- 无标题文档
查看论文信息

论文中文题名:

 基于优化 GRU-Attention 的短期负荷预测方法研究    

姓名:

 高升    

学号:

 19206204086    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电力负荷预测    

第一导师姓名:

 吴伟丽    

第一导师单位:

 西安科技大学    

第二导师姓名:

 刘勇    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Research on Short-term Load Forecasting Method Based on Optimized GRU-Attention    

论文中文关键词:

 负荷预测 ; 特征选择 ; GRU神经网络 ; 注意力机制 ; 麻雀算法    

论文外文关键词:

 Load forecasting ; Feature selection ; GRU neural network ; Attention mechanism ; Sparrow search algorithm    

论文中文摘要:

短期负荷预测是电力调度部门制定发电计划、调整运行方式的重要依据,其预测精

度标志着电网现代化程度。随着我国科技发展,电力系统日益复杂,新能源发电系统、

电动汽车和地铁等负荷在电网中所占比例不断增加,使得电力负荷的随机性和复杂性逐

渐增强,增加了短期负荷预测的难度。因此在当今大数据背景下,如何使用新方法,有

效利用数据信息提高短期负荷预测的精度,具有重要的研究意义和价值。论文以提高短

期负荷预测精度为研究目标,从数据处理、预测模型网络结构以及参数优化等多个角度

改进预测方法,建立高精度的负荷预测模型,主要研究工作如下:

首先,提出了一种基于改进快速相关性滤波的负荷影响因素相关性分析方法。对电

力负荷的基本特性以及温度、湿度和电价等影响因素进行研究。针对传统特征选择算法

计算效率低、冗余信息确定困难的问题,提出利用最大信息系数分析负荷自相关性和变

量与负荷之间互相关性的方法,筛选与负荷数据相关性强的变量,通过最大信息系数和

近似马尔科夫毯改进的快速相关性滤波算法剔除变量中的冗余无效信息,最终确定预测

模型的输入变量。

其次,建立了一种基于 Attention 机制的 GRU 短期负荷预测模型。针对 GRU 处理

较长时序负荷数据出现的信息丢失、精度低等问题,通过在 GRU 网络隐藏层与全连接

层之间构建一个 Attention 层,利用 Attention 机制来重新分配 GRU 隐藏层的输出比重,

增强 GRU 模型对负荷关键信息的敏感度,有效解决了 GRU 处理长时间序列特征遗忘的

缺陷,并使用 Adam 算法对模型进行训练。最后以澳大利亚某地区的公开数据集和中国

某地区的负荷数据作为实际算例对模型进行验证,对比其他方法的预测结果,实验结果

表明,采用 Attention 机制改进 GRU 模型的预测精度更高,证明了改进措施的有效性。

最后,提出了一种基于改进麻雀搜索算法优化 GRU-Attention 的短期负荷预测方法。

针对 GRU-Attention 神经网络参数选择困难、传统优化算法精度不高等问题,提出一种

基于改进 Sine 混沌自适应算法和 Levy 飞行的改进麻雀优化算法,并使用该算法对预测

模型参数进行寻优,将优化结果赋给 GRU-Attention 模型,提高了 GRU-Attention 模型

的预测性能。通过不同地区的负荷数据对模型进行验证,对比改进前模型的预测结果,结果表明所提方法在不同规模数据集下的预测相对误差最低,预测稳定性最好,验证了

该方法的有效性和普适性。

 

论文外文摘要:

Short-term load forecasting is the important foundation of formulating power generation

plans and adjusting operation modes for power dispatching departments, and its forecasting

accuracy marks the degree of power grid modernization. With the development of science and

technology in China, the power system is becoming more and more complex, the proportion

of new energy generation systems, electric vehicles, subways and other loads in the power

grid is gradually increasing, which makes the randomness and complexity of power load

gradually enhanced as well as increases the difficulty of short-term load forecasting.

Therefore, under the background of today's big data, how to use new methods to effectively

use data information to improve the accuracy of short-term load forecasting has important

research significance and value. Targeting improving the short-term load forecasting accuracy,

this paper improves the forecasting method from multiple perspectives of data processing,

forecasting model network structure and parameter optimization, establishing a high-precision

load forecasting model. The main research work is as follows:

First of all, a correlation analysis method of load influencing factors based on improved

fast correlation-based filter is proposed. The basic characteristics of power load and the

influencing factors such as temperature, humidity and electricity price are studied. Aiming at

the problems of low calculation efficiency and difficult determination of redundant

information in traditional feature selection algorithm, a method of analyzing load

auto-correlation and cross-correlation between variables and loads by using maximum

information coefficient is proposed, and the variables with strong correlation with load data

are screened. The redundant and invalid information in variables is eliminated by using

maximum information coefficient and fast correlation-based filter algorithm improved by

approximate Markov blanket, and finally the input variables of prediction model are determined.

