论文中文题名: |
核电安全端焊接接头材料不均匀性对裂尖力学状态影响研究
|
姓名: |
王帅
|
学号: |
17101016005
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
0802
|
学科名称: |
工学 - 机械工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
机械工程学院
|
专业: |
机械工程
|
研究方向: |
机械结构安全性评价
|
第一导师姓名: |
薛河
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-03-29
|
论文答辩日期: |
2021-12-01
|
论文外文题名: |
Study on the Effect of Material Inhomogeneity on Mechanical State at Crack Tip of the Safety End Welded Joint in Nuclear Power Plant
|
论文中文关键词: |
异种金属焊接接头 ; 力学性能不均匀性 ; 裂尖力学状态 ; 压入试验 ; 环境致裂 ; 弹塑性有限元分析
|
论文外文关键词: |
Dissimilar metal welded joint ; Mechanical property heterogeneity ; Mechanical state at crack tip ; Indentation test ; Environmentally assisted cracking ; Elastoplastic finite element analysis
|
论文中文摘要: |
︿
核电压水堆一回路安全端焊接接头是一种采用异种金属焊接而成,用于连接反应堆压力容器和主管道的特殊结构,服役于高温高压的严苛水环境中。由于异种金属材料的差异性和焊接工艺的影响,安全端异种金属焊接接头不仅具有组织结构和力学性能的不均匀性,同时还可能存在各种裂纹类缺陷,使其成为核电结构服役过程中极易发生失效或断裂的薄弱区域。因此,需要对严酷服役环境下焊接结构中含裂纹区域的力学状态进行研究。本文以典型压水堆一回路安全端异种金属SA508-52M-316L焊接接头为例,采用理论分析、力学试验和弹塑性有限元模拟相结合的方法,分析了异种金属焊接接头力学性能分布情况,研究了复杂外载荷和不均匀力学性能场交互作用下焊接接头环境致裂(EAC)裂尖区域力学状态的变化情况。完成的主要研究工作和成果如下:
(1) 在传统压入试验理论的基础上,设计并搭建了一种用于获取异种金属焊接接头局部区域力学性能参数的压入试验平台。同时,建立了用于描述压入试验过程的有限元模型,通过将压入试验曲线、残余压痕尺寸和有限元模拟结果进行对比分析,验证了自主搭建压入试验平台的测量准确性。
(2) 采用压入试验结合有限元反演方法,分析了三种核电结构材料压入响应与材料力学性能参数之间的关系,建立了一种通过压入参数反推材料力学性能参数的方法,通过有限元模拟验证了上述方法的可靠性。采用压入试验的方法,通过压入参数反推得到了典型核电一回路安全端异种金属焊接接头在焊缝附近局部区域力学性能参数的分布规律。
(3) 根据异种金属焊接接头实际的力学性能参数分布情况,借助预定义温度场法将连续过渡的材料力学性能参数与焊接接头的几何结构进行关联,建立了材料力学性能连续过渡的异种金属焊接接头模型,并且通过数值模拟方法对比分析了使用连续过渡模型与直接划分结构区域后赋予不同材料属性的“三明治”模型表征焊接接头应力应变分布方面的差异。
(4) 借助金相显微镜、扫描电子显微镜、能谱仪、电子背散射衍射和维氏硬度分析,对典型核电一回路安全端异种金属焊接接头的微观组织结构进行了分析,研究微观组织结构和元素分布变化对焊接接头力学性能的影响,分析了焊接接头不同区域发生应力腐蚀开裂(SCC)的潜在原因,确定了异种金属焊接接头中相对薄弱的位置。
(5) 结合微观组织结构分析的结果,分别在具有连续过渡材料力学性能的异种金属焊接接头模型和传统的“三明治”模型中引入界面裂纹和亚界面裂纹,分析在内压和外加载荷耦合作用下,连续过渡模型和“三明治”模型计算焊接接头中应力腐蚀开裂裂纹裂尖力学状态的区别,得到了不同位置和长度裂纹裂尖应力和应变的变化规律。
(6) 在充分考虑核电服役环境复杂外载荷和不均匀力学性能分布的条件下,建立了含轴向内表面裂纹的核电一回路安全端异种金属焊接接头全尺寸三维模型。研究了内表面裂纹前缘应力、塑性应变和局部应力三轴度随裂纹位置和裂纹形状的变化情况,分析了裂纹前缘力学状态变化对裂纹扩展趋势的影响。
﹀
|
论文外文摘要: |
︿
The safety end dissimilar metal weld joint (DMWJ) in the primary circuit of the pressurized water reactor (PWR) nuclear power plants is a special structure used to connect the reactor pressure vessel and the primary circuit pipeline, which is usually employed in the demanding environment with high temperature and high pressure water. Because of the difference in the properties of the dissimilar metal and the influence of the welding process on structures, the safety end DMWJ not only exhibit a heterogeneity microstructure and mechanical properties, but also may have various crack defects, making it a weak area that is prone to failure or fracture in service. Therefore, it is significant to study the mechanical state of the defect-containing welded structures in demanding environments. Using a combination of theoretical analysis, mechanical test, and elastic-plastic finite element method, a typical example SA508-52M-316L DMWJ was taken as the research object. The distribution of mechanical properties of SA508-52M-316L DMWJ was analyzed, and the changes in the stress state of the environmental assisted cracking (EAC) crack tip area under the interaction of complex external loads and inhomogeneous mechanical properties were investigated in this dissertation. The main research content and conclusions acquired are presented as follows:
(1) Based on the traditional indentation test theory, an indentation test platform was designed and built to obtain the mechanical properties of the local region of the DMWJ. At the same, the finite element model for describing the indentation test process was established. The measurement accuracy of the self-built indentation test platform was verified by comparing the indentation test and finite element simulation results.
