- 无标题文档
查看论文信息

论文中文题名:

 倾斜条件下锂离子电池热失控燃烧行为研究    

姓名:

 刘雪梦    

学号:

 21220226107    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 张嬿妮    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Study on thermal runaway combustion behavior of lithium-ion batteries under inclined conditions    

论文中文关键词:

 热失控 ; 燃烧行为 ; 倾斜角度 ; 锂离子电池 ; 荷电状态    

论文外文关键词:

 Thermal runaway ; Combustion behavior ; Tilt angle ; Lithium-ion batteries ; State of charge    

论文中文摘要:

    近年来锂离子电池产业发展迅速,但其在电滥用、热滥用及机械滥用等情况下极易发生热失控,进而导致火灾事故的发生,安全性问题亟需解决。由于电池在使用、运输等场景下易发生倾斜,造成安全阀放置方向改变,致使电池热失控燃烧行为演变过程更为复杂。因此,本文选取18650型三元锂电池为研究对象,采用自主搭建的锂电池热失控实验台,研究单体及电池模组在不同倾斜角度、荷电状态下的热失控燃烧行为演变规律,揭示电池模组内热失控传播路径及热量传递机制。研究结果为评估电池火灾危险性、制定安全预警策略提供了重要的理论支撑。

    本文研究了不同倾斜条件下单体电池热失控过程中的表面温度、温升速率、质量损失等特征参数变化,掌握了不同倾斜角度、荷电状态对锂电池热失控特征参数的影响规律,确定了单体电池热失控燃烧行为演变规律主要分为四个阶段:安全阀开启、气体释放、火焰喷射及火焰熄灭阶段。研究结果表明,热失控表面温度峰值与荷电状态成正比,其中当表面温度达到140~220 ℃时,电池发生热失控现象;基于对热失控临界条件的分析,得到了倾斜角度与电池安全阀开启时间成反比。通过对比分析电池热失控前后质量变化及残留物形貌特征,确定了随电池荷电状态的逐渐增大,质量损失越多,壳体破损程度越严重;发现了倾斜角度的变化可导致电池热失控时表面易形成熔孔和裂纹,为能量释放提供额外途径。

    分析了单体电池热失控火焰形态及火焰温度等参数的变化,得到了倾斜条件下锂电池燃烧行为的影响规律。研究结果表明,荷电状态为25%的锂电池热失控过程仅向外喷射烟气,其余高于25%的电池热失控过程均产生不同剧烈程度的火花及燃烧现象。随着荷电状态的增加,热失控火焰高度及面积显著增加;而火焰平均高度随倾斜角度的增加呈先减小后上升的趋势。通过对比不同倾斜角度和荷电状态下火焰峰值温度的变化规律,发现火焰温度随垂直距离的增大呈现降低趋势;其中在不同荷电状态下,火羽流温度距喷射口2 cm处温度最高,且火焰峰值温度与荷电状态呈线性增长关系;另外,除荷电状态为25%外,其余荷电状态的火焰峰值温度均远高于铝制外壳660 ℃的熔点;随倾斜角度的增大,火焰峰值温度呈现先降低后上升的趋势。

    分析了电池模组热失控传播现象及燃烧行为,揭示了倾斜条件下电池组热失控传播路径及传递机制。研究结果表明,在相同的加热功率条件下,随着荷电状态的逐渐减小,热失控传播能力减弱,传播时间增加。其中当荷电状态为0%的电池模组不会发生热失控传播,而荷电状态为50%及100%的情况下则会触发相邻电池发生热失控,并形成模组内单体间的热失控传播现象,其传播时间分别为131 s、23 s;不同倾斜条件下,与热源临近的单体电池热失控时间随倾斜角度的增大而减小,而与该电池相邻的电池则呈现出先上升后下降的规律,其中当荷电状态为100%时,竖直向上与竖直向下的电池模组单体间完成热失控传播时间为20 s左右,水平放置的电池模组所需传播时间较长。通过对比分析热失控过程中质量损失变化规律,可知荷电状态为0%时,电池模组未发生热失控传播,而临近热源的单体电池发生了安全阀开启现象,造成5%的质量损失,其他荷电状态(50%和100%)的电池模组发生热失控传播,质量损失分别为24%、41%。不同倾斜角度下,水平放置(90°)的电池模组质量损失最少。通过分析热失控过程中的火焰形态,发现了当满荷电状态的电池模组竖直向上放置时,其热失控火焰高度及面积最大;倾斜角度改变了火焰形态及蔓延方向,从而改变了热失控在模组内的传播。