Secondly, a GRU short-term load forecasting model based on Attention mechanism is

established. In order to solve the problems of information loss and low accuracy during GRU

processes long time series load data, an Attention layer is constructed between GRU network

hidden layer and fully connected layer, and thus the output proportion of GRU hidden layer is

redistributed by Attention mechanism, which enhances the sensitivity of GRU model to load

key information, effectively solves the forgetting defects when processing long time series

characteristics, and uses Adam algorithm to train the model. Finally, the open data set of an

Australian area and the load data of a China area are taken as practical examples to verify the

model. Compared with the prediction results of other methods, the experimental results show

that the prediction accuracy of GRU model improved by Attention mechanism is higher,

which proves the effectiveness of the improvement measures.

Finally, a short-term load forecasting method based on improved sparrow search

algorithm to optimize GRU-Attention is proposed. In view of the difficulties in selecting

parameters of GRU-Attention neural network and the low accuracy of the traditional

optimization algorithm, an improved sparrow optimization algorithm based on improved Sine

chaotic adaptive algorithm and Levy flight is proposed, and the parameters of the prediction

model are optimized by this algorithm, and the optimization results are assigned to

GRU-Attention model, which improves the prediction performance of GRU-Attention model.

The model is verified by the load data of different regions and compared with the prediction

results of the model before improvement. The results show that under different scale data sets

the proposed method has the lowest relative error and the best prediction stability, which

verifies the effectiveness and universality of the method.

参考文献:

[1] 张明辉, 周亚同, 孔晓然. 基于深度混合储备池计算模型的短期电力负荷预测[J].

电网技术, 2022, 46(12): 4751-4762.

[2] 李俊良, 焦润海, 王双坤, 等. 一种基于误差在线更新的集成负荷预测模型[J]. 中

国电机工程学报, 2023, 43(4): 1402-1413.

[3] Ma Z, Zhao Z, Liu C, et al. The Impacts and Adaptation of Climate Extremes on the

Power System: Insights from the Texas Power Outage Caused by Extreme Cold Wave[J].

Chinese Journal of Urban and Environmental Studies, 2022, 10(1): 2250004.

[4] 王伟胜, 林伟芳, 何国庆, 等. 美国得州 2021 年大停电事故对我国新能源发展的启

示[J].中国电机工程学报, 2021, 41(12): 4033-4043.

[5] 王凇瑶, 张智晟. 基于量子加权多层级 GRU 神经网络的综合能源系统多元负荷短

期预测[J]. 电力系统保护与控制, 2022, 50(23): 85-93.

[6] Görtz J, Jürgensen J, Stolz D, et al. Energy load prediction on structures and

buildings-Effect of numerical model complexity on simulation of heat fluxes across the

structure/environment interface[J]. Applied Energy, 2022, 326: 119981.

[7] Hafeez G, Alimgeer K S, Khan I. Electric load forecasting based on deep learning and

optimized by heuristic algorithm in smart grid[J]. Applied Energy, 2020, 269: 114915.

[8] Madhukumar M, Sebastian A, Liang X, et al. Regression model-based short-term load

forecasting for university campus load[J]. IEEE Access, 2022, 10: 8891-8905.

[9] Razavi S E, Arefi A, Ledwich G, et al. From load to net energy forecasting: Short-term

residential forecasting for the blend of load and PV behind the meter[J]. IEEE Access,

2020, 8: 224343-224353.

[10] Wang Y, Chen Q, Zhang N, et al. Conditional residual modeling for probabilistic load

forecasting[J]. IEEE Transactions on Power Systems, 2018, 33(6): 7327-7330.

[11] Kong W, Dong Z Y, Hill D J, et al. Short-term residential load forecasting based on

resident behaviour learning[J]. IEEE Transactions on Power Systems, 2017, 33(1):

1087-1088.