(2) The relationship between the indentation response and the mechanical parameters of three different materials used in PWR were analyzed by using the indentation test combined with the finite element inversion method. The method for calculating the material mechanical parameters through the indentation parameter was established, and the reliability was verified by numerical simulation. By using combined elastoplastic finite element analysis (EPFEA) and the indentation test, the distribution law of the mechanical properties in the local region near the weld-fusion line of the DMWJ was obtained.
(3) The DMWJ model with continuous transition mechanical properties was established by using the predefined temperature field method with the actual mechanical properties of DMWJ obtained from the indentation test. On this basis, the difference between the continuous transition model and the “sandwich” model in characterizing the stress-state distribution of DWMJ was analyzed by using numerical simulation.
(4) The microstructure of the typical DMWJ was analyzed by a couple of techniques, such as optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron backscatter diffraction (EBSD), and Vickers hardness. The effect of inhomogeneous microstructure and element distribution on mechanical properties of welded joints was studied, and the potential cause of stress corrosion cracking in the DMWJ was analyzed. On this basis, the relatively weak position in the DMWJ was determined.
(5) Combined with the results of microstructure analysis, the interface and sub-interface crack were introduced into the DMWJ with continuous transition model and the “sandwich” model, respectively. The difference of the stress state at the crack tip of stress corrosion cracking (SCC) between two models (i.e. continuous transition model and “sandwich” model) were analyzed under the coupling effect of internal pressure and external load. The variation of stress and strain on the crack tip with different crack lengths and positions were investigated.
(6) A full-scale three-dimensional model of safety end DMWJ in the primary circuit of PWR with axial inner surface cracks was established under the consideration of the complex external load and inhomogeneous distribution of mechanical properties. Based on the consideration of the distribution profile of the Mises stress, plastic strain, and stress triaxiality as the crack tip mechanical state along crack front, the crack growth stability with different crack shapes and positions were analyzed.
﹀
|
参考文献: |
︿
[1] 李俊峰, 李广. 碳中和—中国发展转型的机遇与挑战[J]. 环境与可持续发展, 2021, 46(01): 50-57. [2] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(03): 1-15. [3] 王鑫. 中国争取2060年前实现碳中和[J]. 生态经济, 2020, 36(12): 9-12. [4] 王晓慧. 中国经济高质量发展研究[D]. 长春: 吉林大学, 2019. [5] 明梓. 中国能源消费和经济增长耦合程度时空演化及解耦优化研究[D]. 北京: 中国地质大学, 2019. [6] 齐正平. 中国能源大数据报告(2021) [EB/OL]. http://www.cqjnw.org/article.php?id=1 5338. [7] 李新安, 李慧. 制造业高质量发展视阈下绿色技术创新的碳排放效应研究[J]. 创新科技, 2021, 21(06): 61-73. [8] 白暴力, 程艳敏, 白瑞雪. 新时代中国特色社会主义生态经济理论及其实践指引—绿色低碳发展助力我国“碳达峰、碳中和”战略实施[J]. 河北经贸大学学报, 2021, 42(04): 26-36. [9] 张生玲, 李强. 低碳约束下中国核电发展及其规模分析[J]. 中国人口•资源与环境, 2015, 25(06): 47-52. [10] 向虹, 邹树梁, 刘文君, 曹帅. 核电社会成本研究现状与展望[J]. 环境保护与循环经济, 2014, 34(01): 15-18. [11] 王海洋. 后疫情时代我国核能产业发展的挑战与机遇[J]. 中国核电, 2020, 13(04): 537-543. [12] 中国核能行业协会. 《中国核能发展报告2021》蓝皮书发布[EB/OL]. http://www.caea.gov.cn/n6758881/n6758890/c6811524/content.html. [13] 刘画洁. 我国核安全立法研究[D]. 上海: 复旦大学, 2013. [14] 郭承站. 我国核与辐射安全监管现状及对策[J]. 核安全, 2013, 12(1): 1-14. [15] 林洁琴. 日本福岛核电事故对我国核电发展影响的思考[J]. 南华大学学报(社会科学版), 2012, 13(05): 1-4. [16] 潘蓉, 易桂香, 孙锋, 张心斌, 童庆.核安全相关混凝土结构全寿期性能评价研究现状[J]. 工业建筑, 2017, 47(09): 1-6. [17] 王欣, 王苏礼. 世界核电延寿及退役市场初步研究[J]. 南华大学学报(社会科学版), 2015, 16(02): 6-11. [18] 韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究—进展与趋势[J]. 金属学报, 2011, 47(07): 769-776. [19] 徐玉明. 核电发展与核电材料的腐蚀防护[J]. 腐蚀与防护, 2016, 37(07): 523-526. [20] 李智军. 三维复杂力学条件下核电关键构件环境致裂预测方法研究[D]. 西安: 西安科技大学, 2012. [21] 郭建亭. 高温合金在能源工业领域中的应用现状与发展[J]. 