论文中文题名: | 基于衍射深度神经网络的光轨道角动量解码解调研究 |
姓名: | |
学号: | 20207040014 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0810 |
学科名称: | 工学 - 信息与通信工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 光衍射计算 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-12-27 |
论文答辩日期: | 2023-12-07 |
论文外文题名: | The research based on diffractive deep neural network of optical orbital angular momentum decoding and demodulation |
论文中文关键词: | |
论文外文关键词: | Orbital angular momentum ; Diffractive deep neural network ; Demodulation ; Coherent multiplexing ; Machine learing |
论文中文摘要: |
涡旋光束携带的轨道角动量(Orbital Angular Momentum,OAM)可作为一种空间维度资源实现信息的传输,目前已在OAM通信领域被广泛研究。衍射深度神经网络(Diffractive Deep Neural Network,D2NN)各衍射层上的透过率函数可对光束的振幅和相位进行操纵,训练完成后D2NN可对涡旋光束的OAM模式进行高准确率的识别。目前研究大多是基于混合型D2NN对光轨道角动量进行研究,但是混合型D2NN模型训练过程非常复杂,也难以完成实际制备。 |
论文外文摘要: |
The orbital angular momentum (OAM) carried by the vortex beam can be used as a spatial dimension resource to realize information transmission, has been widely researched in the field of OAM communication at present. The transmittance function on each diffraction layer of the diffraction deep neural network (D2NN) can manipulate the amplitude and phase of the beam. After training, D2NN can accurately identify the OAM mode of the vortex beam. Currently, most research is based on the study of optical orbital angular momentum using hybrid D2NN. The training process of hybrid D2NN models is very complex and it is difficult to complete actual manufacturing. |
中图分类号: | TN929.1 |
开放日期: | 2023-12-27 |