[12] Son J, Cha J, Kim H, et al. Day-Ahead Short-Term Load Forecasting for Holidays Based on Modification of Similar Days’ Load Profiles[J]. IEEE Access, 2022, 10:

17864-17880.

[13] López J C, Rider M J, Wu Q. Parsimonious short-term load forecasting for optimal operation planning of electrical distribution systems[J]. IEEE transactions on power systems, 2018, 34(2): 1427-1437.

[14] Bo H, Nie Y, Wang J. Electric load forecasting use a novelty hybrid model on the basic

of data preprocessing technique and multi-objective optimization algorithm[J]. IEEE

Access, 2020, 8: 13858-13874.

[15] 赵洋, 王瀚墨, 康丽, 等. 基于时间卷积网络的短期电力负荷预测[J]. 电工技术学

报, 2022, 37(5): 1242-1251.

[16] Ma S. A hybrid deep meta-ensemble networks with application in electric utility industry

load forecasting[J]. Information Sciences, 2021, 544: 183-196.

[17] Yan L C, Yoshua B, Geoffrey H. Deep learning[J]. nature, 2015, 521(7553): 436-444.

[18] Chang J, Meng G, Wang L, et al. Deep self-evolution clustering[J]. IEEE transactions on

pattern analysis and machine intelligence, 2018, 42(4): 809-823.

[19] Zhu K, Zhang T. Deep reinforcement learning based mobile robot navigation: A

review[J]. Tsinghua Science and Technology, 2021, 26(5): 674-691.

[20] Xuan Y, Si W, Zhu J, et al. Multi-model fusion short-term load forecasting based on

random forest feature selection and hybrid neural network[J]. Ieee Access, 2021, 9:

69002-69009.

[21] Høverstad B A, Tidemann A, Langseth H, et al. Short-term load forecasting with

seasonal decomposition using evolution for parameter tuning[J]. IEEE Transactions on

Smart Grid, 2015, 6(4): 1904-1913.

[22] Hamilton J D. Time series analysis[M]. Princeton university press, 2020.

[23] Wulff S S. Time series analysis: Forecasting and control[J]. Journal of Quality

Technology, 2017, 49(4): 418.

[24] 陈冬沣, 郑舟, 吴永峰. 基于时间序列的电力系统短期负荷预测问题分析[J]. 自动

化应用, 2017(11): 99-101.

[25] Boroojeni K G, Amini M H, Bahrami S, et al. A novel multi-time-scale modeling for

electric power demand forecasting: From short-term to medium-term horizon[J]. Electric

Power Systems Research, 2017, 142: 58-73.

[26] 唐俊杰, 牛焕娜, 杨明皓. 基于线性相关分析的周期自回归短期负荷预测[J]. 电力

系统保护与控制, 2010, 38(14): 128-133.

[27] Dhaval B, Deshpande A. Short-term load forecasting with using multiple linear

regression[J]. International Journal of Electrical and Computer Engineering, 2020, 10(4):

3911-3917.

[28] 陈培垠, 方彦军. 基于卡尔曼滤波预测节假日逐点增长率的电力系统短期负荷预测[J]. 武汉大学学报(工学版), 2020, 53(2): 139-144.

[29] 罗权. 基于自适应卡尔曼滤波在气象影响下负荷预测[J]. 计算机测量与控制, 2020,

28(1): 156-159+165.

[30] 陈娟, 吉培荣, 卢丰. 指数平滑法及其在负荷预测中的应用[J]. 三峡大学学报(自然

科学版), 2010, 32(3): 37-41.

[31] 谭风雷, 张兆军, 朱超, 等. 一种改进的指数平滑负荷预测方法研究[J]. 电力需求

侧管理, 2016, 18(6): 22-26.

[32] Dai X, Sheng K, Shu F. Ship power load forecasting based on PSO-SVM[J]. Math.

Biosci. Eng, 2022, 19: 4547-4567.

[33] Ge Q, Guo C, Jiang H, et al. Industrial power load forecasting method based on

reinforcement learning and PSO-LSSVM[J]. IEEE transactions on cybernetics, 2020,

52(2): 1112-1124.

[34] 希宁,牛成林, 李建强. 基于决策树和专家系统的短期电力负荷预测系统[J]. 华北电

力大学学报, 2005(5): 59-63.

[35] Ghanbari A, Ghaderi S F, Azadeh M A. A clustering based genetic fuzzy expert system

for electrical energy demand prediction[C]//2010 The 2nd International Conference on

Computer and Automation Engineering (ICCAE). IEEE, 2010, 5: 407-411.