金属学报, 2010, 46(05): 513-527. [22] 段振刚, 沈朝, 张乐福, 王力, 徐雪莲, 石秀强. 奥氏体不锈钢在含锌PWR一回路水中的均匀腐蚀行为[J]. 腐蚀与防护, 2014, 35(07): 637-641. [23] 段振刚, 潘向烽, 张乐福, 王力, 徐雪莲. 压水堆一回路水中锌含量对镍基690合金氧化膜的影响[J]. 腐蚀与防护, 2014, 35(04): 348-351. [24] 杨宏亮. 加工硬化对316L不锈钢环境致裂扩展驱动力影响的研究[D]. 西安: 西安科技大学, 2020. [25] 谢朝阳. 应力作用下金属点蚀与结构可靠性分析方法研究[D]. 成都: 电子科技大学, 2017. [26] 秦凤云. 核电用钢性能数据库及蒸汽发生器寿命管理系统开发[D]. 上海: 华东理工大学, 2012. [27] 李永, 方锦清, 刘强. 全球核电站网络及其若干特性研究[J]. 原子能科学技术, 2010, 44(09): 1139-1144. [28] 汪胜国. 压水反应堆[J]. 东方电气评论, 1998(01): 10-19. [29] P L Andresen, K Gott, J L Nelson. Stress corrosion cracking of sensitized type 304 stainless steel in 288°C water: a five laboratory round bobbin[M]. Warrendale: The Minerals, Metals and Materials Society, 1999. [30] W C Dong, D B Gao, S P Lu. Numerical investigation on residual stresses of the safe-end/nozzle dissimilar metal welded joint in CAP1400 nuclear power plants[J]. Acta Metallurgica Sinica, 2019, 32(5): 618-628. [31] G Zhang, C Zhou, Z Wang, F Xue, Y Zhao, L Zhang, Y Liu. Numerical simulation of creep damage for low alloy steel welded joint considering as-welding residual stress[J]. Nuclear engineering and design, 2012, 242: 26-33. [32] Y Javadi, M C Smith, K A Venkata, N Naveed, A N Forsey, J A Francis, R A Ainsworth, C E Truman, D J Smith, F Hosseinzadeh, S Gungor, P J Bouchard, H C Dey, A K Bhaduri, SMahadevan. Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91[J]. International Journal of Pressure Vessels & Piping, 2017, 154: 41-57. [33] 崔英浩. 基于裂尖蠕变考虑的304不锈钢SCC扩展速率预测模型研究[D]. 西安: 西安科技大学, 2019. [34] Z Shen, D Du, L Zhang, L Zhang, S Lozano-Perez. An insight into PWR primary water SCC mechanisms by comparing surface and crack oxidation[J]. Corrosion Science, 2019, 148: 213-227. [35] L J Dong, C Ma, Q J Peng, E H Hou, W Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. Journal of Materials Science & Technology, 2020, 40(5): 1-14. [36] 卢建树, 王保峰, 张九渊. 高温水中不锈钢和镍基合金应力腐蚀破裂研究进展[J]. 核动力工程, 2001(03): 259-263. [37] A R Jenks, G A White, P Crooker. Scoring process for evaluating laboratory PWSCC crack growth rate data of thick-wall alloy 690 wrought material and alloy 52, 152, and variant weld material. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors. Portland, August 13-17, 2017[C], Berlin: Springer, 2019. [38] H Hänninen, A Toivonen, A Brederholm, T Saukkonen, W Karlsen, U Ehrnsten, P Aaltonen. Effect of hot cracks on EAC crack initiation and growth in nickel-base alloy weld metals. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors. Cheyenne Mountain Resort, August 7-11, 2011[C], Berlin: Springer, 2016. [39] J Wang, T Zhu, Y Han, J Mei, F Xue, K Chen, H Du, P L Andresen, L Zhang, M Zhang. Environment assisted cracking of 308L weld metal in high temperature water[J]. Journal of Nuclear Materials, 2021, 557(9): 153275. [40] A S Francisco, H R Sebastio, J Duran. The operational assessment of steam generator tubes based on a stochastic crack growth model[J]. Progress in Nuclear Energy, 2021, 138: 103835. [41] T Fukumura, N Totsuka. PWSCC crack growth rate of alloy 690 to simulate actual plant material[J]. Inss Journal Journal of the Institute of Nuclear Safety System, 2014, 21: 154-162. [42] 方秀荣. 浅小裂纹尖端力学场对核电关键结构材料SCC影响的研究[D]. 西安: 西安科技大学, 2013. [43] 赵凌燕. 核电焊接接头裂尖力学特征及环境致裂裂纹扩展速率研究[D]. 西安: 西安科技大学, 2014. [44] 杨武. 核电材料在模拟反应堆环境中应力腐蚀破裂测试技术与性能评价[J]. 理化检验(物理分册), 1996, (05): 7-12. [45] 马成, 彭群家, 韩恩厚, 柯伟. 核电结构材料应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2014, 34(01): 37-45. [46] 李江, 吴欣强, 韩恩厚, 柯伟. 核电焊接结构材料腐蚀失效研究现状与进展[J]. 腐蚀科学与防护技术, 2014, 26(01): 1-7. [47] 朱若林, 张志明, 王俭秋, 韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(03): 189-198. [48] W G Mao, J Wan, C Y Dai, J Ding, Y Zhang, Y C Zhou, C Lu. Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique[J]. Surface & Coatings Technology, 2012, 206(21): 4455-4461. [49] R Moharrami, M Sanayei. Developing a method in measuring residual stress on steel alloys by instrumented indentation technique[J]. Measurement, 2020, 158: 107718. [50] H Xue, K Ogawa, T Shoji. Effect of welded mechanical heterogeneity on local stress and strain ahead of stationary and growing crack tips[J]. Nuclear Engineering and Design, 2009, 239(4): 628-640. [51] 薛河, 薛晓峰, 唐伟, 赵凌燕, 龚晓燕. 