论文中文题名: | 多尺度生成对抗网络图像去雾与车牌识别方法研究与实现 |
姓名: | |
学号: | 20208223039 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0854 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-13 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Research and Implementation of Multi scale Generative adversarial network Image Dehazing and License Plate Recognition |
论文中文关键词: | |
论文外文关键词: | image dehazing ; license plate location ; license plate recognition ; multi-scale convolution ; generative adversarial network |
论文中文摘要: |
随着社会现代化建设的推进和人们生活质量的提高,图像处理和目标识别领域得到了飞速的发展和广泛的应用。由于近年来雾霾天气愈发严重,道路交通所采集到的图像不清晰,导致车牌识别准确率降低。因此,针对雾霾天气下的车牌识别任务,着力于多尺度生成对抗网络图像去雾与车牌识别方法研究,论文的主要工作和成果如下: 针对传统的图像去雾算法对特征提取不完全、模型鲁棒性低的问题,本文提出了一种基于MPGAN(Multi-scale convolution perceptual generative adversarial network)的图像去雾算法。首先,该算法以生成对抗网络为主干构建,结合多尺度卷积来获取更多的特征,直接学习有雾图像和清晰图像之间的非线性映射关系,提高模型的去雾效果;其次,算法提出感知均方误差损失,增强模型的鲁棒性。实验结果表明,基于MPGAN的图像去雾算法的去雾结果更清晰,相对于经典去雾算法AOD-Net在峰值信噪比上提高了4.18dB,在结构相似度上提高了6.2%。 针对车牌识别算法对空间信息提取不完全、受外界环境影响较大导致车牌定位的准确率低的问题,本文提出了一种基于SDCNet(Shuffle dilated convolution network)车牌识别算法,包括车牌定位和车牌识别两部分。首先,该算法以ShuffleNetv2为主干构建,结合空洞卷积和全局上下文块,来提高模型的感受野和空间信息;其次,提出了多因素联合损失,并结合角定位的模式提高模型在复杂环境下定位的准确率。实验结果表明,SDCNet车牌识别算法的准确率达到了98.1%,与经典车牌识别算法LPRNet、MTCNN_LPRNet和RPNet相比分别提高了5.2%、3.6%和2.8%。 针对雾霾天气下的车牌识别任务,本文基于MPGAN图像去雾算法和SDCNet车牌识别算法,设计并实现了一套基于B/S架构的雾天车牌识别系统。该系统不仅能满足正常条件下的车牌识别任务,而且实现了在雾霾环境下对车牌的去雾、定位和识别功能,并对结果进行可视化的展示。 |
论文外文摘要: |
With the advancement of social modernization and the improvement of people's quality of life, the fields of image processing and object recognition have undergone rapid development and extensive application. However, in recent years, the increasingly severe haze weather has led to unclear images collected by road traffic, resulting in a decrease in the accuracy of license plate recognition. Therefore, focusing on the license plate recognition task in hazy weather, this paper focuses on the research of multi-scale generative adversarial network image dehazing and license plate recognition methods. The main work and achievements of this paper are as follows: To address the problem of incomplete feature extraction and low model robustness in traditional image dehazing algorithms, this paper proposes an MPGAN-based(Multi-scale convolution perceptual generative adversarial network) image dehazing algorithm. Firstly, the algorithm employs a generative adversarial network as the backbone and combines multi-scale convolution to obtain more features, directly learning the nonlinear mapping relationship between hazy and clear images to improve the model's dehazing effect. Secondly, the algorithm proposes perceptual mean square error loss to enhance the robustness of the model. Experimental results show that the dehazing results of the MPGAN-based image dehazing algorithm are clearer, with a 4.18dB increase in peak signal-to-noise ratio and a 6.2% increase in structural similarity compared to the classic dehazing algorithm AOD-Net. To address the problem of incomplete extraction of spatial information and low accuracy in license plate positioning caused by external environmental factors in license plate recognition algorithms, this paper proposes a SDCNet-based(Shuffle dilated convolution network) license plate recognition algorithm, consisting of license plate positioning and license plate recognition. Firstly, the algorithm employs ShuffleNetv2 as the backbone and combines dilated convolution and global contextual blocks to improve the model's receptive field and spatial information. Secondly, a multi-factor joint loss is proposed, combined with the angle positioning pattern to improve the model's accuracy in complex environments. Experimental results show that the accuracy of the SDCNet-based license plate recognition algorithm reaches 98.1%, which is 5.2%, 3.6%, and 2.8% higher than the classic license plate recognition algorithms LPRNet, MTCNN_LPRNet, and RPNet, respectively. To address the license plate recognition task in hazy weather, this paper designs and implements license plate recognition system under haze weather based on the MPGAN image dehazing algorithm and the SDCNet license plate recognition algorithm, using a B/S architecture. This system not only meets the task of license plate recognition under normal conditions, but also achieves the functions of dehazing, positioning, and recognition of license plates in haze environments, and visualizes the results. |
参考文献: |
[2]蔡允岚, 覃智泉, 李凡,等. 一种黑名单车辆识别及报警方法及应用该方法的视频行车记录设备 [P] . 中国专利:CN201811536204.1,2019-05-03. [3]吕晨, 程德强, 寇旗旗,等. 基于YOLOv3和ASMS的目标跟踪算法 [J] . 光电工程, 2021, 48(2): 67-77. [4]汪辉, 高尚兵, 周君等. 基于YOLOv3的多车道车流量统计及车辆跟踪方法 [J] . 国外电子测量技术, 2020, 39(02): 42-46. [22]陈宏照, 谢正光, 卢海伦. 颜色与边缘纹理相结合的车牌定位方法 [J] . 现代电子技术,2018,41(21): 67-70. [23]胡峰松, 朱浩. 基于多重特征和SURF算法的车牌定位研究 [J] . 计算机工程与应用,2015,51(17): 182-187. [24]王磊, 王瀚漓, 何良华. 基于双边缘检测的车牌识别算法 [J] . 计算机工程与应用, 2013 (8): 169-173. [26]杨人豪, 任斌. 基于颜色特征和边缘检测的车牌识别算法 [J] . 工业控制计算机, 2021, 34(4): 100-103. [27]罗山. 基于改进数学形态学的车牌定位 [J] . 山西电子技术, 2019, 000(005): 9-11. [33]姚文凤, 甄彤, 吕宗旺, 等. 车牌字符分割与识别技术研究 [J] . 现代电子技术, 2020, 43(19): 65-69. [35]李强, 张娟. 一种改进的基于模板匹配的污损车牌识别方法 [J] . 智能计算机与应用, 2019, 009(003): 113-117. [44]陈云彪, 张丽琴, 李汉明等. 基于边缘检测的车牌识别算法的实现 [J] . 电子测试, 2017, 000(021): 41-42. [46]陆宗骐, 梁诚. 用Sobel算子细化边缘 [J] . 中国图象图形学报, 2000, 05A(6): 516-520. [47]李牧, 闫继红, 李戈等. 自适应Canny算子边缘检测技术 [J] . 哈尔滨工程大学学报, 2007, 28(9): 1002-1007. [48]甘玲, 林小晶. 基于连通域提取的车牌字符分割算法 [J] . 计算机仿真, 2011, 28(4): 336-339. |
中图分类号: | TP391 |
开放日期: | 2023-06-13 |