论文外文摘要:

    In recent years, the lithium-ion battery industry has been developing rapidly, but it is very prone to thermal runaway in the case of electrical, thermal and mechanical abuse, which in turn leads to fire accidents, and the safety problem needs to be solved urgently. As the battery is easy to tilt in use, transport and other scenarios, resulting in a change in the direction of the safety valve, resulting in a more complex evolution of thermal runaway combustion behaviour. Therefore, this paper selects 18650 lithium ternary batteries as the research object, and adopts the independently constructed lithium battery thermal runaway experimental bench to study the evolution of thermal runaway combustion behaviour of single and battery modules at different tilt angles and charge states, and to reveal the thermal runaway propagation paths and heat transfer mechanisms within the battery module. The results of the study provide important theoretical support for assessing the fire risk of batteries and formulating safety warning strategies.

    In this paper, we investigated the changes of surface temperature, critical conditions, mass loss and other characteristic parameters in the thermal runaway process of single battery under different tilt conditions, mastered the influence of different tilt angle and charge state on the characteristic parameters of thermal runaway of Li-ion batteries, and determined the evolution of thermal runaway combustion behaviour of single battery is mainly divided into four phases: battery expansion, gas release, flame jet and flame quenching phase. The results show that the thermal runaway surface temperature peak is proportional to the state of charge, in which when the surface temperature reaches 140~220 ℃, the battery thermal runaway phenomenon; based on the analysis of the critical conditions of thermal runaway, it is obtained that the tilt angle is inversely proportional to the time of opening the safety valve of the battery. By comparing and analysing the mass change and the morphological characteristics of the residue before and after the thermal runaway, it was determined that with the gradual increase of the charge state of the battery, the more mass is lost and the more serious the shell is broken; and it was found that the change of tilt angle can lead to the formation of fusion holes and cracks on the surface of battery during the thermal runaway, which can provide an additional pathway for the release of energy.

    The changes of parameters such as flame pattern and flame temperature of thermal runaway of single battery were analysed, and the influence law of combustion behaviour of lithium battery under tilted conditions was obtained. The results show that the thermal runaway process of lithium batteries with a charge state of 25% only emits smoke to the outside, and the rest of the thermal runaway process of batteries with a charge state higher than 25% produces sparks and combustion phenomena with different degrees of intensity. With the increase of charge state, the height and area of thermal runaway flame increase significantly; and the average flame height decreases and then increases with the increase of tilt angle. By comparing the change rule of peak flame temperature under different tilt angle and charge state, it was found that the flame temperature showed a decreasing trend with the increase of vertical distance; among them, the fire plume temperature was the highest at 2 cm from the injection port under different charge states, and the peak flame temperature showed a linear growth relationship with the charge state; in addition, except for 25% of the charge state, the peak flame temperature of the rest of the charge state was much higher than the flame temperature of the aluminium shell at 660 ℃. The melting point of aluminium shell is 660 ℃; with the increase of the tilt angle, the peak flame temperature shows the trend of decreasing and then increasing, in which the flame temperature is significantly lower than 0° when the tilt angle is 180°.