[36] Amjady N, Keynia F. A new neural network approach to short term load forecasting of

electrical power systems[J]. Energies, 2011, 4(3): 488-503.

[37] Yu F, Xu X. A short-term load forecasting model of natural gas based on optimized

genetic algorithm and improved BP neural network[J]. Applied Energy, 2014, 134:

102-113.

[38] Xie K, Yi H, Hu G, et al. Short-term power load forecasting based on Elman neural

network with particle swarm optimization[J]. Neurocomputing, 2020, 416: 136-142.

[39] 王剑锋, 郑剑, 王旭东, 等. 基于改进深度信念网络的短期电力负荷预测方法[J].

电力系统及其自动化学报, 2021, 33(10): 125-130.

[40] Lai C S, Mo Z, Wang T, et al. Load forecasting based on deep neural network and

historical data augmentation[J]. IET Generation, Transmission & Distribution, 2020,

14(24): 5927-5934.

[41] Rafi S H, Deeba S R, Hossain E. A short-term load forecasting method using integrated

CNN and LSTM network[J]. IEEE Access, 2021, 9: 32436-32448.

[42] 刘亚珲, 赵倩. 基于聚类经验模态分解的 CNN-LSTM 超短期电力负荷预测[J]. 电网

技术, 2021, 45(11): 4444-4451.

[43] Fekri M N, Patel H, Grolinger K, et al. Deep learning for load forecasting with smart

meter data: Online Adaptive Recurrent Neural Network[J]. Applied Energy, 2021, 282:116177.

[44] Kwon B S, Park R J, Song K B. Short-Term Load Forecasting Based on Deep Neural

Networks Using LSTM Layer[J]. Journal of Electrical Engineering & Technology, 2020,

15(4): 1501-1509.

[45] 姜建国, 万成德, 陈鹏, 等. 基于 1DCNN-LSTM 和迁移学习的短期电力负荷预测[J].

吉林大学学报(信息科学版), 2023, 41(1): 124-130.

[46] Cui Y, Yin B, Li R, et al. Short-time Series Load Forecasting By Seq2seq-LSTM

Model[C]//2020 IEEE 9th Joint International Information Technology and Artificial

Intelligence Conference (ITAIC). IEEE, 2020, 9: 517-521.

[47] Ke K, Hongbin S, Chengkang Z, et al. Short-term electrical load forecasting method

based on stacked auto-encoding and GRU neural network[J]. Evolutionary Intelligence,

2019, 12: 385-394.

[48] 高翱, 王帅, 韩兴臣, 等. 基于 GRU 神经网络的 WGAN 短期负荷预测模型[J]. 电气

工程学报, 2022, 17(2): 168-175.

[49] Ming L, Shang S. Short-Term Load Forecasting Model of the Power System Based on

ICSO_RF_GRU Networks[C]//2021 2nd International Conference on Artificial

Intelligence and Education (ICAIE). IEEE, 2021: 692-699.

[50] 王凇瑶, 张智晟. 基于量子加权 GRU 神经网络的电力系统短期负荷预测[J]. 电力系

统及其自动化学报, 2022, 34(1): 1-7.

[51] Haben S, Arora S, Giasemidis G, et al. Review of low voltage load forecasting: Methods,

applications, and recommendations[J]. Applied Energy, 2021, 304: 117798.

[52] Dou Y, Zhang H, Zhang A. Short-term Load Forecasting Method Based on Improved

Neural Network For Power Characteristic Enterprises[C]//2018 Chinese Automation

Congress (CAC). IEEE, 2018: 3452-3456.

[53] 邹智, 吴铁洲, 张晓星, 等. 基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷

预测[J]. 高电压技术, 2022, 48(10): 3935-3945.

[54] Shen Y, Ma Y, Deng S, et al. An ensemble model based on deep learning and data

preprocessing for short-term electrical load forecasting[J]. Sustainability, 2021, 13(4):

1694.

[55] 王兆辉, 康之增, 陈曦, 等. 基于改进长短期记忆网络的电力负荷预测研究[J]. 电

气自动化, 2023, 45(1): 14-17.

[56] 姚国风, 李天杰, 刘兰芳, 等. 基于 DAE 和 LSTM 的居民用电负荷预测方法[J]. 控

制工程, 2022, 29(11): 2048-2053.

