题名: | 受限空间活化水雾作用下油池火响应特性研究 |
作者: | |
学号: | 21220089017 |
保密级别: | 保密(4年后开放) |
语种: | chi |
学科代码: | 083700 |
学科: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学位年度: | 2021 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 消防科学与工程 |
导师姓名: | |
导师单位: | |
提交日期: | 2024-06-17 |
答辩日期: | 2024-06-05 |
外文题名: | Characterisation of oil pool fire response under activated water mist in confined space |
关键词: | |
外文关键词: | Restricted space ; Activated water ; Oil pool fire ; Combustion characteristics ; Activate water mist |
摘要: |
火灾是现代社会最普遍的威胁公众安全和社会发展的灾害之一,油罐火是火灾事故中的重要组成部分。目前细水雾灭火技术被广泛应用于多种场所,活化水雾是指在细水雾中加入各类活化剂,使其兼具物理层面和化学层面的协同灭火作用。但针对受限空间下不同活化水雾扑灭油池火的响应特性研究较少,因此,本文基于优选的6 种化学活化剂(NaF,NaBr,NaCl,KCl,MgCl2,CaCl2)和4 种表面活性剂(十二烷基苯磺酸钠SDBS,十二烷基硫酸钠SDS,十六烷基三甲基溴化铵CTAB,十二烷基三甲基溴化铵DTAB),开展活化水的核磁共振、温变变化和表面张力实验,受限空间内不同尺寸油池火的火焰形态、质量损失速率、火焰中轴线温度变化以及烟气浓度测试,基于以上研究开展活化水雾扑灭油池火实验,探究受限空间作用下不同活化水雾扑灭油池火的响应特性。本文取得的主要成果如下: (1)化学活化剂中阴阳离子对水分子团簇的作用方式不同,其中阴离子破坏氢键,阳离子结合氢键,0.5 mol/L的化学活化剂溶液中,活化效果由大到小依次是:Na+>K+>Mg2+>Ca2+,F->Cl->Br-,化学活化剂溶于水会发生吸热放热反应,CaCl2和MgCl2溶于水发生放热反应,而NaF、NaBr、NaCl、KCl溶于水则吸收热量,溶液温度由高至低依次是:CaCl2>MgCl2>NaF>NaBr>NaCl>KCl,随着浓度升高,NaBr,NaCl,KCl,MgCl2,CaCl2溶液的表面张力也随之升高,而NaF溶液随着浓度升高,表面张力波动下降。表面活性剂溶于水后对水分子团簇结构影响甚微,也基本不发生吸热放热反应,但均会大幅度降低溶液的表面张力,降低表面张力幅度由高到低依次是:CTAB>DTAB>SDBS>SDS。 (2)基于1 m³受限空间开展的4 种尺寸油盘燃烧实验发现,直径为5 cm的池火燃烧模式为层流燃烧,6 cm、7 cm、8 cm为湍流燃烧,在湍流燃烧过程中火焰均存在周期性变化过程,随着油盘尺寸增加,火焰高度增加,火焰振幅加大,燃烧时间缩短,质量损失速率加快,燃料蒸汽产生量增加,热释放率升高,热反馈作用加强,同时间段内O2消耗量和CO产生量增加。 (3)活化水雾扑灭油池火时,火焰会发生初起、强化、根部脱离、压制、二次强化和熄灭6个阶段。活化水雾能降低火焰强化现象,且灭火时间与CO产生量成正比,灭火时间越长,CO产生量越高,O2消耗量越大。含NaF、NaBr、NaCl、KCl细水雾能提高灭火效能,含MgCl2和CaCl2细水雾则降低了细水雾灭火效能。表面活性剂细水雾均能提高灭火效率,且与降低表面张力能力成正比。复合活化水雾灭火过程中,存在协同灭火作用且最佳浓度配比是KCl 0.5mol/L+CTAB 0.015 mol/L,灭火时间相较纯水缩短了55 %,大幅提高灭火效率。该研究为活化水雾灭火的实际应用奠定理论基础。 |
外文摘要: |
Fire is one of the most prevalent calamities that endangers public safety and social progress in modern civilization, and oil tank fires play an essential role in fire accidents. At present, fine water mist fire extinguisher technique is widely employed in a variety of settings. Activated water mist refers to the addition of various activators to fine water mist, making it have both physical and chemical synergistic fire extinguishing effects. However, there is limited research on the response characteristics of different activated water mist for extinguishing oil pool fires in confined spaces. Therefore, this article conducts nuclear magnetic resonance, temperature change, and surface tension experiments on activated water based on six selected chemical activators (NaF, NaBr, NaCl, KCl, MgCl2, CaCl2) and