    The thermal runaway propagation phenomenon and combustion behaviour of the battery module are analysed, and the thermal runaway propagation path and transfer mechanism of the battery module under tilted conditions are revealed. The results show that under the same heating power condition, the thermal runaway propagation ability decreases and the propagation time increases with the gradual decrease of the charge state. The thermal runaway propagation does not occur when the charge state is 0% of battery module, while the charge state of 50% and 100% triggers the thermal runaway of adjacent batteries and forms the thermal runaway propagation phenomenon between monomers in the module, with the propagation time of 131 s and 23 s, respectively; the thermal runaway time of monomer batteries adjacent to the heat source decreases with the increase of the tilt angle in different tilting conditions, while batteries adjacent to the battery show the thermal runaway propagation path and the transmission mechanism. When the charge state is 100%, it takes 23 s to complete the thermal runaway propagation between the vertical upward battery modules, and only 19 s for the vertical downward (180°) module. By comparing and analysing the change rule of the mass loss during the thermal runaway process, it can be seen that when the charge state is 0%, the battery module does not have the thermal runaway propagation, and the safety valve opening phenomenon occurs for the single battery close to the heat source. The safety valve opening phenomenon occurred in the battery near the heat source, resulting in 5% mass loss, and the thermal runaway propagation occurred in the battery module of other charge states (50% and 100%), with mass losses of 24% and 41%, respectively. The battery module placed horizontally (90°) had the least mass loss at different tilt angles. By analysing the flame pattern during thermal runaway, it was found that the height and area of the thermal runaway flame were the largest when the fully charged battery module was placed vertically upwards; the tilt angle changed the flame pattern and the direction of flame propagation, which accelerated the thermal runaway propagation in the module.

参考文献:

[1]李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(07): 2282-2301.

[2]陈国贺, 吕培召, 李孟涵, 等. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024: 1-13.

[3]刘昊东, 张鹏飞, 黄钰期. 三元锂电池热失控射流可视化及速度场测试[J]. 化工进展, 2024, 43(02): 703-712.

[4]李涵, 王炎, 张西龙, 等. 热辐射触发锂离子电池热失效行为及其射流热特性[J]. 汽车安全与节能学报, 2024, 15(01): 83-91.

[5]郭斌, 刘新华, 何瑢, 等. 锂离子电池性能衰减与热失控机制研究进展[J]. 稀有金属, 2024, 48(02): 225-239.

[6]Mao B, Liu C, Yang K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium-ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717.

[7]Xu C, Zhang F, Feng X, et al. Experimental study on thermal runaway propagation of lithium-ion battery modules with different parallel-series hybrid connections[J]. Journal of Cleaner Production, 2021, 284: 124749.

[8]赵春朋. 受限空间三元锂离子电池热失控燃爆危险性研究[D]. 合肥: 中国科学技术大学, 2021.

[9]孙一楠. 磷酸铁锂电池热失控特性及液氮防灭火效能试验研究[D]. 徐州: 中国矿业大学, 2021.

[10]张洋, 吕中宾, 姚浩伟, 等. 集装箱式锂离子电池储能系统消防系统设计[J]. 消防科学与技术, 2020, 39(02): 143-146.

[11]高飞, 朱艳丽, 齐创, 等. 锂离子电池安全事故激源浅析[J]. 电源技术, 2019, 43(03): 453-457.

[12]邢志祥, 刘敏, 吴洁, 等. 锂离子电池火灾危险性的研究现状分析[J]. 消防科学与技术, 2019, 38(06): 880-884.

[13]Wang Y, Song Z, Wang H, et al. Experimental research on flammability characteristics and ignition conditions of hybrid mixture emissions venting from a large format thermal failure lithium-ion battery[J]. Journal of Energy Storage, 2023, 59: 106466.

[14]沈俊杰. 不同气压氮气环境对锂电池燃爆行为抑制效能实验研究[D]. 广汉: 中国民用航空飞行学院, 2021.

[15]Li H, Duan Q, Zhao C, et al. Experimental investigation on thethermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254.

[16]Zhang Y, Mei W, Qin P, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116928.

