as a heterogeneous photo-Fenton catalyst. However, the application of MIL-100(Fe) is easily limited by its weak light absorption, insufficient charge separation efficiency and difficulty in recycling. In this thesis, we presented the simple and rapid construction of magnetically separable AgCl/Fe3O4@MIL-100(Fe) (ACFM) and Ag/Fe3O4@MIL-100(Fe) (AFM) with high photo-Fenton activity based on monodispersed Ag/Fe3O4 (AF) core-shell nanoparticles by using successive ionic layer adsorption and reaction (SILAR) and hydrothermal method, respectively. On this basis, by regulating the Fe3+ quantity during the hydrothermal reaction, F/Ag/Fe3O4@MIL-100(Fe) and hollow Fe3O4@MIL-100(Fe) (F/AFM and HFM) with higher MIL-100(Fe) ratios and better photo-Fenton activities were obtained. The main research contents and results are as follows:

(1) Magnetically separable ACFM heterojunction was constructed by one-step synthesis of AgCl and MIL-100(Fe) via SILAR. The synthetic method is a simple process with controllable content of MIL-100(Fe) in ACFM. Due to the high charge separation efficiency at the interface between AgCl and MIL-100(Fe) heterojunction, the prepared ACFM-15 has excellent photo-Fenton activity, degrading 92.9% of RhB after 30 min photo-Fenton reaction, which is higher than that of sFM-15.

(2) Magnetically separable monodispersed AFM core-shell structures were prepared by direct hydrothermal reaction between AF and H3btc. This method can effectively avoid the aggregation of Ag nanoparticles, and the loading of MIL-100(Fe) can be regulated by the amount of H3btc. Thanks to the enhanced light absorption and charge separation by Ag nanoparticles, the prepared AFM-2 has excellent photo-Fenton activity, degrading 88.5% of RhB after 30 min photo-Fenton reaction, which is much higher than that of hFM.

(3) F/AFM and HFM were synthesized by introducing Fe3+ into the hydrothermal reaction between AF and H3btc and modulating the amount of Fe3+. The introduction of Fe3+ increased the MIL-100(Fe) deposition and specific surface area of catalysts, and the degradation efficiencies of RhB by F/AFM-1 and F/AFM-2 after 30 min photo-Fenton reaction are 97.1% and 95.9%, respectively, both better than that of AFM-2.

中图分类号:

 TB321; O643.36    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式