[57] Kong Z, Zhang C, Lv H, et al. Multimodal feature extraction and fusion deep neural networks for short-term load forecasting[J]. IEEE Access, 2020, 8: 185373-185383.

[58] 胡威, 张新燕, 李振恩, 等. 基于优化的 VMD-mRMR-LSTM 模型的短期负荷预测

[J]. 电力系统保护与控制, 2022, 50(1): 88-97.

[59] Zhang W, Chen Q, Yan J, et al. A novel asynchronous deep reinforcement learning model

with adaptive early forecasting method and reward incentive mechanism for short-term

load forecasting[J]. Energy, 2021, 236: 121492.

[60] Wu D, Liu Z, Li D, et al. Study on the stress intensity factor of a compact specimen

under the pre-compressed load condition[J]. Journal of Theoretical and Applied

Mechanics, 2023: 37-47.

[61] Wysokowski A. Impact of Traffic Load Randomness on Fatigue of Steel Bridges[J]. The

Baltic Journal of Road and Bridge Engineering, 2020, 15(5): 21-44.

[62] 李卫国, 陈立铭, 张师, 等. 分时电价下考虑储能调度因素的短期负荷预测模型[J].

电力系统保护与控制, 2020, 48(7): 133-140.

[63] Wu X, Dou C, Yue D. Electricity load forecast considering search engine indices[J].

Electric Power Systems Research, 2021, 199: 107398.

[64] Veeramsetty V, Chandra D R, Grimaccia F, et al. Short term electric power load

forecasting using principal component analysis and recurrent neural networks[J].

Forecasting, 2022, 4(1): 149-164.

[65] Pei S, Qin H, Yao L, et al. Multi-step ahead short-term load forecasting using hybrid

feature selection and improved long short-term memory network[J]. Energies, 2020,

13(16): 4121.

[66] Zheng K, Wang X, Wu B, et al. Feature subset selection combining maximal information

entropy and maximal information coefficient[J]. Applied Intelligence, 2020, 50: 487-501.

[67] Shao F, Yang S, Sun B, et al. The big data analysis of rail equipment accidents based on

the maximal information coefficient[J]. Journal of Transportation Safety & Security,

2020, 12(7): 959-976.

[68] Subbiah S S, Chinnappan J. An improved short term load forecasting with ranker based

feature selection technique[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(5):

6783-6800.

[69] Chen Y, Xu P, Chu Y, et al. Short-term electrical load forecasting using the Support

Vector Regression (SVR) model to calculate the demand response baseline for office

buildings[J]. Applied Energy, 2017, 195: 659-670.

[70] Aly H H H. A proposed intelligent short-term load forecasting hybrid models of ANN,

WNN and KF based on clustering techniques for smart grid[J]. Electric Power Systems Research, 2020, 182: 106191.

[71] Aurangzeb K, Alhussein M, Javaid K, et al. A pyramid-CNN based deep learning model

for power load forecasting of similar-profile energy customers based on clustering[J].

IEEE Access, 2021, 9: 14992-15003.

[72] Zhang B, Wu J L, Chang P C. A multiple time series-based recurrent neural network for

short-term load forecasting[J]. Soft Computing, 2018, 22: 4099-4112.

[73] Zang H, Xu R, Cheng L, et al. Residential load forecasting based on LSTM fusing

self-attention mechanism with pooling[J]. Energy, 2021, 229: 120682.

[74] Tang X, Chen H, Xiang W, et al. Short-term load forecasting using channel and temporal

attention based temporal convolutional network[J]. Electric Power Systems Research,

2022, 205: 107761.

[75] Song L, Gao W, Yang Y, et al. Terminal Cooling Load Forecasting Model Based on

Particle Swarm Optimization[J]. Sustainability, 2022, 14(19): 11924.

[76] Chen Z, Jin T, Zheng X, et al. An innovative method-based CEEMDAN-IGWO-GRU hybrid algorithm for short-term load forecasting[J]. Electrical Engineering, 2022, 104(5): 3137-3156.

[77] Gharehchopogh F S, Namazi M, Ebrahimi L, et al. Advances in sparrow search algorithm: a comprehensive survey[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 427-455.

[78] Li J, An Q, Lei H, et al. Survey of lévy flight-based metaheuristics for optimization[J]. Mathematics, 2022, 10(15): 2785.

中图分类号:

 TM714    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式