[17]李煌. 三元锂离子电池热失控传播及阻隔机制研究[D]. 合肥: 中国科学技术大学, 2020.

[18]Lai Y, Chi K, Chung Y, et al. Thermal runaway characteristics of 18650 lithium-ion batteries in various states of charge[J]. Journal of Thermal Analysis and Calorimetry, 2024: 1-10.

[19]张凯博, 贾凯丽, 徐晓明, 等. 不同荷电状态下动力锂离子电池的热失控[J]. 电池, 2022, 52(06): 642-645.

[20]Yang M, Rong M, Pan J, et al. Thermal runaway behavior analysis during overheating for commercial LiFePO4 batteries under various state of charges[J]. Applied Thermal Engineering, 2023, 230: 120816.

[21]孙建丹, 汪红辉, 储德韧, 等. 不同荷电状态三元锂离子电池热失控动力学研究[J]. 电源技术, 2023, 47(08): 1040-1045.

[22]贾井运. 低压下不同包装航空运输锂电池热失控特性研究[J]. 消防科学与技术, 2023, 42(05): 633-637.

[23]张青松, 刘添添, 赵洋. 受限空间环境压力对三元锂离子电池热失控影响[J]. 中国安全生产科学技术, 2021, 17(06): 36-40.

[24]Ding C, Zhu N, Yu J, et al. Experimental investigation of environmental pressure effects on thermal runaway properties of 21700 lithium-ion batteries with high energy density[J]. Case Studies in Thermal Engineering, 2022, 38: 102349.

[25]Li Y, Jiang L, Huang Z, et al. Pressure effect on the thermal runaway behaviors of lithium-ion battery in confined space[J]. Fire Technology, 2023, 59(03): 1137-1155.

[26]李东琪, 张青松, 郑少帅. 大倍率充放电循环对锂离子电池特性及热安全性能的影响[J]. 兰州理工大学学报, 2023, 49(03): 30-35.

[27]毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2024, 7(06): 1120-1127.

[28]Yang M, Ye Y, Yang A, et al. Comparative study on aging and thermal runaway of commercial LiFePO4 graphite battery undergoing slight overcharge cycling[J]. Journal of Energy Storage, 2022, 50: 104691.

[29]Mao B, Zhao C, Chen H, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281: 116054.

[30]Zou K, Chen X, Ding Z, et al. Jet behavior of prismatic lithium-ion batteries during thermal runaway[J]. Applied Thermal Engineering, 2020, 179: 115745.

[31]Zhou Z, Zhou X, Wang D, et al. Experimental analysis of lengthwise/transversal thermal characteristics and jet flow of large-format prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2021, 195: 117244.

[32]刘士祥. 倾斜角度和环境风对湍流扩散射流火焰燃烧行为的影响研究[D]. 合肥: 中国科学技术大学, 2020.

[33]孔祥晓. 不同喷射方向湍流射流火焰撞壁行为特征研究[D]. 合肥: 中国科学技术大学, 2021.

[34]刘士奇, 张肖. 化学气体灭火剂作用下甲烷射流火焰行为[J]. 科学技术与工程, 2023, 23(23): 10168-10175.

[35]陈庆, 魏旭, 陈光, 等. 受限空间射流火形成和发展影响因素研究[J]. 中国安全科学学报, 2020, 30(07): 35-40.

[36]彭新宇, 唐飞. 横风作用下燃气罐车泄漏射流火行为特征研究[J]. 燃烧科学与技术, 2023, 29(03): 365-371.

[37]Lu H, Liu S, Lv J, et al. A physical model on the flame structure of vertical downward turbulent jet fires[J]. Fuel, 2023, 334: 126596.

[38]蔡江宁. 18650三元锂离子电池水平与竖直热失控传播传热特性实验研究[D]. 安徽:中国科学技术大学, 2022.

[39]韩旭. 受限空间锂离子电池燃爆特性研究[D]. 广汉: 中国民用航空飞行学院, 2019.