镍基合金应力腐蚀裂尖氧化膜力学特性分析[J]. 稀有金属材料与工程, 2011, 40(07): 1188-1190. [52] 王鹰宇. Abaqus分析用户手册—分析卷[M]. 北京: 机械工业出版社, 2018. [53] M H P Hart. Yield strength from hardness data[J]. TWI Resrarch Bulletin, 1975, 6(16): 76. [54] British Standards Institution. BS EN 15653-2018[M]. London: BSI Standards Limited, 2018. [55] A Heidarzadeh, M Paidar, G Güleryüz, R V Barenji. Application of nanoindentation to evaluate the hardness and yield strength of brass joints produced by FSW: microstructural and strengthening mechanisms[J]. Archives of Civil and Mechanical Engineering, 2020, 20(2): 1-9. [56] A K Lakshminarayanan, V Balasubramanian. An assessment of microstructure, hardness, tensile and impact strength of friction stir welded ferritic stainless steel joints[J]. Materials & Design, 2010, 31(10): 4592-4600. [57] S H Hashemi. Strength–hardness statistical correlation in API X65 steel[J]. Materials Science and Engineering: A, 2011, 528(3): 1648-1655. [58] Y Peng, C Wu, J Gan, J Dong. Characterization of heterogeneous constitutive relationship of the welded joint based on the stress-hardness relationship using micro-hardness tests[J]. Construction and Building Materials, 2019, 202: 37-45. [59] N A Stilwell, D Tabor. Elastic recovery of conical indentations[J]. Proceedings of the Physical Society (1958-1967), 1961, 78(2): 169. [60] J B Pethica. Microhardness tests with penetration depths less than ion implanted layer thickness[M]. London: Pergamon, 1982: 147-156. [61] M F Doerner, W D Nix. A method for interpreting the data from depth-sensing indentation instruments[J]. Journal of Materials research, 1986, 1(4): 601-609. [62] W C Oliver, G M Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of materials research, 1992, 7(6): 1564-1583. [63] J Thurn, D J Morris, R F Cook. Depth-sensing indentation at macroscopic dimensions[J]. Journal of materials research, 2002, 17(10): 2679-2690. [64] 张泰华. 微/纳米力学测试技术: 仪器化压入的测量, 分析, 应用及其标准化[M]. 北京: 科学出版社, 2013. [65] 张泰华. 微/纳米力学测试技术及其应用[M]. 北京: 机械工业出版社, 2004. [66] 张泰华, 杨业敏. 纳米硬度技术的发展和应用[J]. 力学进展, 2002, 32(3): 349-364. [67] 刘东旭, 张泰华, 郇勇. 宏观深度测量压入仪器的研制[J]. 力学学报, 2007, 23(3): 350-355. [68] 张泰华, 郇勇, 杨业敏, 刘东旭. 电磁式微力学压痕测试仪及其测试方法[P]. 中国: 发明专利: ZL200410074534.5. 2007-12-26. [69] 姜辛, 张泰华, 郇勇, 杨业敏, 姜鹏. 一种便携式压入仪[P]. 中国: 实用新型专利: ZL200820080577.8. 2009-02-04. [70] 姜辛. 一种便携式仪器化压入设备的研制[D]. 北京: 中国科学院研究生院, 2009. [71] 张国新, 王威强, 王尚. 自动球压痕法估测Q235B钢的断裂韧度[J]. 机械强度, 2018, 40(05): 1205-1208. [72] 张国新, 王威强, 王尚. Q345R钢板断裂韧度的自动球压痕试验测算研究[J]. 机电一体化, 2017, 23(06): 23-29. [73] 刘燕, 汤杰, 苏成功, 王威强. 连续球压痕法测试钢管应变时效后拉伸强度的变化[J]. 理化检验(物理分册), 2016, 52(02): 77-82. [74] 汤杰, 王威强, 苏成功, 王鹏飞. 连续球压痕法测试压力容器钢力学性能的研究[J]. 振动.测试与诊断, 2015, 35(02): 281-288. [75] 刘峻, 张国祥. 激光淬火区应力-应变关系压入法实验测量研究[J]. 铸造技术, 2017, 38(05): 1247-1250. [76] 张志杰, 蔡力勋, 陈辉, 包陈, 刘晓坤. 金属材料的强度与应力–应变关系的球压入测试方法[J]. 力学学报, 2019, 51(01): 159-169. [77] P Venkateswaran, Z Xu, X Li, A P Reynolds. Determination of mechanical properties of Al–Mg alloys dissimilar friction stir welded interface by indentation methods[J]. Journal of Materials Science, 2009, 44(15): 4140-4147. [78] R R Ambriz, D Chicot, N Benseddiq, G Mesmacque, S D Torre. Local mechanical properties of the 6061-T6 aluminium weld using micro-traction and instrumented indentation[J]. European Journal of Mechanics-A/Solids, 2011, 30(3): 307-315. [79] R Pamnani, V Karthik, T Jayakumar, M Vasudevan, T Sakthivel. Evaluation of mechanical properties across micro alloyed HSLA steel weld joints using Automated Ball Indentation[J]. Materials Science and Engineering: A, 2016, 651: 214-223. [80] S Nagaraju, J G Kumar, P Vasantharaja, M Vasudevan, K Laha. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique[J]. Materials Science and Engineering: A, 2017, 695: 199-210. [81] 张茂龙, 鲁艳红, 陈胜虎, 戎利建, 陆皓. 