four surfactants (sodium dodecylbenzenesulfonate SDBS, sodium dodecyl sulfate SDS, cetyltrimethylammonium bromide CTAB, and dodecyltrimethylammonium bromide DTAB). The flame morphology, mass loss rate, temperature variation, and smoke concentration of oil pool fires of different sizes in confined spaces are tested. Based on the above research, activated water is subjected to nuclear magnetic resonance, temperature change, and surface tension experiments. Experiment on extinguishing oil pool fires with mist, exploring the response characteristics of different activated water mist in extinguishing oil pool fires under the action of confined space. The main achievements of this article are as follows: The ways in which anions and cations in chemical activators act on water molecular clusters are different. Anions break hydrogen bonds, while cations bind hydrogen bonds. In a 0.5 mol/L solution of chemical activators, the activation effect in descending order is: Na+>K+>Mg2+>Ca2+, F->Cl->Br-. Chemical activators dissolve in water and undergo endothermic and exothermic reactions. CaCl2 and MgCl2 dissolve in water and undergo exothermic reactions, while NaF, NaBr, NaCl, and KCl dissolve in water and absorb heat. The temperature of the solution in descending order is: CaCl2>MgCl2>NaF>NaBr>NaCl>KCl. As As the concentration increases, the surface tension of NaBr, NaCl, KCl, MgCl2, and CaCl2 solutions also increases, while the surface tension fluctuation of NaF solution decreases with the increase of concentration. After being dissolved in water, surfactants have little effect on the structure of water molecular clusters and do not undergo endothermic or exothermic reactions. However, they all significantly reduce the surface tension of the solution. The order of magnitude of surface tension reduction from high to low is: CTAB>DTAB>SDBS>SDS. Based on 1 m³ Four sizes of oil pan combustion experiments conducted in confined spaces found that the pool fire with a diameter of 5 cm had laminar combustion mode, while 6 cm, 7 cm, and 8 cm had turbulent combustion. During the turbulent combustion process, the flames exhibited periodic changes. As the size of the oil pan increased, the flame height increased, the flame amplitude increased, the combustion time shortened, the rate of mass loss accelerated, the amount of fuel vapor generated increased, the heat release rate increased, and the thermal feedback effect strengthened. During the same time period, the consumption of O2 and the production of CO increased. When activated water mist