[40]程晓章, 赵剑波, 厉运杰, 等. 锂离子电池过热热失控及传播实验研究[J]. 合肥工业大学学报, 2020, 43(09): 1173-1178.

[41]欧阳东旭. 典型滥用工况下锂离子电池及其正极材料的热-电行为研究[D]. 合肥: 中国科学技术大学, 2021.

[42]冼君琳. 车用动力电池模组热失控传播及阻隔研究[D]. 广州: 华南理工大学, 2021.

[43]Li H, Chen H, Zhong G, et al. Experimental study on thermal runaway risk of 18650 lithium-ion battery under side-heating condition[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 122-129.

[44]邓志彬, 韩旭, 刘全义, 等. 不同体系中18650型锂离子电池热失控传播过程研究[J]. 消防科学与技术, 2018, 37(02): 246-249.

[45]Zhou Z, Ju X, Zhou X, et al. A comprehensive study on the impact of heating position on thermal runaway of prismatic lithium-ion batteries[J]. Journal of Power Sources, 2022, 520: 230919.

[46]卓萍, 倪照鹏, 杨凯, 等. 磷酸铁锂方形单体电池受热火灾危险性[J]. 消防科学与技术, 2019, 38(02): 280-283.

[47]Huang Z, Yu Y, Duan Q, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778.

[48]王皆佳, 贾君瑞, 赵彤, 等. 锂离子动力电池热失控特性实验研究[J]. 电子设计工程, 2023, 31(05): 111-115.

[49]Wang Z, Yang H, Li Y, et al. Thermal runaway and fire behaviors of large-scale lithium-ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: 120730.

[50]向硕凌, 陈现涛, 王海斌, 等. 圆柱形锂电池热失控灾害行为与烟气特性研究[J]. 消防科学与技术, 2020, 39(07): 908-912.

[51]Jin C, Sun Y, Wang H, et al. Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method[J]. Journal of Power Sources, 2021, 504: 230065.

[52]Liu P, Liu C, Yang K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: 101714.

[53]郭志慧, 崔潇丹, 赵林双, 等. 高镍三元锂离子电池火灾及气体爆炸危险性实验[J]. 储能科学与技术, 2022, 11(01): 193-200.

[54]郭东亮, 刘洋, 肖鹏, 等. 储能电站用锂离子电池热失控早期预警参数研究[J]. 消防科学与技术, 2020, 39(08): 1156-1159.

[55]曹有琪. 磷酸铁锂动力电池发热特性及散热系统设计[D]. 西安: 西安科技大学, 2021.

[56]李欣. 环境风作用下喷射角度对扩散射流火焰形态特征参数演化规律影响的研究[D]. 合肥: 中国科学技术大学, 2022.

[57]刘芹, 贾琦晖, 何沛祥, 等. 多火源气体射流火动力学特性研究[J]. 合肥工业大学学报, 2021, 44(08): 1094-1099.

[58]Huang Z, Li X, Wang Q, et al. Experimental investigation on thermal runaway propagation of large format lithium-ion battery modules with two cathodes[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121077.

[59]Gao S, Lu L, Ouyang M, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack[J]. Journal of the electrochemical society, 2019, 166(10): A2065.

[60]周天念, 吴传平, 陈宝辉. 加热引发三元18650型离子电池组的燃烧特性[J]. 储能科学与技术, 2021, 10(02): 558-564.

[61]Liu X, Zhou Z, Wu W, et al. Three-Dimensional Modeling for the Internal Shorting Caused Thermal Runaway Process in 20Ah Lithium-Ion Battery[J]. Energies, 2022, 15(19): 6868.

[62]梅文昕, 段强领, 王青山, 等. 大型磷酸铁锂电池高温热失控模拟研究[J]. 储能科学与技术, 2021, 10(01): 202-209.

[63]Liu C, Li H, Kong X, et al. Modeling analysis of the effect of battery design on internal short circuit hazard in LiNi0.8Co0.1Mn0.1O2/SiOx-graphite lithium-ion batteries[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119590.

