- 无标题文档
查看论文信息

论文中文题名:

 复杂环境下城市主干道既有混凝土连续梁桥顶升工程关键技术研究    

姓名:

 吴伟    

学号:

 G2015133    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程学院    

研究方向:

 桥桩顶升理论与技术    

第一导师姓名:

 任建喜    

第一导师单位:

 西安科技大学    

第二导师姓名:

 曹宇敏    

论文提交日期:

 2024-03-20    

论文答辩日期:

 2023-12-05    

论文外文题名:

 Research on Key Technology of Jacking Engineering of Existing Concrete Continuous Beam Bridge in Urban Main Road under Complex Environment    

论文中文关键词:

 复杂环境 ; 既有桥梁 ; 桥桩 ; 同步顶升 ; BIM技术 ; 监测 ; 关键技术    

论文外文关键词:

 Complex Environment ; Existing Bridges ; Bridge Pier ; Synchronous Jacking ; BIM technology ; Monitoring ; Key Technologies    

论文中文摘要:

由于城市规模急剧扩大,造成城市交通日益拥堵,现有的部分市政桥梁工程已经无法满足现有交通的需求,急需进行功能性加固改造。如何采用合理的理论和技术完成复杂条件下城市既有桥梁改造工作是桥梁工程中的重要工程问题之一,开展复杂环境下城市主干道既有连续梁桥顶升工程关键技术研究具有重要的工程应用价值。本文以西安市南二环高新~丰庆段桥梁顶升施工项目为依托,开展复杂环境下城市主干道既有桥梁顶升工程关键技术研究。主要工作和结论是:

(1)对复杂条件下城市既有混凝土连续梁桥顶升基本力学原理、关键技术、常用施工方法及其施工安全的主要影响因素等进行了分析研究。结果表明,桥梁顶升工程安全施工的主要影响因素包括桥梁裂纹的扩展程度、箱梁的徐变作用、顶升设备的质量、顶升施工人员的操作水平、既有桥梁的结构特性和强度。

(2)制定了南二环高新~丰庆段桥梁顶升施工项目各阶段施工的施工步骤及组织形式,完成了基于BIM技术的顶升施工过程建模分析工作。制定了既有桥梁顶升施工技术的总体方案;计算并验算了桥梁顶升工程中各分部分项工程的稳定性与安全性。

(3)编制了南二环高新~丰庆段桥梁顶升施工项目顶升施工全过程监测方案并进行了实时监测工作。分析了桥梁顶升施工过程中桥梁结构横纵向位移及变形、各墩梁体的横纵向偏移、各监测点梁体沉降以及钢管临时支撑变形的监测数据变化规律。

(4)工程实践表明,在既有混凝土连续桥梁顶升施工过程中,桥梁结构的稳定性较好,施工安全性得到保证。该工程已经安全运行多年,证明了文中提出的既有混凝土连续桥梁同步顶升关键技术切实可行。

论文外文摘要:

Due to the rapid expansion of urban scale, urban traffic is becoming increasingly congested. Some existing municipal bridge projects have been unable to meet the needs of existing traffic, and functional reinforcement and transformation are urgently needed. How to use reasonable theory and technology to complete the reconstruction of existing urban bridges under complex conditions is one of the important engineering problems in bridge engineering. It is of great engineering application value to carry out the key technology research on the jacking project of existing continuous girder bridges on urban main roads under complex environment. Based on the bridge jacking construction project of the Gaoxin~Fengqing section of the South Second Ring Road in Xi 'an, this paper studies the key technologies of the existing bridge jacking project of the urban main road in a complex environment. The main work and conclusions are as follows:

(1) The basic mechanical principles, key technologies, commonly used construction methods, and main influencing factors on construction safety of existing concrete continuous beam bridges in urban areas under complex conditions were analyzed and studied. The results indicate that the main influencing factors for the safe construction of bridge jacking engineering include the degree of crack propagation, the creep effect of box beams, the quality of jacking equipment, the operational level of jacking construction personnel, and the structural characteristics and strength of existing bridges.

(2) The construction steps and organization forms of each stage of the bridge jacking construction project in the South Second Ring Gaoxin-Fengqing section were formulated, and the modeling and analysis of the jacking construction process based on BIM technology was completed. The overall scheme of existing bridge jacking construction technology is formulated. The stability and safety of each part of the bridge jacking project are calculated and checked.

(3) The whole process monitoring scheme of the jacking construction project of the South Second Ring Gaoxin-Fengqing section bridge jacking construction project is compiled and the real-time monitoring work is carried out. The monitoring data of the horizontal and vertical displacement and deformation of the bridge structure, the horizontal and vertical offset of each pier beam body, the settlement of each monitoring point beam body and the deformation of the temporary support of the steel pipe during the construction of the bridge are analyzed.

(4) The engineering practice shows that in the jacking construction process of the existing concrete continuous bridge, the stability and better construction safety of the bridge structure are guaranteed. The project has been safely operated for many years, which proves that the key technology of synchronous jacking of existing concrete continuous bridges is feasible.