不锈钢堆焊层稀释率对核电接管安全端试环焊接接头组织和力学性能的影响[J]. 金属学报, 2020, 56(8): 1057-1066. [82] 李光福, 李冠军, 方可伟, 彭君, 杨武, 张茂龙, 孙志远. 异材焊接件A508/52M/316L在高温水环境中的应力腐蚀破裂[J]. 金属学报, 2011, 47(07): 797-803. [83] Q Z Wang, M L Zhang, W H Liu, D F Cheng, X Wei, J Xu, J M Chen, H Lu, C Yu. On the martensitic transition manner within the transition martensitic zone of the dissimilar steel interface[J]. Materials & Design, 2019, 179: 107872. [84] Q Z Wang, M L Zhang, W H Liu, X Wei, J J Xu, J M Chen, H Lu, C Yu. Study of type-II boundary behavior during SA508-3/EQ309L overlay weld interfacial failure process[J]. Journal of Materials Processing Technology, 2017, 247: 64-72. [85] 王清曌. 异种钢焊接接头过渡区域力学行为及组织调控研究[D]. 上海: 上海交通大学, 2019. [86] H L Ming, R L Zhu, Z M Zhang, J Q Wang, E H Han, W Ke, M X Su. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW[J]. Materials Science and Engineering: A, 2016, 669: 279-290. [87] 罗炯, 张十庆, 王宏, 刘洋. 核电接管安全端308L/309L异种金属焊接接头拉伸断裂行为[J]. 材料热处理学报, 2018, 39(03): 144-150. [88] 薛河, 史耀武. 力学性能不均匀性对焊接接头三点弯曲试样塑性区发展规律的影响[J]. 机械强度, 1999(04): 281-284. [89] 宗培, 张帅. 力学性能不均匀性焊接接头应力分布研究[J]. 海军工程大学学报, 2010, 22(02): 48-53. [90] 焦康. 焊接接头力学性能不均匀性对裂尖力学场的影响分析[D]. 西安: 西安科技大学, 2013. [91] 何超, 崔仕明, 罗泽富, 吴彦增, 王清远. 力学不均匀性对焊接接头拉伸性能的影响[J]. 四川大学学报(工程科学版), 2013, 45(S1): 38-42. [92] C Y Deng, C Liu, B M Gong, C Z Zhang, C Liu, Y Liu. Effect of microstructure inhomogeneity on mechanical properties of different zones in TA15 electron beam welded joints[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(3): 678-687. [93] 王振文. 核电一回路安全端焊接接头SCC裂纹扩展速率研究[D]. 西安: 西安科技大学, 2014. [94] 陈政. 核电异种金属焊接接头应力腐蚀裂尖蠕变特性研究[D]. 西安: 西安科技大学, 2016. [95] 薛河, 曹婷, 崔英浩. 异种金属焊接接头弹塑性裂纹扩展探究[J]. 中国科技论文, 2017, 012(010): 1124-1127. [96] 曹婷. 基于XFEM的安全端异种金属焊接接头裂纹扩展研究[D]. 西安: 西安科技大学, 2018. [97] 陈浩. 冷加工率对304奥氏体不锈钢应力腐蚀裂尖力学特性的影响[D]. 西安: 西安科技大学, 2018. [98] 陈浩, 薛河, 崔英浩, 赵宽, 谢红龙, 曹婷, 唐伟. 焊缝宽度对焊接接头裂纹扩展速率的影响[J]. 热加工工艺, 2017, 46(19): 179-181. [99] 陈浩, 薛河, 孙建伟, 谢红龙, 赵宽, 魏其深. 基于XFEM的残余应力场下SCC裂纹扩展特性研究[J]. 热加工工艺, 2017, 46(23): 162-166. [100] 姬玉媛. 计算机仿真的T形焊接接头的力学性能分析[J]. 电焊机, 2014, 44(08): 143-146. [101] 薛河, 崔英浩, 高富国, 赵凌燕, 倪陈强. 屈服强度失配对异种金属焊接接头裂纹扩展的影响分析[J]. 中国科技论文, 2017, 12(16): 1854-1857. [102] 杨帆, 薛河, 孙剑伟, 崔英浩. 单次超载对异种金属焊接接头应力腐蚀裂纹尖端力学场的影响[J]. 热加工工艺, 2017, 46(03): 223-226. [103] 高富国. 基于XFEM的焊接接头裂尖力学场分析[D]. 西安: 西安科技大学, 2017. [104] 张昭, 薛河, 高富国, 孙建伟. 蠕变对应力腐蚀裂纹尖端应力应变的影响[J]. 热加工工艺, 2016, 45(23): 228-230. [105] R L Zhu, J Q Wang, L Zhang, Z M Zhang, E H Hou. Stress corrosion cracking of 316L HAZ for 316L stainless steel/Inconel 52M dissimilar metal weld joint in simulated primary water[J]. Corrosion Science, 2016, 112: 373-384. [106] L J Dong, E H Han, Q J Peng, W Ke, L Wang. Environmentally assisted crack growth in 308L stainless steel weld metal in simulated primary water[J]. Corrosion Science, 2017, 117: 1-10. [107] L J Dong, Q J Peng, H Xue, E H Han, W Ke, L Wang. Correlation of microstructure and stress corrosion cracking initiation behaviour of the fusion boundary region in a SA508 Cl. 3-Alloy 52M dissimilar weld joint in primary pressurized water reactor environment[J]. Corrosion Science, 2018, 132: 9-20. [108] L J Dong, Y Zhang, Y L Han, Q J Peng, E H Han. Environmentally assisted cracking in the fusion boundary region of a SA508-Alloy 52M dissimilar weld joint in simulated primary pressurized water reactor environments [J]. Corrosion Science, 2021, 190: 109668. [109] S Wang, D Jie, H Ming, Z Zhang, J Wang. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET[J]. Materials Characterization, 2015, 100: 50-60. [110] C Ma, Q J Peng, J Mei, E H Hou, W Ke. Microstructure and corrosion behavior of the heat affected zone of a stainless steel 308L-316L weld joint[J]. Journal of materials science & technology, 2018, 34(10): 1823-1834. [111] 明洪亮, 张志明, 王俭秋, 韩恩厚, 苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(01): 57-69. [112] 熊琪, 李红娟, 吕战鹏, 彭浩, 陈俊劼, 茹祥坤. 不同氧含量高温水中低合金钢/不锈钢堆焊层的氧化膜特性[J]. 