[64]Peng Y, Yang L, Ju X, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: 120916.

[65]Gao S, Feng X N, Lu L G, et al. An experimental and analytical study of thermal runaway propagation in a large format lithium-ion battery module with NCM pouch-cells in parallel[J]. International Journal of Heat and Mass Transfer, 2019, 135: 93-103.

[66]程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性研究[J]. 储能科学与技术, 2023: 1-14.

[67]王栋, 郑莉莉, 李希超, 等. 三元软包动力锂电池热安全性[J]. 储能科学与技术, 2020, 9(05): 1517-1525.

[68]杜光超, 郑莉莉, 张志超, 等. 圆柱形高镍三元锂离子电池高温热失控实验研究[J]. 储能科学与技术, 2020, 9(01): 249-256.

[69]毛斌斌. 18650型三元锂离子电池热失控临界条件及火灾动力学研究[D]. 合肥: 中国科学技术大学, 2021.

[70]魏钟原, 袁威, 李子建, 等. 锂离子电池组热失控蔓延热传递机制的影响研究[J]. 工业安全与环保, 202l, 47(03): l-5.

[71]刘良, 王亢亢. 车用三元锂离子电池试验与热仿真研究[J]. 农业装备与车辆工程, 2020, 58(05): 6-10.

[72]Zhang Y, Mei WX, Qin P, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116928.

[73]田君, 王垒, 高洪波, 等. 高镍三元锂离子电池热失控诱发与扩散机制研究[J]. 电源技术, 2024, 48(01): 79-86.

[74]顾晓瑜, 李进, 孙千, 等. 微量量热法分析锂离子电池热失控过程[J]. 化学学报, 2024, 82(02): 146-151.

[75]Liu Z, Zhu Y, Li R, et al. The experimental investigation of thermal runaway characteristics of lithium battery under different concentrations of heptafluoropropane and air[J]. Journal of Energy Storage, 2024, 84: 110828.

[76]Wei P, Yan Z, Zhang S, et al. Experimental study on the inhibition effect of water mist containing additives on the thermal runaway of lithium battery[J]. Process Safety and Environmental Protection, 2024, 182: 999-1007.

[77]Zhang Q, Yang K, Niu J, et al. Research on the lower explosion limit of thermal runaway gas in lithium batteries under high-temperature and slight overcharge conditions[J]. Journal of Energy Storage, 2024, 79: 109976.

[78]朱艳丽, 徐艺博, 王聪杰, 等. 不同荷电状态磷酸铁锂电池热失控温度与产气特性分析[J]. 安全与环境学报, 2024, 24(01): 143-151.

[79]杨晓菡, 张怡, 邓玲, 等. 锂离子电池汽车全尺寸火灾试验研究进展综述[J]. 消防科学与技术, 2024, 43(01): 29-33.

[80]杨娟, 牛江昊, 张青松. 循环老化锂离子电池热失控气体原位爆炸极限实验分析[J]. 航空学报, 2023, 44(23): 290-299.

[81]李谦, 于金山, 刘盛终, 等. 不同因素影响下锂离子电池热失控演变特征及危害性综述[J]. 消防科学与技术, 2023, 42(11): 1482-1487.

[82]Mao B, Chen H, Jiang L, et al. Refined study on lithium-ion battery combustion in open space and a combustion chamber[J]. Process Safety and Environmental Protection, 2020, 139: 133-146.

[83]Liu P, Li Y, Mao B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949.

[84]Gao T, Wang Z, Chen S, et al. Hazardous characteristics of charge and discharge of lithium-ion batteries under adiabatic environment and hot environment[J]. International Journal of Heat and Mass Transfer, 2020, 141: 419-431.

[85]陈晔, 李晋, 吴候福, 等. 大容量储能电池模组热失控传播行为与燃爆风险分析[J/OL]. 储能科学与技术, 1-11[2024-04-16].

中图分类号:

 X932    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式