参考文献:

[1] Su C, Lin N, Fu Y. Multi-state reliability assessment for hydraulic lifting system based on the theory of dynamic Bayesian networks[J]. Journal of Risk &Reliability, 2016, 230.

[2] Miao H, Zhou Y, Sheng Z, et al. Design and application of a control algorithm for hydraulic lifting system of the hot platen in continuous flat press[J]. Nongye Jixie Xuebao/transactions of the Chinese Society of Agricultural Machinery, 2014, 45(7):333-339.

[3] Tripathi J P, Ghoshal S K, Dasgupta K. Towards energy savings of a hydraulic lifting system: A bond graph simulation[J]. International Journal of Applied Engineering Research, 2015, 10(24):21096-21101.

[4] Miao Y, Wang S. Failure diagnosis of hydraulic lifting system based on multistage telescopic cylinder[C]. International Conference on Fluid Power and Mechatronics, 2011.

[5] 干继红,陈诚.桥梁顶升技术在城市高架改造中的应用探讨[J].工程质量,2022,40(06):48-51+60.

[6] 劳诚壮,徐东辉,唐业云,等.液压顶升塔和提升装置在大型设备吊装中的应用[C]. 2006施工机械化新技术交流会,银川, 2006.

[7] 沈志强.南浦大桥W3匝道桥梁顶升施工控制技术探讨[J].城市道桥与防洪,2018(07):201-204+20.

[8] 徐丽杰.BZT1000型驮桥车同步顶升装置液压系统设计与控制策略研究[D].秦皇岛:燕山大学,2013.

[9] 罗永巍.通车工况桥梁顶升支座更换施工技术研究[J].四川建材,2023,49(09):92-94.

[10] 刘美景,康雪成,范圣刚等.桥梁顶升施工中钢抱箍节点受力性能分析[J].建筑钢结构进展,2022,24(10):89-97.

[11] 樊金田,刘光明,曹国良,等.全自动液压顶升装置吊装新技术[J].硅谷,2012(7):7-8.

[12] 王真.基于故障树的动臂塔机液压顶升系统可靠性仿真分析[D].大连:大连理工大学,2013.

[13] 李国雄.桥梁整体顶升施工技术应用探析[J].交通世界,2022(35):142-144.

[14] 刘殊,赵丁,娄容庆,等.KRAMO门式液压顶升吊装系统的检验方法[J].中国特种设备安全,2012(3):32-34.

[15] Guo Y F, Zhang Y S,Wan F, et al. Test Study on the New Method ofBearing Replacement of Simple Support-Continuous Girder Bridge[J].Journal of Chongqing Jiaotong University,2009.

[16] 冯满耀.济南燕山立交桥PLC控制液压同步顶升的施工技术[D].山东大学,2011.

[17] 王玉宝.大轴力桩基托换工程结构技术的应用研究[D].铁道部科学研究院,2001.

[18] 李志峰.桥梁同步顶升技术的研究与展望[J].山西建筑,2010,36(28):297-298.

[19] 侯顺川.桥梁改造工程中同步顶升技术应用及控制重点[J].山西建筑,2010,36( 15):335-336.

[20] Han Z Y,Zhang Z X,Zhang Y M,et al. Application of Synchronizing Lifting Technique in the Bridge Rebuilding Project[J]. China Municipal Engineering, 2007.

[21] Zhao Y, Wang J F, Pang M. Integral Lifting Project of the Qifeng Bridge[J].Journal of Performance of Constructed Facilities, 2012,26(3):353-361.

[22] 吴定安.上海音乐厅顶升和平移工程的液压同步系统[J].液压气动与密封,2004(1):24-26.

[23] 高岗,李瑞锋.北京雁栖湖国际会展中心中央区钢析架及混凝土屋面组合结构同步液压提升[J].施工技术,2014(s2):389-394.

[24] 天津城建科技编辑部.天津市狮子林桥整体抬动成功-天津城建集团完成我国第一座采用整体顶升改造的桥梁[J.天津城建科技,2003,5,35-36.

[25] 周祥吉.岂风大桥整体顶升工程为我国桥梁改造创新路[J].城市道桥与防洪.2008(1):90-90.

[26] 天津城建科技编辑部.天津市狮子林桥整体抬动成功-天津城建集团完成我国第一座采用整体顶升改造的桥梁[J.天津城建科技,2003,5,35-36

[27] 丁毅,刘波.济南燕山立交顶升改造施工的总体设计[J.山东交通科技,2011(5):40-42.

[28] 李品寿.桥梁顶升和加高技术[C].全国城市公路学会第二十一次学术年会论文集. 2012:158-161.

[29] 张淑坤,刘永,李永靖,等.既有多跨桥梁整体顶升安全技术研究与实施——以前锋涌大桥为例[J].中国安全科学学报,2014,24(7):123-128.

