论文中文题名: | 超轻镁锂合金表面LDH/SC复合膜层的生长行为及性能研究 |
姓名: | |
学号: | 21211225036 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 材料表面防护 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-06-07 |
论文外文题名: | Study on the growth behavior and properties of LDH / SC composite coating on the surface of ultra-light Mg-Li alloy |
论文中文关键词: | LA103Z镁锂合金 ; 蒸汽处理 ; 层状双金属氢氧化物 ; 膜层形貌 ; 耐蚀性能 |
论文外文关键词: | LA103Z Mg-Li alloy ; Steam treatment ; Layered double hydroxide ; Coating morphology ; Corrosion resistance |
论文中文摘要: |
镁锂合金作为目前世界上最轻的合金结构材料,能够帮助减少材料使用与能源消耗,同时又具有极高的比刚度、比强度和优良的抗震性能以及电磁屏蔽性。但镁具有较高的化学活性,自然条件下发生氧化所形成的氧化膜稳定性差且疏松多孔,不能对基体起到有效的保护作用。为提高镁锂合金的长期耐蚀性,本实验以高锂含量LA103Z镁锂合金作为实验材料,通过“蒸汽预处理+原位水热处理”两步法在其表面先后制备SC薄膜和LDH/SC复合膜层(Layered double hydroxide/Steam coating)。使用扫描电镜(SEM)、X射线衍射仪(XRD)和红外光谱仪(FI-IR)检测了各膜层的微观形貌组织和物相成分,并通过电化学测试、析氢实验和浸泡测试对不同参数制备的SC薄膜以及LDH/SC复合膜层的耐蚀性能进行表征。此外,对镁锂合金表面SC及LDH/SC复合膜层的生长机理及耐蚀机理展开论述。 结果显示,通过蒸汽处理在镁合金表面成功制备了以Mg(OH)2、MgO两相为主相的SC薄膜,该膜层在一定程度上提高了基体的耐腐蚀性。在蒸汽处理过程中,适当地升高温度和延长时间都有利于优化膜层的厚度和结构。当蒸汽处理温度为110 ℃、时间为6 h时,在基体表面获得了结构致密的SC薄膜,膜层厚度约为2.647 μm;析氢实验表明110 ℃-6 h时制备的SC薄膜试样的单位面积析氢量最小,约为8.71 ml/cm2,而LA103Z基体的单位面积析氢量高达37.74 ml/cm2。110 ℃-6 h时制备的SC薄膜试样在3.5 wt.% NaCl 溶液中浸泡八天后,腐蚀区域面积最小且腐蚀程度最轻。 实验通过制备Mg-Al LDH/SC二元复合膜层和Mg-Al-Zn LDH/SC三元复合膜层研究不同水热溶液及其浓度对LA103Z镁锂合金表面复合膜层组织和性能的影响。结果显示,Mg-Al LDH/SC复合膜层主要由Mg(OH)2和LDH这两相组成,Mg-Al-Zn LDH/SC复合膜层主要由Mg(OH)2和Mg-Al-Zn LDH两相组成,复合膜层的制备进一步提升了SC薄膜的耐蚀性。随着水热溶液浓度的升高,膜层的耐蚀性出现先升高后降低的趋势。其中,当Al(NO3)3浓度为0.09 M时,获得的二元复合膜层结构致密且厚度适宜(7.253 μm),该膜层的阻抗模值相比基体提升了2个数量级,析氢实验结果表明各膜层试样的析氢量从小到大排列为:V0.09M < V0.07M < V0.05M < V0.11M < VLA103Z,且0.09M LDH/SC膜层的单位面积浸泡失重量最小(1.00 mg/cm2),浸泡后其表面受腐蚀程度最小,即当Al(NO3)3浓度为0.09 M时所制备的膜层对基体的保护作用更显著。在制备三元复合膜层时,当Zn(NO3)2溶液浓度为0.07 M时制备的复合膜层性能最佳(厚度约为7.226 μm),该膜层的阻抗模值相比基体提升了2个数量级,且该膜层具有较高于基体的腐蚀电位(Ecorr = -1.267 V),析氢实验结果表明各膜层试样单位面积析氢量从小到大排列为:V0.07M < V0.05M < V0.09M < V0.03M < VLA103Z,且0.07 M 三元 LDH/SC复合膜层浸泡八天后单位面积失重量最小,约为1.51 mg/cm2,远小于基体(3.43 mg/cm2),即水热溶液浓度为0.07 M时,所制备的三元LDH/SC膜层具有最佳的长期耐腐蚀性能。 LDH/SC复合膜层形成机理及耐蚀机理:在密闭的反应釜中,处于高温高压环境下的镁合金基体部分发生溶解,释放出Mg2+和Al3+,与蒸汽发生反应生成Mg(OH)2、Al(OH)4-、MgO等物质,初步形成SC薄膜。在水热处理过程中,SC薄膜和基体部分溶解,再次生成Mg2+、Al3+进入溶液。碱性环境下Mg2+与OH-进一步结合形成Mg(OH)2,并缓慢沉积到SC薄膜表面,溶液中的Al3+将以Al(OH)4-的形式存在,并与Mg(OH)2发生反应生成LDH,形成LDH/SC复合膜层。膜层的耐蚀机理主要归结于膜层的物理阻隔、离子交换能力以及自修复作用。 |
论文外文摘要: |
As the lightest alloy material in the world, Mg-Li alloy can help reduce the use of materials and energy consumption. At the same time, it has extremely high specific stiffness, specific strength, excellent seismic performance and electromagnetic shielding. However, magnesium has high chemical activity. The oxide film formed by oxidation under natural conditions has poor stability and is loose and porous, which can not effectively protect the matrix. In order to improve the