腐蚀与防护, 2018, 39(03): 167-173. [113] B O Okonkwo, L H Ming, Z Zhang, J Q Wang, E Rahimi, S Hosseinpour, A Davoodi. Microscale investigation of the correlation between microstructure and galvanic corrosion of low alloy steel A508 and its welded 309/308L stainless steel overlayer[J]. Corrosion Science, 2019, 154: 49-60. [114] B O Okonkwo, L H Ming, F Meng, J Q Wang, X Xu, E H Han. Galvanic corrosion study between low alloy steel A508 and 309/308 L stainless steel dissimilar metals: A case study of the effects of oxide film and exposure time[J]. Journal of Nuclear Materials, 2021, 548: 152853. [115] H Xue, Y Sato, T Shoji. Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components[J]. Journal of Pressure Vessel Technology, 2009, 131(1): 11404. [116] H Wu, Z Zhong, N Benseddiq, A Imad. Numerical simulation of the crack shape for the thermo-mechanical loaded valve[J]. Engineering Failure Analysis, 2011, 18(6): 1487-1495. [117] N Gong, G Z Wang, F Z Xuan, S T Tu. Leak-before-break analysis of a dissimilar metal welded joint for connecting pipe-nozzle in nuclear power plants[J]. Nuclear engineering and design, 2013, 255: 1-8. [118] D Peng, P Huang, R Jones, A Bowler, D Edwards. A simple method based for computing crack shapes[J]. Engineering Failure Analysis, 2016, 59: 41-56. [119] 王帅, 薛河, 崔英浩. 管道内表面裂纹角度对裂纹扩展的影响分析[J]. 热加工工艺, 2018, 47(08): 40-43. [120] 王兴路, 贺利乐. 金属材料表面裂纹疲劳扩展形状演变规律[J]. 机械工程材料, 2019, 43(11): 57-61. [121] 潘玉林, 马廷霞, 轩恒. 海底悬跨管道表面裂纹应力强度因子分析[J]. 塑性工程学报, 2019, 26(03): 251-256. [122] 余茜, 魏国前, 李山山, 陈斯雯. 考虑形状比的焊趾裂纹扩展行为的数值仿真分析[J]. 焊接学报, 2019, 40(05): 107-112. [123] S Wang, B Wang, Y J Janin, R Bourga, H Xue. Effects of the surface crack shape on J values along the front of an elliptical crack[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(11): 2944-2961. [124] 薛河, 庄泽城, 曹婷, 郭瑞, 崔英浩, 龚晓燕. 结构材料维氏硬度与屈服应力的关系分析[J]. 西安科技大学学报, 2017, 37(02): 274-279. [125] 薛河, 李凯, 王帅, 赵宽. 冷加工过程中316L奥氏体不锈钢硬度压痕尺寸效应分析[J]. 中国机械工程, 2019, 30(01): 105-112. [126] 郭瑞. 核电安全端残余应力与力学性能不均匀性对裂尖场的影响[D]. 西安: 西安科技大学, 2015. [127] 郭瑞, 薛河, 崔英浩. 安全端焊接残余应力对裂纹尖端力学参量的影响[J]. 西安科技大学学报, 2018, 38(03): 479-483. [128] 郭瑞. 核电安全端异种金属焊接接头应力腐蚀开裂裂尖力学场研究[D]. 西安: 西安科技大学, 2020. [129] 田静云, 崔英浩, 薛河, 庄泽城, 陈浩. 航空齿轮表面硬化后硬度与强度关系探究[J]. 机械科学与技术, 2018, 37(09): 1472-1476. [130] 贾永军, 刘金娃, 薛河. 表面硬度间接获取齿轮材料屈服强度方法研究[J]. 机械设计与制造工程, 2019, 48(08): 95-98. [131] 刘金娃. 钎焊层关键参数对镐形截齿力学性能的影响研究[D]. 西安: 西安科技大学, 2017. [132] 刘金娃, 贾永军, 薛河, 闫光准. 钎焊层屈服强度对镐形截齿整体力学性能的影响研究[J]. 煤炭技术, 2020, 39(02): 179-182. [133] 刘金娃, 贾永军, 薛河, 马胜利. 利用表面硬度值间接获取镐形截齿钎焊层力学性能的方法研究[J]. 煤炭技术, 2020, 39(01): 177-180. [134] 李富强. 球压痕试验获取核电焊接结构局部力学性能的研究[D]. 西安: 西安科技大学, 2020. [135] 薛河, 李富强, 侯鹏飞, 李萌, 贺晋璇, 赵晓莹. 压痕硬度表征不锈钢加工硬化力学性能方法的探索[J]. 中国科技论文, 2020, 15(02): 235-239. [136] 李萌. 基于压入试验的局部结构材料力学性能获取方法研究[D]. 西安: 西安科技大学, 2020. [137] 薛河, 李萌, 李富强, 侯鹏飞. 基于压入试验的材料硬化指数及弹性模量计算方法[J]. 中国测试, 2020, 46(03): 26-31. [138] 孙剑伟. 基于XFEM的核电安全端应力腐蚀裂纹扩展研究[D]. 西安: 西安科技大学, 2017. [139] 孙剑伟, 孙建国, 王帅. 裂纹位置对焊接接头结构力学行为的影响[J]. 工具技术, 2020, 54(10): 81-85. [140] 薛河, 孙剑伟. 不同屈服强度匹配下焊接接头裂纹尖端微观区域的研究[J]. 热加工工艺, 2016, 45(21): 239-241. [141] S Zhang, H Xue, S Wang, Y M Sun, F Q Yang, Y B Zhang. Effect of mechanical heterogeneity on strain and stress fields at crack tips of SCC in dissimilar metal welded joints[J]. Materials, 2021, 14(16): 4450. [142] 赵凌燕, 崔英浩, 唐伟. 几何拘束对镍基合金裂纹扩展速率影响的有限元分析[J]. 腐蚀与防护, 2018, 39(09): 704-707. [143] 赵凌燕, 崔英浩, 薛河, 杨宏亮. 扩展初始角对镍基合金焊接过渡区裂纹应力腐蚀行为的影响[J]. 中国科技论文, 2016, 11(16): 1864-1866. [144] 赵凌燕, 薛河, 方秀荣, 桂元奎. 焊接力学不均匀性对316L焊缝扩展裂纹端部场的影响[J]. 热加工工艺, 2015, 44(09): 181-184. [145] H Xue, Y Q Bi, S Wang, J L Zhang, S Y Gou. Compilation and application of UMAT for mechanical properties of heterogeneous metal welded joints in nuclear power materials[J]. Advances in Materials Science and Engineering, 2019, 2019: 1-13. [146] H Xue, Z Wang, S Wang, J X He, H L Yang. Characterization of mechanical heterogeneity in dissimilar metal welded joints[J]. Materials, 2021, 14(15): 4145. [147] 李凯. 冷加工硬化对核电结构局部力学性能影响及获取方法研究[D]. 西安: 西安科技大学, 2019. [148] 李凯, 薛河, 崔英浩, 王帅, 王婷. 304不锈钢冷加工过程中应力-应变本构方程的建立与验证[J]. 塑性工程学报, 2019, 26(02): 225-232. [149] 薛河, 赵丹, 彭群家, 唐伟, 方秀荣, 龚晓燕. 