to extinguish oil pool fires, the flame undergoes six stages: initial initiation, strengthening, root detachment, suppression, secondary strengthening, and extinguishing. Activated water mist can reduce flame intensification phenomenon, and the extinguishing time is directly proportional to the amount of CO produced. The longer the extinguishing time, the higher the amount of CO produced and the greater the consumption of O2. Fine water mist containing NaF, NaBr, NaCl, and KCl can improve fire extinguishing efficiency, while fine water mist containing MgCl2 and CaCl2 reduces fire extinguishing efficiency. Surfactant fine water mist can improve fire extinguishing efficiency and is directly proportional to the ability to reduce surface tension. In the process of composite activated water mist fire extinguishing, there is a synergistic fire extinguishing effect, and the optimal concentration ratio is KCl 0.5mol/L+CTAB 0.015 mol/L. The fire extinguishing time is shortened by 55 % compared to pure water, greatly improving the fire extinguishing efficiency. This work provides a theoretical foundation for the practical use of activated water mist fire extinguishing. |
参考文献: |
[1] 张玉涛, 马婷, 林姣, 等. 2007—2016年全国重特大火灾事故分析及时空分布规律[J]. 西安科技大学学报, 2017, 37(06): 829-836. [2] 黄文诺, 周荣义, 林金玉, 等. 2015-2019年全国火灾事故统计分析及对策[J]. 采矿技术, 2021, 21(03): 92-94. [3] 孙东. 消防灭火技术在超高层建筑中的应用与优化[J]. 大众标准化, 2024, (08): 161-163. [4] 刘全义, 朱博, 邓力, 等. 受限空间内小尺度油池火行为实验[J]. 科学技术与工程, 2021, 21(03): 1230-1235. [5] 张超, 倪鑫, 宋富美. 不同通风条件下受限空间火溢流模拟研究[J]. 华北科技学院学报, 2023, 20(03): 14-20. [7] 许涛, 吴恩杰, 郑豪. 四面火墙作用下中心油盘燃烧速率研究[J]. 安全与环境学报, 2023, 23(01): 87-91. [8] 贺元骅, 薛杨武, 伍毅, 等. 含氯化钾低压细水雾扑灭正庚烷池火性能[J]. 科学技术与工程, 2020, 20(11): 4614-4619. [9] 彭伟, 柯陈, 俞晨等. 含添加剂高压细水雾扑灭乙醇池火性能研究[J]. 消防科学与技术, 2022, 41(08): 1088-1093. [12] Eisenberg D, Kauzmann W. The structure and properties of water[M]. OUP Oxford, 2005. [15] 郭润霞, 王汉章, 李文华. 磁力活化水对骨钙、高脂血症和脂质过氧化的影响[J]. 环境与健康杂志, 2000, (01): 24-25+28. [16] 戎鑫, 李建军, 但宏兵等. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(09): 65-71. [17] 马桂红, 魏美玲. 远红外陶瓷材料的应用及发展趋势[J]. 山东陶瓷, 2009, 32(03): 22-24. [18] 杨海军, 李勇, 周萌等. 处理方法对水分子团簇结构影响的17O-NMR研究[C] 中国化学会. 第七届全国仪器分析及样品预处理学术研讨会论文集. 清华大学化学系; 2013: 1. [19] 杨微, 李晓蕾, 王长生. 水团簇(H2O)n中多体作用强度与水分子间距的关系[J]. 物理化学学报, 2015, 31(12): 2285-2293. [20] 毛磊红, 云春艳, 孙敏. 熟水的特性研究[J]. 农产品加工, 2023, (02): 10-13. [21] 杜娟, 冯瑞玉, 赵静等. 磁场改变物质理化性能及其分离效果的研究进展[J].河北化工, 2006, (11): 21-24. [22] 张军, 张立红. 磁场对水扩散系数影响的分子动力学模拟研究[J]. 曲阜师范大学学报(自然科学版), 2003, (01): 64-67. [23] 陈家森, 叶士璟, 陈树德等. 电场对水结构的影响──电场处理水的应用机理研究[J]. 物理, 1995, (07): 424-428. [24] 李光林, 杨亚玲. 