long-term corrosion resistance of Mg-Li alloy, SC and LDH / SC composite coating (Layered double hydroxide / Steam coating) were prepared on the surface of LA103Z Mg-Li alloy by two-step method of 'steam pretreatment and in-situ hydrothermal treatment'. The microstructure and phase composition of coatings were detected by scanning electron microscope (SEM), X-ray diffractometer (XRD) and fourier transform infrared spectrometer (FI-IR). The corrosion resistance of SC and LDH / SC composite coatings prepared by different parameters were characterized by electrochemical test, hydrogen evolution test and immersion test. In addition, the growth mechanism and corrosion resistance mechanism of SC and LDH / SC composite coatings on the surface of Mg-Li alloy were discussed. The results show that the SC with Mg (OH)2 and MgO as the main phases was successfully prepared on the surface of magnesium alloy by steam treatment, which improved the corrosion resistance of the matrix to a certain extent. In the steam treatment process, appropriately increasing the temperature and prolonging the time are beneficial to optimize the thickness and structure of the coating. When the steam treatment temperature is 110 °C and the time is 6 h, a dense SC with a thickness of about 2.647μm was obtained on the surface of the substrate. The hydrogen evolution experiment shows that the hydrogen evolution per unit area of the SC sample prepared at 110 °C - 6h is the smallest, about 8.71 ml/cm2, while the hydrogen evolution per unit area of the LA103Z substrate is as high as 37.74ml/cm2. The corrosion area of the SC sample prepared at 110 °C - 6h is the smallest and the corrosion degree is the lightest after soaking in 3.5 wt.% NaCl solution for eight days. The effects of different hydrothermal solutions and their concentrations on the microstructure and properties of the composite coating on the surface of LA103Z Mg-Li alloy were studied by preparing Mg-Al LDH / SC binary composite coating and Mg-Al-Zn LDH / SC ternary composite coating. The results show that the Mg-Al LDH / SC composite coating is mainly composed of Mg(OH)2 and Mg-Al LDH, and the Mg-Al-Zn LDH / SC composite coating is mainly composed of Mg(OH)2 and Mg-Al-Zn LDH. The preparation of the composite coating further improves the corrosion resistance of the SC. With the increase of hydrothermal solution concentration, the corrosion resistance of the coating increased first and then decreased. Among them, when the concentration of Al(NO3)3 is 0.09 M, the obtained binary composite coating has dense structure and suitable thickness (7.253 μm). The impedance modulus of the coating is two orders of magnitude higher than that of the substrate. The hydrogen