镍基合金材料塑性对应力腐蚀裂纹尖端应力应变场影响的研究[J]. 材料工程, 2011(05): 17-20. [150] 赵丹. 核电结构材料应力腐蚀裂纹尖端应力应变分析研究[D]. 西安: 西安科技大学, 2011. [151] H Xue, Y H Cui, G B Li, S Wang. Crack growth driving force at tip of stress corrosion cracking in nuclear structural materials at initial stage[J]. Rare Metal Materials and Engineering, 2018, 47(8): 2365-2370. [152] 杨富强. 核电结构材料裂尖蠕变特征和环境致裂定量预测模型研究[D]. 西安: 西安科技大学, 2014. [153] 杨富强, 薛河, 赵凌燕, 方秀荣. 高温水环境中镍基合金力学性能对裂尖力学化学效应的影响[J]. 稀有金属材料与工程, 2016, 45(07): 1641-1646. [154] 杨富强, 薛河, 赵凌燕, 方秀荣. 应力强度因子对高温水环境中镍基合金裂尖电化学腐蚀电位的影响[J]. 稀有金属材料与工程, 2014, 43(03): 513-518. [155] J H Hollomon. Time-temperature relations in tempering steel[J]. Trans Aime, 1945, 162: 223-249. [156] 束德林. 工程材料力学性能[M]. 北京: 机械工业出版社, 2004. [157] D Tabor. The hardness of metals[M]. Oxford University Press, 1951. [158] 汪可华, 陈坚, 王福德, 梁晓康, 孙正明. 材料应力—应变的球形纳米压入法研究进展[J]. 材料导报, 2019, 33(9): 1490-1499. [159] H Hertz. Miscellaneous papers[M]. London: MacMillan, 1896. [160] A C Fischer-Cripps. Applications of nanoindentation[M]. Berlin: Springer, 2011: 213-233. [161] I N Sneddon. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile[J]. International Journal of Engineering Science, 1965, 3(1): 47-57. [162] 张建龙. 核电安全端焊接材料蠕变性能与SCC扩展速率预测研究[D]. 西安: 西安: 西安科技大学, 2020. [163] E Meyer. Tests on the Harte test and Harte[J]. Physikalische Zeitschrifit, 1908, 9(9): 66-74. [164] R Hill, B Storåkers, A B Zdunek. A theoretical study of the Brinell hardness test[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1989, 423(1865): 301-330. [165] J S Field, M V Swain. Determining the mechanical properties of small volumes of material from submicrometer spherical indentations[J]. Journal of Materials Research, 1995, 10(1): 101-112. [166] 宝山钢铁股份有限公司, 中国科学院力学研究所. 仪器化纳米压入试验方法通则: GB/T 22458-2008[S]. 北京: 中国标准出版社, 2009. [167] British Standards Institution. BS EN 14577-2-2015[M]. London: BSI Standards Limited, 2015. [168] S R Kalidindi, S Pathak. Determination of the effective zero–point and the extraction of spherical nanoindentation stress–strain curves[J]. Acta Materialia, 2008, 56(14): 3523-3532. [169] S Pathak, S R Kalidindi. Spherical nanoindentation stress–strain curves[J]. Materials Science and Engineering: R: Reports, 2015, 91: 1-36. [170] M V Swain. Mechanical property characterisation of small volumes of brittle materials with spherical tipped indenters[J]. Materials Science and Engineering: A, 1998, 253(1-2): 160-166. [171] L H He, M V Swain. Nanoindentation derived stress–strain properties of dental materials[J]. Dental Materials, 2007, 23(7): 814-821. [172] 山西太钢不锈钢股份有限公司, 冶金工业信息标准研究院, 宝钢不锈钢有限公司. 承压设备用不锈钢和耐热钢钢板和钢带: GB/T 24511-2017[S]. 北京: 中国标准出版社, 2018. [173] 钢铁研究总院, 济南试金集团有限公司, 冶金工业信息标准研究院. 金属材料拉伸试验第1部分:室温试验方法: GB/T 228.1-2010[S]. 北京: 中国标准出版社, 2011. [174] 王帅, 薛河, 杨富强, 倪陈强, 张建龙. 利用硬度试验获取冷加工后316L不锈钢力学性能[J]. 西安科技大学学报, 2021, 41(02): 340-347. [175] 张锦莱. 薄膜结构的屈曲与振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [176] 白晓虹. 数字图像相关(DIC)测量方法在材料变形研究中的应用[D]. 沈阳: 东北大学, 2011. [177] M Zhao, N Ogasawara, N Chiba, X Chen. A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation[J]. Acta Materialia, 2006, 54(1): 23-32. [178] P Jiang, T Zhang, Y Feng, R Yang, N Liang. Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach[J]. Journal of Materials Research, 2009, 24(3): 1045-1053. [179] Y Cheng, C Cheng. Scaling, dimensional analysis, and indentation measurements[J]. Materials Science and Engineering: R: Reports, 2004, 44(4-5): 91-149. [180] 王磊. 材料的力学性能[M]. 沈阳: 东北大学出版社, 2014. [181] 范凯. 核电异种金属焊接接头材料界面区的局部断裂行为研究[D]. 上海: 华东理工大学, 2018. [182] M De Beule, P Mortier, J Belis, R V Impe, B Verhegghe, P Verdonck. Plasticity as a lifesaver in the design of cardiovascular stents[J]. Key Engineering Materials, 2007, 340-341. [183] H T Wang, G Z Wang, F Z Xuan, C J Liu, S T Tu. Local mechanical properties of a dissimilar metal welded joint in nuclear power systems[J]. Materials Science and Engineering: A, 2013, 568: 108-117. [184] 董立谨. 核电主回路安全端金属焊接件结构特征与应力腐蚀行为研究[D]. 