脉冲电场对水结构影响的研究[J]. 激光生物学报, 1999, (01): 43-45. [25] 高正虹, 刘蓓, 吴芹等. CO2激光辐射对水及水溶液物性的影响[J]. 应用激光, 2001, (04): 251-253+250. [32] 李睿华, 蒋展鹏, 杨宏伟, 等. 离子对水的 17O-NMR 化学位移和水结构的影响[J]. 物理化学学报, 2004, 20(01): 98-102. [33] 李睿华, 蒋展鹏, 师绍琪等. 拉曼光谱研究CaCl2和MgCl2对水结构的影响[J]. 物理化学学报, 2003, (02): 154-157. [34] 徐庆, 陈文, 郑锦霞, 等. 过渡金属氧化物体系红外辐射陶瓷的研制[J]. 陶瓷学报, 2000, (01): 18-22. [36] 杨忠志, 袁军. NPT系综下应用ABEEM-7P水分子模型的动力学模拟[J]. 辽宁师范大学学报(自然科学版), 2015, 38(02): 197-202. [38] 杨忠志, 石华, 刘翠. OH-(H2O)n(n=1~8)团簇的量子化学研究[J]. 辽宁师范大学学报(自然科学版), 2020, 43(02): 193-203. [39] 柳光磊, 阮毅. 水的磁化处理技术的研究进展[J]. 兴义民族师范学院学报, 2019, (04): 117-120. [40] 程卫民, 聂文, 周刚, 等. 煤矿高压喷雾雾化粒度的降尘性能研究[J]. 中国矿业大学学报, 2011, 40(02): 185-189+206. [41] 聂百胜, 丁翠, 李祥春等. 磁场对矿井水表面张力影响规律的实验研究[J].中国矿业大学学报, 2013, 42(01): 19-23. [42] 陈梅岭, 宋文超, 蒋仲安等. 煤矿磁化水喷雾降尘机理及试验研究[J]. 煤炭科学技术, 2014, 42(07): 65-68+87. [43] 平原, 葛少成, 孙丽英等. 磁性活化水技术雾化性能及降尘效果研究[J]. 煤炭工程, 2022, 54(08): 102-107. [46] 李刚, 吴将有 ,金龙哲, 等. 我国金属矿山粉尘防治技术研究现状及展望[J]. 金属矿山, 2021, (01): 154-167. [47] 修德江, 杨成财, 张彤. 荷电水雾除尘技术试验研究[J]. 鞍钢技术, 2020, (06): 31-34. [48] 金龙哲, 刘建国, 林清侠, 等. 矿山喷雾降尘技术研究与应用现状综述[J]. 金属矿山, 2023, (07): 2-17. [49] 陈文晨, 贾希盛, 亓永芝. 煤矿井下磁化水降尘技术研究与应用[J]. 内蒙古煤炭经济, 2023, (19): 127-129. [50] 秦波涛, 周群, 李修磊, 等. 煤矿井下磁化水与表面活性剂高效协同降尘技术[J]. 煤炭学报, 2017, 42(11): 2900-2907. [60] 张光辉, 梁勇, 姜伟. 障碍物诱发作用下中尺度方形油池火旋风模拟试验研究[J]. 海军工程大学学报, 2021, 33(02): 97-102+106. [61] 代尚沛, 贾旭宏, 丁思婕等. 高高原受限空间内小尺度油池火燃烧特性试验研究[J]. 消防科学与技术, 2024, 43(02): 161-167. [68] 李玉玺, 蒋新生, 余彬彬, 等. 不同几何尺寸和泄漏量的航空煤油池火燃烧特性研究[J].当代化工, 2022, 51(05): 1038-1043+1048. [71] 郭超, 闫治国, 李维, 等. 双火源隧道火灾特性全尺寸试验研究[J]. 现代隧道技术, 2023, 60(02): 247-259. [76] Nfpa N. 750 Standard for the installation of water mist fire protection systems[J]. 2000. [79] 刘洋鹏, 王喜世, 沈佳杏, 等. 细水雾抑制障碍物遮挡气体池火的缩尺度实验研究[J]. 燃烧科学与技术, 2022, 28(05): 489-497. [80] 李勇. 细水雾灭火机理及应用探讨[J]. 化工安全与环境, 2022, 35(18): 13-16+20. [86] 左凤传. 消防水枪的应用及其灭火效果分析[J]. 消防界(电子版), 2023, 9(03): 52-54. [87] 廖光煊, 丛北华, 况凯骞. 铁基添加剂增强细水雾灭火性能的实验研究[J].工程热物理学报, 2005, (S1): 273-276. [88] 张天巍. 含钾盐添加剂细水雾的灭火有效性及机理研究[D]. 北京理工大学, 2017. [91] 徐晓楠. 水系灭火剂及在我国的研究现状[J]. 消防技术与产品信息, 2003, (09): 10-13. [93] 于水军, 余明高, 郝强等. 含复合化学添加剂细水雾抑制煤油池火的机理[J].煤炭学报, 2008, (03): 304-309. [99] 贺文云, 徐娜, 李小坤, 等. 消防减阻用聚合物/表面活性剂复配体系实验探索[J]. 日用化学工业, 2022, 52(09): 913-919. [105] 赵微微, 王毅琳. 表面活性剂用于废水处理研究的新进展[J]. 化学学报, 2019, 77(08): 717-728. [108] 顿珠次仁, 严志宏, 达瓦潘多, 等. 水的多分子簇结构及改变团簇结构方法的研究进展[J]. 中央民族大学学报(自然科学版), 2014, 23(01): 27-32. [109] 李茂林, 张浩, 玄克勇, 等. 添加剂湍流减阻的研究进展[J]. 区域供热, 2022, (02): 41-49. [110] Babrauskas V. Estimating large pool fire burning rates[J]. Fire technology, 1983, 19: 251-261. |
中图分类号: | TU998.1 |
开放日期: | 2028-06-17 |