evolution experiment results show that the hydrogen evolution amount of each coating pattern is arranged from small to large: V0.09M < V0.07M < V0.05M < V0.11M < VLA103Z. At the same time, the weight loss per unit area of 0.09 M LDH / SC coating has the smallest (1.00 mg / cm2), and the corrosion degree of the surface is the smallest after immersion. That is, when the concentration of Al(NO3)3 was 0.09 M, the protective effect of the coating on the matrix was more significant. In the preparation of ternary composite coating, when the concentration of Zn(NO3)2 solution is 0.07 M, the performance of the composite coating is the best (the thickness is about 7.226 μm). The impedance modulus of the coating is two orders of magnitude higher than that of the substrate, and the coating has a higher corrosion potential than the substrate (Ecorr = -1.267 V). The hydrogen evolution experiment results show that the hydrogen evolution amount per unit area of each coating pattern is arranged from small to large: V0.07M < V0.05M < V0.09M < V0.03M < VLA103Z. The weight loss per unit area of the 0.07 M ternary LDH / SC composite coating is the smallest after soaking for eight days, about 1.51 mg/cm2, which is much smaller than that of the substrate (3.43 mg/cm2), that is, when the hydrothermal solution concentration is 0.07 M, the prepared ternary LDH / SC coating has the best long-term corrosion resistance. The formation mechanism and corrosion resistance mechanism of LDH / SC composite coating: In a closed reactor, the magnesium alloy matrix in the high temperature and high pressure environment is partially dissolved, releasing Mg2+ and Al3+, reacting with steam to form Mg(OH)2, Al(OH)4-, MgO and other substances. With the continuous heating of the reactor, Mg(OH)2 reacts with Al(OH)4- to form LDH structure with CO32- as interlayer anion. During the hydrothermal treatment process, the SC and the substrate are partially dissolved, generating Mg2+ and Al3+ into the solution. In alkaline environment, Mg2+ and OH- further combined to form Mg(OH)2, which was slowly deposited on the surface of SC, Al3+ in the solution will exist in the form of Al(OH)4- and react with Mg(OH)2 to form LDH, forming LDH / SC composite coating. The corrosion resistance mechanism of the coating is mainly attributed to the physical barrier, ion exchange capacity and self-healing effect of the LDH. |
参考文献: |