[30] 单成林,奉翔.桥梁加固改造中的整体顶升施工[J].公路工程,2002,27(3):79-80.

[31] 桂学.桥梁顶升技术研究[D].长安大学,2005.

[32] 白凤明.桥梁同步顶升技术及其计算机仿真研究[D].湖北工业大学,2013.

[33] 吴耀冬.基于内力优化桥梁顶升支座更换技术的研究[D].西华大学,2013.

[34] 冀鸿飞.浙江富春江第一大桥桥梁顶升技术中关键技术的研究[D].西华大学,2012.

[35] Housner,et al. Sturctural control: Past, Present and Future[J]. Journal of Engineering Mechanics.2010.9(3):219-230

[36] 刘小云.复杂结构施工监测分析与研究[D].长安大学,2009.

[37] Honshu-Shikoku Bridge Authorit. The Akashi-Kaikyo Bridge-Design and Construction of the Word's Longest Bridge[R]. Japan, 1998.

[38] 张金涛.基于光纤光栅全感器网络的健康监测技术[D].哈尔滨:黑龙江大学,2005.

[39] Shahawy MA, Arocklasamy M. Field instrument to study the time -dependent behavior in Sunshine Skyway Bridge[J], Journal of Bridge Enginerring, ASCE, V01. 1996, 1(2).

[40] 李瑛.大跨复杂钢结构施工过程健康监测与分析[D].兰州理工大学,2012.

[41] 胡军.荆岳大桥结构健康监测系统研究及应用[D].武汉理工大学,2012.

[42] Anderson EY, Pedersen. Structural monitoring of the Great Belt East Bridge[J].Proceedings of the Third Symposium on Strait Crossing : 1994.54-62.

[43] Farrar C R, Sohn H. Condition damage monitoring methodo logie. Invited Talk,The Consortium of Organization for Strong Motion Observation SystemsWorkshop,Emeryville,2001,LA-UR-01-6573.

[44] Housner G w, Bergman L A, Caughey T K, et al. Structural control: Past, Present and Future. ASCE, Journal of Engnieering Mechanics, 1997, 123(9) : 897-971.

[45] Hill K O, Fujii Y, Johnson D C, Kawasaki B S. "Photosensitivity in optical fiber Waveguides: Application to reflection filter fabrication", Appl. Phys. Lett, 1978, Vol, 32, 647-649.

[46] 袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报,1999(02):59-63.

[47] 李惠,周文松,欧进萍,杨永顺.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006(02):46-52.

[48] 王欣,王磊玉,肖钦广等.曲线桥同步顶升位移监测与分析[J].施工技术,2021,50(05):50-54+58.

[49] 王鹏.数字图像技术在桥梁顶升变形监测中的应用研究[J].中华建设,2023(09):175-177.

[50] 陈侃.运营高铁无砟轨道桥梁顶升平移纠偏技术研究-以京沪高铁秦淮河特大桥桥梁偏移整治工程为例[J].科技和产业,2023,23(09):239-245.

[51] 梁磊,姜德生,孙东亚.光纤传感器在混凝土结构中的相容性研究[J].武汉工业大学学报,2000(02):11-14.

[52] 夏锋林,高博青,吴慧,陈忠麟,周嵘.杭州大剧院钢网壳结构的设计、施工与检测[J].建筑施工,2003(04):278-281.

[53] 张建坤,徐俊峰,徐国.静力水准测量系统在地铁二号线第三方监测中的应用[J].现代城市轨道交通,2011,(8):144-147.

[54] 孙旭光.网壳结构滑移法施工全过程分析及监测[D]. 浙江大学, 2005.

[55] 戴加东,王艳玲,褚伟洪.静力水准自动化监测系统在某工程中的应用[J].工程勘察,2009,37(05):80-84.

[56] 李功标,瞿伟廉,刘晖.光纤光栅传感器在空间网架结构监测中的应用[J].武汉理工大学学报,2007(02):83-86.

[57] 彭明祥,刘军进,王翠坤,王磊,陆静文,张胜利,黄曙亮.CCTV主楼施工过程结构关键点位的变形监测技术[J].建筑科学,2009,25(11):91-94+90.

[58] 王祥明,彭明祥,王翠坤,刘军进,潘宠平,王磊.CCTV主楼双塔间大悬臂施工过程专项监测[J].建筑科学,2009,25(11):82-85.

[59] 张琨,戴立先,王磊,肖从真,王翠坤,刘军进,潘宠平.CCTV主楼施工过程关键构件应力监测技术[J].建筑科学,2009,25(11):86-90.

[60] 陈容,强永兴,许德明,郭俊兵.静力水准仪在碧口水电站的应用[J].西北水电, 2011(O1): 17-20.

[61] 张承谱,肖聚亮,阎祥安.桥梁液压同步顶升动力监控系统[J].建筑机械,2007(19):65-68.

中图分类号:

 U445.6    

开放日期:

 2024-03-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式