沈阳: 东北大学, 2014. [185] S Wang, H Xue, Y Cui, F Yang, R Guo. An approach to estimate SCC growing rate in slow strain rate tensile test based on EPFEM[J]. Advances in Materials Science and Engineering, 2019, 2019: 1-7. [186] T Terachi, T Yamada, T Miyamoto, K. Arioka. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water[J]. Journal of Nuclear Materials, 2012, 426(1-3): 59-70. [187] D H Du, K Chen, H Lu, L F Zhang, X Q Shi, X L Xu, P L Andresen. Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water[J]. Corrosion Science, 2016, 110: 134-142. [188] T Liu, S Xia, Q Bai, B Zhou, L Zhang, Y Lu, T Shoji. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water[J]. Journal of Nuclear Materials, 2018, 498: 290-299. [189] L Y Du, G Z Wang, F Z Xuan, S T Tu. Effects of local mechanical and fracture properties on LBB behavior of a dissimilar metal welded joint in nuclear power plants[J]. Nuclear Engineering and Design, 2013, 265: 145-153. [190] L J Dong, Q J Peng, E H Han, W Ke, L Wang. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water[J]. Journal of Materials Science & Technology, 2018, 34(8): 1281-1292. [191] Y S Lim, H P Kim, H D Cho, H H Lee. Microscopic examination of an Alloy 600/182 weld[J]. Materials Characterization, 2009, 60(12): 1496-1506. [192] H L Ming, Z Zhang, J Q Wang, E H Han, W Ke. Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint[J]. Materials Characterization, 2014, 97: 101-115. [193] P B Srinivasan, V Muthupandi, W Dietzel, V Sivan. An assessment of impact strength and corrosion behaviour of shielded metal arc welded dissimilar weldments between UNS 31803 and IS 2062 steels[J]. Materials & Design, 2006, 27(3): 182-191. [194] 方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2008. [195] W Zhang, K Fang, Y Hu, S Wang, X Wang. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel[J]. Corrosion Science, 2016, 108: 173-184. [196] N Zhou, R Pettersson, R L Peng, M Schönning. Effect of surface grinding on chloride induced SCC of 304L[J]. Materials Science and Engineering: A, 2016, 658: 50-59. [197] Y Peng, C Chen, X Li, J Gong, Y Jiang, Z Liu. Effect of low-temperature surface carburization on stress corrosion cracking of AISI 304 austenitic stainless steel[J]. Surface and Coatings Technology, 2017, 328: 420-427. [198] M Nose, H Amano, H Okada, Y Yusa, A Maekawa, M Kamaya, H Kawai. Computational crack propagation analysis with consideration of weld residual stresses[J]. Engineering Fracture Mechanics, 2017, 182: 708-731. [199] A K A Jawwad, M Mahdi, N Alshabatat. The role of service-induced residual stresses in initiating and propagating stress corrosion cracking (SCC) in a 316 stainless steel pressure-relief-valve nozzle set[J]. Engineering Failure Analysis, 2019, 105: 1229-1251. [200] K Chen, D H Du, W H Gao, X L Guo, L F Zhang, P L Andresen. Effect of cold work on the stresscorrosion cracking behavior of Alloy 690 in supercritical water environment[J]. Journal of NuclearMaterials, 2018, 498: 117-128. [201] H T Wang, G Z Wang, F Z Xuan, S T Tu. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint[J]. Materials & Design, 2013, 44: 179-189. [202] H T Wang, G Z Wang, F Z Xuan, S T Tu. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant[J]. Engineering Failure Analysis, 2013, 28: 134-148. [203] 龚怒. AP1000核电安全端结构几何和异种金属材料性能失配对安全评定的影响[D]. 上海: 华东理工大学, 2012. [204] 刘志伟. AP1000核电安全端异种金属焊接接头缺陷评定方法研究[D]. 上海: 华东理工大学, 2011. [205] H Xue, Y K Gui, W B Wang, X B Li, Y R Wang, X Q Tao, R Guo. Effect of a single overload on the fracture behavior in safe-end dissimilar metal welded joints in nuclear power plant[J]. Advanced Materials Research, 2014, 1049: 600-604. [206] T Ha, R Murudkar, K T Hartwig, T Welo, G Ringen, J Wang. A feasibility study of continuous grain refinement of sheet metal[J]. Procedia Manufacturing, 2020, 48: 379-387. [207] 王海涛. 核电安全端异种金属焊接接头的局部力学性能及断裂行为[D]. 上海: 华东理工大学, 2013. [208] 傅建钦,史耀武. 焊接接头中的裂端应力三轴性[J]. 材料科学与工艺, 2000(01): 25-29.
﹀
|
中图分类号: |
TG407
|
开放日期: |
2023-04-25
|