[1] 赖心翘, 刘宁华, 易爱华等. 镁合金高耐蚀表面处理技术的研究进展[J]. 电镀与涂饰, 2024, 43(1): 87-97. [3] 王保杰, 姜春龙, 李传强等. 镁锂合金腐蚀行为研究进展[J]. 航空材料学报, 2019, 39(1): 1-8. [5] 刘小嫚. 镁锂合金表面微弧氧化自修复及有机膦酸修饰复合涂层的耐蚀性研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. [6] 郑欣然. 镁锂合金表面改性MCM-41分子筛环氧树脂涂层耐腐蚀性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. [8] 张玲, 李英龙. 镁合金晶粒细化方法研究进展[J]. 铸造, 2019, 68(11): 1195-1203. [10] 高晓辉, 李玉峰, 祝晶晶等. 镁锂合金的腐蚀机理及表面防护方法研究进展[J]. 化工进展, 2017, 36(09): 3373-3379. [14] 彭翔, 刘文才, 吴国华. 镁锂合金的合金化及其应用[J]. 中国有色金属学报, 2021, 31(11): 3024-3043. [15] 宿辉, 张春波, 王作凯等. 镁合金表面化学镀镍前处理工艺的研究进展[J]. 表面技术, 2017, 46(09): 87-94. [16] 魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J]. 金属学报, 2016, 52(02): 184-190. [17] 白志玲, 秦丙克. 镁合金腐蚀性能研究进展[J]. 科技广场, 2017(03): 168-170. [19] 强明闪, 江静华, 宋丹等. 镁合金应力腐蚀开裂研究进展[J]. 腐蚀与防护, 2015, 36(07): 677-683. [21] 宋雨来, 付洪德, 王震等. 镁合金的应力腐蚀开裂: 机理、影响因素、防护技术[J]. 材料导报, 2019, 33(05): 834-840. [22] 朱祖芳. 有色金属腐蚀性及其应用[M]. 北京: 化学工业出版社, 1995. [27] 张新, 张奎. 镁合金腐蚀行为及机理研究进展[J]. 腐蚀科学与防护技术, 2015, 27(01): 78-84. [28] 谢沛桐. 镁合金腐蚀机理方面的研究进展[J]. 冶金与材料, 2022, 42(04): 7-9. [29] 沈朝, 王志鹏, 胡波等. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(03): 371-386. [30] 张书弟, 许宇恒, 何欢欢等. 耐高温防腐涂料及其在镁合金上应用的研究进展[J]. 材料保护, 2023, 56(02): 100-110. [31] F. Czerwinski. Oxidation characteristics of magnesium alloys[J]. JOM, 2012, 64: 1477-1483. [34] 范影强, 张锋刚. 镁合金表面阳极氧化技术的研究进展[J]. 腐蚀与防护, 2020, 41(05): 30-33. [36] 伏田田, 全旭能, 熊中平等. 腺嘌呤增强镁合金阳极氧化膜耐腐蚀性研究[J]. 四川轻化工大学学报(自然科学版), 2022, 35(01): 16-23. [38] 张菊梅, 王凯, 段鑫等. LA103Z镁锂合金微弧氧化膜层微观组织及腐蚀行为[J]. 特种铸造及有色合金, 2020, 40(5): 474-480. [39] 曹雅心, 王梦杰, 周凡等. KOH浓度对LA103Z镁锂合金微弧氧化成膜过程及膜层耐蚀性的影响[J]. 表面技术, 2021, 50(3): 348-355. [40] 范烨力. 镁合金抗腐蚀涂层研究[D]. 上海: 上海工程技术大学, 2021. [41] 邓迎诚, 秦卫华, 王飞等. 镁合金在大气环境中腐蚀行为及表面处理技术的研究进展[J]. 机械工程材料, 2023, 47(03): 1-6+54. [42] 付海峰, 吕东显, 谭化超等. 镁合金表面改性技术的研究现状及趋势[J]. 热处理, 2015, 30(03): 1-5. [43] 霍宏伟, 李瑛, 王福会. AZ91D镁合金化学镀镍[J]. 中国腐蚀与防护学报, 2002, 01: 15-18. [44] 董金新. 化学镀锌工艺对镁合金表面电镀Al-Zn复合镀层的影响[J]. 腐蚀与防护, 2021, 42(10): 38-42+48. [45] 张小欢, 冯拉俊, 卢曼. 镁合金表面化学镀镍磷工艺优化与镀层性能研究[J]. 材料保护, 2022, 55(06): 86-91. [50] 赵飞, 黄文森. Al-Mg系合金中合金化元素作用及其对力学性能的影响[J].贵州师范大学学报(自然科学版), 2024, 42(01): 1-11+18+134. [51] 孙红梅, 刘翠玲, 陈健等. 微合金化元素Zr对5083铝合金组织和性能的影响[J]. 金属热处理, 2023, 48(03): 263-268. [52] 刘玉项. 合金化对镁电化学腐蚀速率影响的研究进展[J]. 稀有金属材料与工程, 2021, 50(1): 361-372. [66] 吴佳朋, 景航昆, 蒋榕培. 层状双金属氢氧化物的研究进展[J]. 化工设计通讯, 2021, 47(8): 117-118. [73] 许恒旭. 化学组成和反应条件对镁合金表面LDH膜层结构和性能的影响[D]. 太原: 太原理工大学, 2020. [80] 张菊梅, 李嘉诚, 侯安荣等. LA103Z镁锂合金表面Mg-Al-Co LDH/MAO复合膜层的组织及性能[J]. 材料热处理学报, 2022, 43(2): 135-142. [81] 钱毓芳, 王琮涵. 《人民日报》对“碳达峰碳中和”的话语建构—基于语料库的话语研究[J]. 中国石油大学学报(社会科学版), 2023, 39(04): 69-77. [82] 吕耀辉, 刘玉欣, 何东昱等. EIS技术在金属腐蚀及涂层防护中的研究进展[J]. 电镀与精饰, 2018, 40(6): 22-28. [83] 徐安桃, 李锡栋, 周慧. EIS评价有机涂层防腐性能的应用研究进展[J]. 装备环境工程, 2018, 15(6): 48-52. [84] 王芸, 汤滢, 谢长生等. EIS在材料研究中的应用[J]. 材料导报, 2011, 25(13): 5-9. [85] 张玉玺. EIS法评价有机涂层耐蚀性能的应用研究进展[J]. 当代化工, 2007(5): 516-518+534. [86] 潘巍, 李瑜, 孙昭宜等. 电化学阻抗谱技术在腐蚀防护中的应用现状[J]. 化工新型材料, 2021, 49(10): 257-260+265. [91] 王维青, 潘复生, 左汝林. 镁合金腐蚀及防护研究新进展[J]. 兵器材料科学与工程, 2006, 29(02): 73-77. |
中图分类号: | TG174.4 |
开放日期: | 2024-06-17 |